

Praise for the First Edition

“This is one of those rare books that connect a tutorial for using a certain software
product with a plethora of ideas on good software design and design patterns. I
enjoyed this book very much...”

—Computing Reviews

“Covers all the bases with extensive examples and explicit instructions...a superbly
organized and fluently written instruction and reference manual.”

—Internet Bookwatch

“...easy to read...and has just enough humor mixed in...”

—Books-On-Line

“While Spring’s reference documentation is high quality, this book makes learning
Spring much more enjoyable. The book injects a fair amount of humor that keeps it
entertaining. If you want to learn Spring, you can’t go wrong with this offering.”

—Bill Siggelkow’s Weblog
Author of Jakarta Struts Cookbook

“Truly a great resource... The book clearly defines the power that Spring brings to
enterprise programmers and how Spring abstracts away many of the tougher J2EE
services that most serious applications use. The book has been through a rigorous early
access program, so thankfully grammar and code errors are all but non-existent. To
me, there is nothing worse than trying to learn a new technology from a poorly written
and edited technical book. Thankfully, Craig, Ryan, and the Manning team have
paid attention to detail and produced a book that I highly recommend.”

—JavaLobby.org

“A complete reference manual that covers nearly every aspect of Spring. This doesn’t
mean it is complicated: every explanation is clear and there are a lot of code examples.
...[it] explains clearly what “Inversion of Control” and AOP mean and how Spring
makes them possible. ...how you can write services and Daos, and how you can simply
implement transaction management and service remoting. ...the third part talks
about the Web layer covering Spring MVC as well as other technologies and
frameworks. ...Overall an excellent resource for any developer interested in using
Spring in his project.”

—Java User Group Milano

Spring in Action
Second Edition

CRAIG WALLS

with Ryan Breidenbach

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Sound View Court 3B Fax: (609) 877-8256
Greenwick, CT 06830 Email: orders@manning.com

©2008 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Liz Welch
Sound View Court 3B Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-933988-13-4
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – MAL – 13 12 11 10 09 08 07

 For my wife Raymie and my daughters Maisy and Madison

 I am endlessly mystified as to how I merit the love
of the world’s three most beautiful girls.

brief contents
PART 1 CORE SPRING ...1

1 ■ Springing into action 3

2 ■ Basic bean wiring 31

3 ■ Advanced bean wiring 72

4 ■ Advising beans 116

PART 2 ENTERPRISE SPRING... 153

5 ■ Hitting the database 155

6 ■ Managing transactions 220

7 ■ Securing Spring 247

8 ■ Spring and POJO-based remote services 305

9 ■ Building contract-first web services in Spring 343

10 ■ Spring messaging 384

11 ■ Spring and Enterprise JavaBeans 423

12 ■ Accessing enterprise services 441
vii

viii BRIEF CONTENTS
PART 3 CLIENT-SIDE SPRING..487

13 ■ Handling web requests 489

14 ■ Rendering web views 533

15 ■ Using Spring Web Flow 580

16 ■ Integrating with other web frameworks 623

appendix A Setting up Spring 667

appendix B Testing with (and without) Spring 678

contents
preface xix
preface to the first edition xxii
acknowledgments xxv
about this book xxvii
about the title xxxiii
about the cover illustration xxxiv

PART 1 CORE SPRING.. 1

1 Springing into action 3
1.1 What is Spring? 5

Spring modules 6

1.2 A Spring jump start 11

1.3 Understanding dependency injection 14
Injecting dependencies 14 ■ Dependency injection in action 15
Dependency injection in enterprise applications 21

1.4 Applying aspect-oriented programming 24
Introducing AOP 24 ■ AOP in action 26

1.5 Summary 30
ix

x CONTENTS
2 Basic bean wiring 31
2.1 Containing your beans 33

Introducing the BeanFactory 34 ■ Working with an application
context 35 ■ A bean’s life 37

2.2 Creating beans 40
Declaring a simple bean 40 ■ Injecting through constructors 42

2.3 Injecting into bean properties 46
Injecting simple values 47 ■ Referencing other beans 48
Wiring collections 52 ■ Wiring nothing (null) 58

2.4 Autowiring 58
The four types of autowiring 59 ■ Mixing auto with explicit
wiring 63 ■ To autowire or not to autowire 63

2.5 Controlling bean creation 64
Bean scoping 65 ■ Creating beans from factory methods 66
Initializing and destroying beans 68

2.6 Summary 71

3 Advanced bean wiring 72
3.1 Declaring parent and child beans 73

Abstracting a base bean type 74 ■ Abstracting common
properties 76

3.2 Applying method injection 79
Basic method replacement 80 ■ Using getter injection 83

3.3 Injecting non-Spring beans 85
3.4 Registering custom property editors 88
3.5 Working with Spring’s special beans 92

Postprocessing beans 93 ■ Postprocessing the bean factory 95
Externalizing configuration properties 96 ■ Resolving text
messages 99 ■ Decoupling with application events 101
Making beans aware 103

3.6 Scripting beans 106
Putting the lime in the coconut 107 ■ Scripting a bean 108
Injecting properties of scripted beans 111 ■ Refreshing scripted
beans 112 ■ Writing scripted beans inline 113

3.7 Summary 114

CONTENTS xi
4 Advising beans 116
4.1 Introducing AOP 118

Defining AOP terminology 119 ■ Spring’s AOP support 122

4.2 Creating classic Spring aspects 125

Creating advice 127 ■ Defining pointcuts and advisors 132
Using ProxyFactoryBean 136

4.3 Autoproxying 139

Creating autoproxies for Spring aspects 140 ■ Autoproxying
@AspectJ aspects 141

4.4 Declaring pure-POJO aspects 145

4.5 Injecting AspectJ aspects 149

4.6 Summary 152

PART 2 ENTERPRISE SPRING 153

5 Hitting the database 155
5.1 Learning Spring’s data access philosophy 157

Getting to know Spring’s data access exception hierarchy 158
Templating data access 161 ■ Using DAO support classes 163

5.2 Configuring a data source 165
Using JNDI data sources 165 ■ Using a pooled data source 167
JDBC driver-based data source 168

5.3 Using JDBC with Spring 170

Tackling runaway JDBC code 170 ■ Working with JDBC
templates 173 ■ Using Spring’s DAO support classes for
JDBC 180

5.4 Integrating Hibernate with Spring 183

Choosing a version of Hibernate 185 ■ Using Hibernate
templates 186 ■ Building Hibernate-backed DAOs 190
Using Hibernate 3 contextual sessions 192

5.5 Spring and the Java Persistence API 194

Using JPA templates 194 ■ Configuring an entity manager
factory 197 ■ Building a JPA-backed DAO 202

xii CONTENTS
5.6 Spring and iBATIS 203
Configuring an iBATIS client template 204 ■ Building
an iBATIS-backed DAO 207

5.7 Caching 208
Configuring a caching solution 210 ■ Proxying beans
for caching 215 ■ Annotation-driven caching 217

5.8 Summary 218

6 Managing transactions 220
6.1 Understanding transactions 222

Explaining transactions in only four words 223
Understanding Spring’s transaction management
support 224

6.2 Choosing a transaction manager 225
JDBC transactions 226 ■ Hibernate transactions 227
Java Persistence API transactions 227 ■ Java Data
Objects transactions 228 ■ Java Transaction API
transactions 229

6.3 Programming transactions in Spring 229

6.4 Declaring transactions 232
Defining transaction attributes 233 ■ Proxying
transactions 238 ■ Declaring transactions in
Spring 2.0 241 ■ Defining annotation-driven
transactions 243

6.5 Summary 245

7 Securing Spring 247
7.1 Introducing Spring Security 248

7.2 Authenticating users 252
Configuring a provider manager 253 ■ Authenticating
against a database 256 ■ Authenticating against
an LDAP repository 264

7.3 Controlling access 271
Voting access decisions 272 ■ Casting an access decision
vote 273 ■ Handling voter abstinence 275

CONTENTS xiii
7.4 Securing web applications 275
Proxying Spring Security’s filters 278 ■ Handling the
security context 285 ■ Prompting the user to log
in 286 ■ Handling security exceptions 291 ■ Enforcing
web security 293 ■ Ensuring a secure channel 294

7.5 View-layer security 297
Conditionally rendering content 298 ■ Displaying user
authentication information 299

7.6 Securing method invocations 300
Creating a security aspect 301 ■ Securing methods using
metadata 303

7.7 Summary 304

8 Spring and POJO-based remote services 305
8.1 An overview of Spring remoting 306

8.2 Working with RMI 309
Wiring RMI services 310 ■ Exporting RMI services 312

8.3 Remoting with Hessian and Burlap 316
Accessing Hessian/Burlap services 317 ■ Exposing bean
functionality with Hessian/Burlap 318

8.4 Using Spring’s HttpInvoker 322
Accessing services via HTTP 323 ■ Exposing beans as
HTTP Services 324

8.5 Spring and web services 326
Exporting beans as web services using XFire 326
Declaring web services with JSR-181 annotations 330
Consuming web services 333 ■ Proxying web services with
an XFire client 340

8.6 Summary 341

9 Building contract-first web services in Spring 343
9.1 Introducing Spring-WS 345

9.2 Defining the contract (first!) 347
Creating sample XML messages 348

xiv CONTENTS
9.3 Handling messages with service endpoints 353
Building a JDOM-based message endpoint 355 ■ Marshaling
message payloads 358

9.4 Wiring it all together 361
Spring-WS: The big picture 361 ■ Mapping messages to
endpoints 363 ■ Wiring the service endpoint 364
Configuring a message marshaler 364 ■ Handling endpoint
exceptions 367 ■ Serving WSDL files 369 ■ Deploying the
service 373

9.5 Consuming Spring-WS web services 373
Working with web service templates 374 ■ Using web service
gateway support 381

9.6 Summary 382

10 Spring messaging 384
10.1 A brief introduction to JMS 386

Architecting JMS 387 ■ Assessing the benefits of JMS 390
Setting up ActiveMQ in Spring 392

10.2 Using JMS with Spring 393
Tackling runaway JMS code 393 ■ Working with JMS
templates 395 ■ Converting messages 402 ■ Using Spring’s
gateway support classes for JMS 405

10.3 Creating message-driven POJOs 407
Creating a message listener 408 ■ Writing pure-POJO
MDPs 412

10.4 Using message-based RPC 416
Introducing Lingo 417 ■ Exporting the service 418
Proxying JMS 420

10.5 Summary 422

11 Spring and Enterprise JavaBeans 423
11.1 Wiring EJBs in Spring 425

Proxying session beans (EJB 2.x) 426 ■ Wiring EJBs into Spring
beans 430

11.2 Developing Spring-enabled EJBs (EJB 2.x) 431

CONTENTS xv
11.3 Spring and EJB3 434
Introducing Pitchfork 435 ■ Getting started with Pitchfork 436
Injecting resources by annotation 437 ■ Declaring interceptors
using annotations 438

11.4 Summary 440

12 Accessing enterprise services 441
12.1 Wiring objects from JNDI 442

Working with conventional JNDI 443 ■ Injecting JNDI
objects 446 ■ Wiring JNDI objects in Spring 2 449

12.2 Sending email 450
Configuring a mail sender 451 ■ Constructing the email 453

12.3 Scheduling tasks 456
Scheduling with Java’s Timer 457 ■ Using the Quartz
scheduler 460 ■ Invoking methods on a schedule 464

12.4 Managing Spring beans with JMX 466
Exporting Spring beans as MBeans 467 ■ Remoting
MBeans 477 ■ Handling notifications 482

12.5 Summary 485

PART 3 CLIENT-SIDE SPRING.................................. 487

13 Handling web requests 489
13.1 Getting started with Spring MVC 490

A day in the life of a request 491 ■ Configuring
DispatcherServlet 492 ■ Spring MVC in a nutshell 495

13.2 Mapping requests to controllers 502
Using SimpleUrlHandlerMapping 503 ■ Using
ControllerClassNameHandlerMapping 504 ■ Using metadata
to map controllers 505 ■ Working with multiple handler
mappings 505

13.3 Handling requests with controllers 506
Processing commands 509 ■ Processing form submissions 512
Processing complex forms with wizards 520 ■ Working with
throwaway controllers 528

xvi CONTENTS
13.4 Handling exceptions 531

13.5 Summary 532

14 Rendering web views 533
14.1 Resolving views 534

Using template views 535 ■ Resolving view beans 537
Choosing a view resolver 540

14.2 Using JSP templates 542
Binding form data 542 ■ Rendering externalized messages 544
Displaying errors 547

14.3 Laying out pages with Tiles 549
Tile views 550 ■ Creating Tile controllers 554

14.4 Working with JSP alternatives 556
Using Velocity templates 557 ■ Working with FreeMarker 564

14.5 Generating non-HTML output 569
Producing Excel spreadsheets 570 ■ Generating PDF
documents 573 ■ Developing custom views 576

14.6 Summary 578

15 Using Spring Web Flow 580
15.1 Getting started with Spring Web Flow 582

Installing Spring Web Flow 584 ■ Spring Web Flow
essentials 589 ■ Creating a flow 591

15.2 Laying the flow groundwork 591
Flow variables 591 ■ Start and end states 593 ■ Gathering
customer information 594 ■ Building a pizza order 601
Completing the order 605 ■ A few finishing touches 608

15.3 Advanced web flow techniques 611
Using decision states 612 ■ Extracting subflows and using
substates 614

15.4 Integrating Spring Web Flow with other frameworks 619
Jakarta Struts 619 ■ JavaServer Faces 620

15.5 Summary 622

CONTENTS xvii
16 Integrating with other web frameworks 623
16.1 Using Spring with Struts 624

Registering the Spring plug-in with Struts 626 ■ Writing Spring-
aware Struts actions 627 ■ Delegating to Spring-configured
actions 629 ■ What about Struts 2? 632

16.2 Working Spring into WebWork 2/Struts 2 633

16.3 Integrating Spring with Tapestry 636
Integrating Spring with Tapestry 3 637 ■ Integrating Spring with
Tapestry 4 641

16.4 Putting a face on Spring with JSF 643
Resolving JSF-managed properties 644 ■ Resolving Spring
beans 646 ■ Using Spring beans in JSF pages 646
Exposing the application context in JSF 648

16.5 Ajax-enabling applications in Spring with DWR 648
Direct web remoting 650 ■ Accessing Spring-managed beans
DWR 659

16.6 Summary 664

appendix A Setting up Spring 667
appendix B Testing with (and without) Spring 678

index 707

web content
web chapter Building portlet applications

appendix C Spring XML configuration reference

appendix D Spring JSP tag library reference

appendix E Spring Web Flow definition reference

appendix F Customizing Spring configuration

preface
It was December 7, 2005. I was standing at the side of a large hotel meeting room
in Miami Beach, Florida. The room was filled with developers from all over the
world who had descended upon the beautiful sandy beaches of southern Florida
for a single purpose: to talk about Spring.

 What can I say? It was a room full of nerds. Rather than soak in the sun and
surf, we all gathered inside to bask in the warm glow of our laptop screens to learn
more about our beloved framework from those who know it best.

 On that particular night, we were hanging on the words of Spring’s creator,
Rod Johnson, as he presented the opening keynote for the conference. He spoke
of Spring’s origins and the successes it had enjoyed. Then he invited a few mem-
bers of the Spring team to the podium to introduce new features that were to be
in the next version.

 He wasn’t far into his presentation when Rod made an announcement that
caught everyone’s attention. We were all expecting these great new features to be
available in Spring 1.3, the supposed next version of Spring. Much to our surprise,
Rod informed us that there would be no Spring 1.3; the next version would be
Spring 2.0.

 The decision to bump up the major version number of the next release isn’t
made lightly. Such an action connotes a significant advance in Spring. If the next
version of Spring would be 2.0, then we could expect major enhancements.
Indeed, ten months later, Spring 2.0 would be released with an abundance of new
capabilities, including:
xix

xx PREFACE
■ Simplified XML configuration and the option to create custom configura-
tion elements

■ Greatly simplified AOP and transactions

■ Support for Java 5 annotations for declaring aspects, transactions, and
required bean properties

■ The ability to create beans from scripts written in JRuby, Groovy, or Bean-
Shell

■ New JDBC templates to support named parameters and Java 5 features

■ Improved JMS support, including receiving messages asynchronously (for
creating message-driven POJOs)

■ A new form-binding JSP tag library

■ Several convention-over-configuration improvements to reduce the amount
of XML required to configure Spring

■ Support for the Java Persistence API (JPA)

■ Enhanced bean scoping, including request and session scoping of beans for
web applications

■ The ability to perform dependency injection on objects that Spring doesn’t
create (such as domain objects)

At one point in his keynote, Rod said that if the wealth of new features being
introduced didn’t justify a jump to 2.0, then how would they ever be able to justify
a 2.0 release?

 That’s not all. In addition to the work being done on the core Spring Frame-
work, several interesting Spring-related projects were underway to provide addi-
tional capabilities on top of Spring. Among them:

■ Spring Web Flow, which is based on Spring MVC and enables development
of flow-based web applications

■ XFire, for exporting your Spring beans as SOAP web services

■ Spring-WS for creating contract-first web services

■ Spring Modules, which provides (among other things) declarative caching
and validation

■ Direct Web Remoting (DWR) for Ajax-enabling Spring beans

■ Lingo, which makes it possible to asynchronously invoke methods on
remote beans

PREFACE xxi
Then it occurred to me: if all of these new advances in Spring didn’t justify a sec-
ond edition of Spring in Action, then what would? As it turned out, Manning was
thinking the same thing.

 And now, well over a year later, here’s the long-awaited update to Spring in
Action that covers many of the new features of Spring 2.0. It has taken me a lot
longer to finish than I had planned, but I hope that it was worth the wait. My goal
for this edition is the same as with the first: to share the joy of developing in
Spring. I hope this book will serve to enhance your enjoyment of Spring.

preface to the first edition
Software developers need to have a number of traits in order to practice their
craft well. First, they must be good analytical thinkers and problem solvers. A
developer’s primary role is to create software that solves business problems.
This requires analyzing customer needs and coming up with successful, cre-
ative solutions.

 They also need to be curious. Developments in the software industry are mov-
ing targets, always evolving. New frameworks, new techniques, new languages, and
new methodologies are constantly emerging. Each one is a new tool that needs to
be mastered and added to the toolbox, allowing the developer to do his or her job
better and faster.

 Then there is the most cherished trait of all, “laziness.” The kind of laziness
that motivates developers to work hard to seek out solutions with the least amount
of effort. It was with curiosity, a good dose of “laziness,” and all the analytical abili-
ties we could muster that the two of us struck out together four years ago to find
new ways to develop software.

 This was the time when open source software was reaching critical mass in the
Java community. Tons of open source frameworks were blossoming on the Java
landscape. In order to decide to adopt one, it had to hit the sweet spot of our
needs—it had to do 80% of what we needed right out of the box. And for any
functionality that was not right out of the box, the framework needed to be easily
extendible so that functionality too would be included. Extending didn’t mean
xxii

PREFACE TO THE FIRST EDITION xxiii
kludging in some hack that was so ugly you felt dirty afterwards—it meant extend-
ing in an elegant fashion. That wasn’t too much to ask, right?

 The first of these frameworks that gained immediate adoption on our team
was Ant. From the get-go, we could tell that Ant had been created by another
developer who knew our pain in building Java applications. From that moment
on, no more javac. No more CLASSPATH. All this with a straightforward (albeit
sometimes verbose) XML configuration. Huzzah! Life (and builds) just got easier.

 As we went along, we began adopting more and more tools. Eclipse became
our IDE of choice. Log4J became our (and everybody else’s) default logging tool-
kit. And Lucene supplanted our commercial search solution. Each of these tools
met our criteria of filling a need while being easy to use, understand, and extend.

 But something was lacking. These great tools were designed to help develop
software, like Ant and Eclipse, or to serve a very specific application need, like
searching in the case of Lucene and logging for Log4J. None of them addressed
the needs at the heart of enterprise applications: persistence, transactions, and
integration with other enterprise resources.

 That all changed in the last year or so when we discovered the remarkable one-
two enterprise punch of Spring and Hibernate. Between these two frameworks
nearly all of our middle- and data-tier needs were met.

 We first adopted Hibernate. It was the most intuitive and feature-rich object/
relational mapping tool out there. But it was by adopting Spring that we really got
our code to look good. With Spring’s dependency injection, we were able to get
rid of all our custom factories and configurers. In fact, that is the reason we first
integrated Spring into our applications. Its wiring allowed us to streamline our
application configurations and move away from homegrown solutions. (Hey,
every developer likes writing his own framework. But sometimes you just have to
let go!)

 We quickly discovered a nice bonus: Spring also provided very easy integration
with Hibernate. This allowed us to ditch our custom Hibernate integration classes
and use Spring’s support instead. In turn, this led us directly to Spring’s support
for transparent persistence.

 Look closely and you will see a pattern here. The more we used Spring, the
more we discovered new features. And each feature we discovered was a pleasure
to work with. Its web MVC framework worked nicely in a few applications. Its AOP
support has been helpful in several places, primarily security. The JDBC support
was quite nice for some smaller programs. Oh yeah, we also use it for scheduling.
And JNDI access. And email integration. When it comes to hitting development
sweet spots, Spring knocks the ball out of the park.

xxiv PREFACE TO THE FIRST EDITION
 We liked Spring so much, we decided somebody should write a book about it.
Fortunately, one of us had already written a book for Manning and knew how to
go about doing this sort of thing. Soon that “somebody who should write a book”
became us. In taking on this project we are trying to spread the gospel of Spring.
The Spring framework has been nothing but a joy for us to work with—we predict
it will be the same for you. And, we hope this book will be a pleasant vehicle for
you to get to that point.

acknowledgments
Wow! It took a lot longer to get this book done than I thought it would. But
there’s no way you would be holding it in your hands if it weren’t for the help,
inspiration, and encouragement of all of the great folks behind the scenes.

 First, I’d like to acknowledge the hard-working souls at Manning who miracu-
lously turned my sloppily written manuscript into the fine piece of programming
literature that is now before you: Marjan Bace, Mary Piergies, Cynthia Kane, Dot-
tie Marsico, Karen Tegtmeyer, Leslie Haimes, Liz Welch, Gabriel Dobrescu, Ron
Tomich, Kerri Bonasch, Jackie Carter, Frank Blackwell, Michael Stephens, and
Benjamin Berg.

 I’d also like to thank the reviewers who took the time to provide feedback and
criticism needed to shape the book: Doug Warren, Olivier Jolly, Matthew Payne,
Bill Fly, Jonathon Esterhazy, Philip Hallstrom, Mark Chaimungkalanont, Eric Ray-
mond, Dan Allen, George M. Jempty, Mojahedul Hasanat, Vlad Kofman, Ashik
Uzzaman, Norman Richards, Jeff Cunningham, Stuart Caborn, Patrick Dennis,
Bas Vodde, and Michael Masters. In addition, Erik Weibust and Valentin Crettaz
did a second technical review of the manuscript, just before it went to press.

 Then there are those people who didn’t work on the book directly but had no
less of an impact on me or on how this book turned out.

 To my best friend, loving wife, and most beautiful woman in the world, Ray-
mie. Thank you so much for your enduring patience another seemingly never-
ending book project. I’m sorry that it took so long. Now that it’s over, I owe you
more flowers and date nights. And maybe some yard work.
xxv

xxvi ACKNOWLEDGMENTS
 My sweet and adorable little girls, Maisy and Madison: Thanks for your hugs
and laughs and playtime that gave me a pleasant break from the book.

 To Ryan Breidenbach, my coauthor on the first edition: Many thanks for help-
ing me get this started and for your feedback on the second edition.

 To the Spring team: No part of this book would be possible (or even necessary)
without your vision and drive to create such an awesome framework. I’d especially
like to thank Rod Johnson and Colin Sampaleanu for their comments on my blog
and IM sessions that helped guide my thinking, as well as Arjen Poutsma for
reviewing the Spring-WS chapter and keeping me in check.

 To all of my coworkers over the past couple of years: I’ve learned many valu-
able things working alongside you and couldn’t thank you more for your profes-
sionalism, dedication, and friendship: Jeff Hanson, Jim Wallace, Don Beale, Van
Panyanouvong, James Tikalsky, Ryan Breidenbach, Marianna Krupin, Tonji Zim-
merman, Jeff Wellen, Chris Howard, Derek Lane, Tom McGraw, Greg Vaughn,
Doug Warren, Jon West, Peter Presland-Byrne, Ravi Varanasi, Srinivasa
Penubothu, Gary Edwards, Greg Helton, Jacob Orshalick, Valerie Crowley, Tyler
Osborne, Stephanie Co, Maggie Zhuang, Tim Sporcic, William Johnson, John
Moore, Brian Eschbach, Chris Morris, Dave Sims, Andy Cline, Bear Cahill, Greg
Graham, and Paul Nelson.

 A shout-out to all of my other friends, colleagues, fellow nerds, people I’ve met
at conferences, members of my LinkedIn list, and those who bribed me to put
their name in the acknowledgments: James Bell, Daniel Brookshier, Scott Davis,
Ben Galbraith, Bill Fly, Justin Gehtland, Pete Gekas, Robert Gleaton, Stu Hallo-
way, Erik Hatcher, Rick Hightower, Ramnivas Laddad, Guillaume Laforge, Crazy
Bob Lee, Ted Neward, Matt Raible, Leo Ramirez, Arun Rao, Norman Richards,
Chris Richardson, James Strachan, Bruce Tate, Glenn Vanderburg, Becca
Wheeler, and Jay Zimmerman.

 And finally, my endless gratitude to Jack Bauer…for saving the world, 24 hours
at a time.

about this book
The Spring Framework was created with a very specific goal in mind—to make
developing JEE applications easier. Along the same lines, Spring in Action was writ-
ten to make learning how to use Spring easier. My goal is not to give you a blow-by-
blow listing of Spring APIs. Instead, I hope to present the Spring Framework in a
way that is most relevant to a JEE developer by providing practical code examples
from real-world experiences.

 Since Spring is a modular framework, this book was written in the same way. I
recognize that not all developers have the same needs. Some may want to learn
the Spring Framework from the ground up, while others may want to pick and
choose different topics and go at their own pace. That way, the book can act as a
tool for learning Spring for the first time as well as a guide and reference for those
wanting to dig deeper into specific features.

Roadmap

Spring in Action Second Edition is divided into three parts, plus two appendices.
Each of the three parts focuses on a general area of the Spring Framework: the
core framework, the business and data layers, and the presentation layer. While
each part builds on the previous section, each is also able to stand on its own,
allowing you to dive right into a certain topic without starting from the beginning.

 In part 1, you’ll explore the two core features of the Spring framework: depen-
dency injection (DI) and aspect-oriented programming (AOP). This will give you a
xxvii

chaiyilin
Highlight

xxviii ABOUT THIS BOOK
good understanding of Spring’s fundamentals that will be utilized throughout the
book.

 In chapter 1, you’ll be introduced to DI and AOP and how they lend themselves
to developing loosely coupled Java applications.

 Chapter 2 takes a more detailed look at how to configure and associate your
application objects using dependency injection. You will learn how to write loosely
coupled components and wire their dependencies and properties within the
Spring container using XML.

 Once you’ve got the basics of bean wiring down, you’ll be ready to look at
some of the more advanced features of the Spring container in chapter 3. Among
other things, you’ll learn how to hook into the lifecycle of your application com-
ponents, create parent/child relationships among your bean configurations, and
wire in scripted components written in Ruby and Groovy.

 Chapter 4 explores how to use Spring’s AOP to decouple cross-cutting con-
cerns from the objects that they service. This chapter also sets the stage for later
chapters, where you’ll use Spring AOP to provide declarative services such as
transactions, security, and caching.

 Part 2 builds on the DI and AOP features introduced in part 1 and shows you
how to apply these concepts in the data and business tiers of your application.

 Chapter 5 covers Spring’s support for data persistence. You’ll be introduced to
Spring’s JDBC support, which helps you remove much of the boilerplate code
associated with JDBC. You’ll also see how Spring integrates with several popular
persistence frameworks such as Hibernate, iBATIS, and the Java Persistence API
(JPA).

 Chapter 6 complements chapter 5, showing you how to ensure integrity in
your database using Spring’s transaction support. You will see how Spring uses
AOP to give simple application objects the power of declarative transactions.

 In chapter 7 you will learn how to apply security to your application using
Spring Security. You’ll see how Spring Security secures application both at the web
request level using servlet filters and at the method level using Spring AOP.

 Chapter 8 explores how to expose your application objects as remote services.
You’ll also learn how to seamlessly access remote services as though they were any
other object in your application. Remoting technologies explored will include
RMI, Hessian/Burlap, SOAP-based web services, and Spring’s own HttpInvoker.

 Although chapter 8 covers web services in Spring, chapter 9 takes a different
look at web services by examining the Spring-WS project. In this chapter, you’ll
learn how to use Spring-WS to build contract-first web services, in which the ser-
vice’s contract is decoupled from its implementation.

ABOUT THIS BOOK xxix
 Chapter 10 looks at using Spring to send and receive asynchronous messages
with JMS. In addition to basic JMS operations with Spring, you’ll also learn how to
using the open source Lingo project to expose and consume asynchronous
remote services over JMS.

 Even though Spring eliminates much of the need for EJBs, you may have a
need to use both Spring and EJB together. Therefore, chapter 11 explores how to
integrate Spring with EJB. You’ll learn how to write Spring-enabled EJBs, how to
wire EJB references into your Spring application context, and even how to use EJB-
like annotations to configure your Spring beans.

 Wrapping up part 2, chapter 12 will show you how to use Spring to schedule
jobs, send e-mails, access JNDI-configured resources, and manage your application
objects with JMX.

 Part 3 moves the discussion of Spring a little closer to the end user by looking
at the ways to use Spring to build web applications.

 Chapter 13 introduces you to Spring’s own MVC web framework. You will dis-
cover how Spring can transparently bind web parameters to your business objects
and provide validation and error handling at the same time. You will also see how
easy it is to add functionality to your web applications using Spring’s rich selection
of controllers.

 Picking up where chapter 13 leaves off, chapter 14 covers the view layer of
Spring MVC. In this chapter, you’ll learn how to map the output of a Spring MVC
controller to a specific view component for rendering to the user. You’ll see how to
define application views using JSP, Velocity, FreeMarker, and Tiles. And you’ll learn
how to create non-HTML output such as PDF, Excel, and RSS from Spring MVC.

 Chapter 15 explores Spring Web Flow, an extension to Spring MVC that
enables development of conversational web applications. In this chapter you’ll
learn how to build web applications that guide the user through a specific flow.

 Finally, chapter 16 shows you how to integrate Spring with other web frame-
works. If you already have an investment in another web framework (or just have a
preference), this chapter is for you. You’ll see how Spring provides support for
several of the most popular web frameworks, including Struts, WebWork, Tapestry,
and JavaServer Faces (JSF).

 Appendix A will get you started with Spring, showing you how to download
Spring and configure Spring in either Ant or Maven 2.

 One of the key benefits of loose coupling is that it makes it easier to unit-test
your application objects. Appendix B shows you how to take advantage of
dependency injection and some of Spring’s test-oriented classes for testing your
applications.

xxx ABOUT THIS BOOK
Additional web content

As I was writing this book, I wanted to cover as much of Spring as possible. I got a
little carried away and ended up writing more than could fit into the printed
book. Just like with many Hollywood movies, a lot of material ended up on the
cutting room floor:

■ “Building portlet applications” This chapter covers the Spring Portlet MVC
framework. Spring Portlet MVC is remarkably similar to Spring MVC (it even
reuses some of Spring MVC’s classes), but is geared for the special circum-
stances presented by portlet applications.

■ Appendix C, “Spring XML configuration reference” This appendix documents
all of the XML configuration elements available in Spring 2.0. In addition, it
includes the configuration elements for Spring Web Flow and Direct Web
Remoting (DWR).

■ Appendix D, “Spring JSP tag library reference” This appendix documents all of
the JSP tags, both the original Spring JSP tags and the new form-binding tags
from Spring 2.0.

■ Appendix E, “Spring Web Flow definition reference” This appendix catalogs all
of the XML elements that are used to define a flow for Spring Web Flow.

■ Appendix F, “Customizing Spring configuration” This appendix, which was
originally part of chapter 3, shows you how to create custom Spring XML
configuration namespaces.

There’s some good stuff in there and I didn’t want that work to be for naught. So
I convinced Manning to give it all of the same attention that it would get if it were
to be printed and to make it available to download for free. You’ll be able to down-
load this bonus material online at http://www.manning.com/SpringinAction.

Who should read this book

Spring in Action Second Edition is for all Java developers, but enterprise Java devel-
opers will find it particularly useful. While I will guide you along gently through
code examples that build in complexity throughout each chapter, the true power
of Spring lies in its ability to make enterprise applications easier to develop.
Therefore, enterprise developers will most fully appreciate the examples pre-
sented in this book.

 Because a vast portion of Spring is devoted to providing enterprise services,
many parallels can be drawn between Spring and EJB. Therefore, any experience
you have will be useful in making comparisons between these two frameworks.

ABOUT THIS BOOK xxxi
 Finally, while this book is not exclusively focused on web applications, a good
portion of it is dedicated to this topic. In fact, the final four chapters demon-
strate how Spring can support the development your applications’ web layer. If
you are a web application developer, you will find the last part of this book espe-
cially valuable.

Code conventions

There are many code example throughout this book. These examples will always
appear in a fixed-width code font. If there is a part of example we want you to
pay extra attention to, it will appear in a bolded code font. Any class name,
method name, or XML fragment within the normal text of the book will appear in
code font as well.

 Many of Spring’s classes and packages have exceptionally long (but expressive)
names. Because of this, line-continuation markers (➥) may be included when
necessary.

 Not all code examples in this book will be complete. Often we only show a
method or two from a class to focus on a particular topic.

 Complete source code for the application found throughout the book can be
downloaded from the publisher’s website at www.manning.com/walls3 or
www.manning.com/SpringinAction.

About the author

Craig Walls is a software developer with more than 13 years’ experience and is the
coauthor of XDoclet in Action (Manning, 2003). He’s a zealous promoter of the
Spring Framework, speaking frequently at local user groups and conferences and
writing about Spring on his blog. When he’s not slinging code, Craig spends as
much time as he can with his wife, two daughters, six birds, four dogs, two cats,
and an ever-fluctuating number of tropical fish. Craig lives in Denton, Texas.

Author Online

Purchase of Spring in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the authors and from other users. To access
the forum and subscribe to it, point your web browser to www.manning.com/
walls3 or www.manning.com/SpringinAction. This page provides information on
how to get on the forum once you are registered, what kind of help is available,
and the rules of conduct on the forum.

http://www.manning.com/walls3
http://www.manning.com/walls3
http://www.manning.com/walls3
http://www.manning.com/SpringinAction
http://www.manning.com/walls3
http://www.manning.com/walls3
http://www.manning.com/walls3
http://www.manning.com/SpringinAction
http://www.manning.com/SpringinAction

xxxii ABOUT THIS BOOK
 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialogue between individual readers and between readers and the author can
take place. It is not a commitment to any specific amount of participation on the
part of the author, whose contribution to the book’s forum remains voluntary
(and unpaid). We suggest you try asking the author some challenging questions,
lest his interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

about the title
By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cogni-
tive science, the things people remember are things they discover during self-
motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, retelling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action guide is that it
is example-driven. It encourages the reader to try things out, to play with new
code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or to solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just when
they want it. They need books that aid them in action. The books in this series are
designed for such readers.
xxxiii

about the cover illustration
The figure on the cover of Spring in Action Second Edition is a “Le Caraco,” or an
inhabitant of the province of Karak in southwest Jordan. Its capital is the city of Al-
Karak, which boasts an ancient hilltop castle with maginficent views of the Dead
Sea and surrounding plains.

 The illustration is taken from a French travel book, Encyclopedie des Voyages by
J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phe-
nomenon at the time and travel guides such as this one were popular, introduc-
ing both the tourist as well as the armchair traveler to the inhabitants of other
regions of France and abroad.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years
ago. This was a time when the dress codes of two regions separated by a few dozen
miles identified people uniquely as belonging to one or the other. The travel
guide brings to life a sense of isolation and distance of that period and of every
other historic period except our own hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life two
centuries ago brought back to life by the pictures from this travel guide.
xxxiv

Part 1

Core Spring

Spring does a lot of things, but when you break it down to its core parts,
Spring’s primary features are dependency injection (DI) and aspect-oriented
programming (AOP). Starting in chapter 1, “Springing into action,” you’ll be
given a quick overview of DI and AOP in Spring and see how they can help
you to decouple application objects.

 In chapter 2, “Basic bean wiring,” we’ll take a more in-depth look at how
to keep all your application objects loosely coupled using DI. You’ll learn
how to define your application’s objects and then wire them with dependen-
cies in the Spring container using XML.

 Turning it up a notch in chapter 3, “Advanced bean wiring,” we’ll explore
some of the more advanced features of the Spring container and see how to
use some of Spring’s more powerful configuration techniques.

 Chapter 4, “Advising beans,” explores how to use Spring’s AOP fea-
tures to decouple systemwide services (such as security and auditing) from
the objects they service. This chapter sets the stage for chapters 6 and 7,
where you’ll learn how to use Spring AOP to provide declarative transac-
tion and security.

Springing into action
This chapter covers
■ Exploring Spring’s core modules
■ Decoupling application objects
■ Managing cross-cutting concerns with AOP
3

4 CHAPTER 1

Springing into action
It all started with a bean.
 In 1996, the Java programming language was still a young, exciting, up-and-

coming platform. Many developers flocked to the language because they had seen
how to create rich and dynamic web applications using applets. But they soon
learned that there was more to this strange new language than animated juggling
cartoon characters. Unlike any language before it, Java made it possible to write
complex applications made up of discrete parts. They came for the applets, but
they stayed for the components.

 It was in December of that year that Sun Microsystems published the JavaBeans
1.00-A specification. JavaBeans defined a software component model for Java.
This specification defined a set of coding policies that enabled simple Java objects
to be reusable and easily composed into more complex applications. Although
JavaBeans were intended as a general-purpose means of defining reusable appli-
cation components, they were primarily used as a model for building user inter-
face widgets. They seemed too simple to be capable of any “real” work. Enterprise
developers wanted more.

 Sophisticated applications often require services such as transaction support,
security, and distributed computing—services not directly provided by the Java-
Beans specification. Therefore, in March 1998, Sun published the 1.0 version of
the Enterprise JavaBeans (EJB) specification. This specification extended the
notion of Java components to the server side, providing the much-needed enter-
prise services, but failed to continue the simplicity of the original JavaBeans speci-
fication. In fact, except in name, EJB bears little resemblance to the original
JavaBeans specification.

 Despite the fact that many successful applications have been built based on
EJB, EJB never achieved its intended purpose: to simplify enterprise application
development. It is true that EJB’s declarative programming model simplifies many
infrastructural aspects of development, such as transactions and security. How-
ever, in a different way, EJBs complicate development by mandating deployment
descriptors and plumbing code (home and remote/local interfaces). Over time,
many developers became disenchanted with EJB. As a result, its popularity has
started to wane in recent years, leaving many developers looking for an easier way.

 Today, Java component development has returned to its roots. New program-
ming techniques, including aspect-oriented programming (AOP) and depen-
dency injection (DI), are giving JavaBeans much of the power previously reserved
for EJBs. These techniques furnish plain-old Java objects (POJOs) with a declara-
tive programming model reminiscent of EJB, but without all of EJB’s complexity.

What is Spring? 5
No longer must you resort to writing an unwieldy EJB component when a simple
JavaBean will suffice.

 In all fairness, even EJBs have evolved to promote a POJO-based programming
model. Employing ideas such as DI and AOP, the latest EJB specification is signifi-
cantly simpler than its predecessors. For many developers, though, this move is
too little, too late. By the time the EJB 3 specification had entered the scene, other
POJO-based development frameworks had already established themselves as de
facto standards in the Java community.

 Leading the charge for lightweight POJO-based development is the Spring
Framework, which we’ll be exploring throughout this book. In this chapter, we’re
going to explore the Spring Framework at a high level, giving you a taste of what
Spring is all about. This chapter will give you a good idea of the types of problems
Spring solves and will set the stage for the rest of the book. First things first—let’s
find out what Spring is.

1.1 What is Spring?

Spring is an open source framework, created by Rod Johnson and described in his
book Expert One-on-One: J2EE Design and Development. It was created to address the
complexity of enterprise application development. Spring makes it possible to use
plain-vanilla JavaBeans to achieve things that were previously only possible with
EJBs. However, Spring’s usefulness isn’t limited to server-side development. Any
Java application can benefit from Spring in terms of simplicity, testability, and
loose coupling.

NOTE To avoid ambiguity, I’ll use the word “bean” when referring to conven-
tional JavaBeans and “EJB” when referring to Enterprise JavaBeans. I’ll
also throw around the term “POJO” (plain-old Java object) from time
to time.

Spring does many things, but when you strip it down to its base parts, Spring is a
lightweight dependency injection and aspect-oriented container and framework.
That’s quite a mouthful, but it nicely summarizes Spring’s core purpose. To make
more sense of Spring, let’s break this description down:

■ Lightweight—Spring is lightweight in terms of both size and overhead. The
bulk of the Spring Framework can be distributed in a single JAR file that
weighs in at just over 2.5 MB. And the processing overhead required by
Spring is negligible. What’s more, Spring is nonintrusive: objects in a

chaiyilin
Highlight

6 CHAPTER 1

Springing into action
Spring-enabled application often have no dependencies on Spring-specific
classes.

■ Dependency Injection—Spring promotes loose coupling through a technique
known as dependency injection (DI). When DI is applied, objects are pas-
sively given their dependencies instead of creating or looking for depen-
dent objects for themselves. You can think of DI as JNDI in reverse—instead
of an object looking up dependencies from a container, the container gives
the dependencies to the object at instantiation without waiting to be asked.

■ Aspect-oriented—Spring comes with rich support for aspect-oriented pro-
gramming (AOP) that enables cohesive development by separating appli-
cation business logic from system services (such as auditing and
transaction management). Application objects do what they’re supposed
to do—perform business logic—and nothing more. They are not responsi-
ble for (or even aware of) other system concerns, such as logging or trans-
actional support.

■ Container—Spring is a container in the sense that it contains and manages
the lifecycle and configuration of application objects. In Spring, you can
declare how each of your application objects should be created, how they
should be configured, and how they should be associated with each other.

■ Framework—Spring makes it possible to configure and compose complex
applications from simpler components. In Spring, application objects are
composed declaratively, typically in an XML file. Spring also provides much
infrastructure functionality (transaction management, persistence frame-
work integration, etc.), leaving the development of application logic to you.

To restate: When you strip Spring down to its base parts, what you get is a frame-
work that helps you develop loosely coupled application code. Even if that were
all that Spring did, the benefits of loose coupling (maintainability and testability)
would make Spring a worthwhile framework to build applications on.

 But Spring is more. The Spring Framework comes with several modules that
build on the foundation of DI and AOP to create a feature-filled platform on
which to build applications.

1.1.1 Spring modules

The Spring Framework is made up of several well-defined modules (see
figure 1.1). When taken as a whole, these modules give you everything you need
to develop enterprise-ready applications. But you don’t have to base your

chaiyilin
Highlight

chaiyilin
Highlight

chaiyilin
Highlight

chaiyilin
Highlight

What is Spring? 7
application fully on the Spring Framework. You are free to choose the modules
that suit your application and look to other options when Spring doesn’t fit the
bill. In fact, Spring offers integration points with several other frameworks and
libraries so you won’t have to write them yourself.

 As you can see, all of Spring’s modules are built on top of the core container.
The container defines how beans are created, configured, and managed—more
of the nuts and bolts of Spring. You will implicitly use these classes when you con-
figure your application. But as a developer, you will most likely be interested in
the other modules that leverage the services provided by the container. These
modules will provide the frameworks with which you will build your application’s
services, such as AOP and persistence.

 Let’s take a look at each of Spring’s modules in figure 1.1, one at a time, to see
how each fits into the overall Spring picture.

The core container
At the very base of figure 1.1, you’ll find Spring’s core container. Spring’s core
container provides the fundamental functionality of the Spring Framework. This
module contains the BeanFactory, which is the fundamental Spring container
and the basis on which Spring’s DI is based.

Figure 1.1 The Spring Framework is composed of several well-defined modules built on top of the
core container. This modularity makes it possible to use as much or as little of the Spring
Framework as is needed in a particular application.

8 CHAPTER 1

Springing into action
 We’ll be discussing the core module (the center of any Spring application)
throughout this book, starting in chapter 2, when we examine bean wiring
using DI.

Application context module
Spring’s application context builds on the core container. The core module’s
BeanFactory makes Spring a container, but the context module is what makes it a
framework. This module extends the concept of BeanFactory, adding support for
internationalization (I18N) messages, application lifecycle events, and validation.

 In addition, this module supplies many enterprise services such as email, JNDI
access, EJB integration, remoting, and scheduling. Also included is support for
integration with templating frameworks such as Velocity and FreeMarker.

Spring’s AOP module
Spring provides rich support for aspect-oriented programming in its AOP module.
This module serves as the basis for developing your own aspects for your Spring-
enabled application. Like DI, AOP supports loose coupling of application objects.
With AOP, however, applicationwide concerns (such as transactions and security)
are decoupled from the objects to which they are applied.

 Spring’s AOP module offers several approaches to building aspects, including
building aspects based on AOP Alliance interfaces (http://aopalliance.sf.net) and
support for AspectJ. We’ll dig into Spring’s AOP support in chapter 4.

JDBC abstraction and the DAO module
Working with JDBC often results in a lot of boilerplate code that gets a connec-
tion, creates a statement, processes a result set, and then closes the connection.
Spring’s JDBC and Data Access Objects (DAO) module abstracts away the boiler-
plate code so that you can keep your database code clean and simple, and pre-
vents problems that result from a failure to close database resources. This module
also builds a layer of meaningful exceptions on top of the error messages given by
several database servers. No more trying to decipher cryptic and proprietary SQL
error messages!

 In addition, this module uses Spring’s AOP module to provide transaction
management services for objects in a Spring application.

 We’ll see how Spring’s template-based JDBC abstraction can greatly simplify
JDBC code when we look at Spring data access in chapter 5.

chaiyilin
Highlight

chaiyilin
Highlight

chaiyilin
Highlight

What is Spring? 9
Object-relational mapping (ORM) integration module
For those who prefer using an object-relational mapping (ORM) tool over straight
JDBC, Spring provides the ORM module. Spring’s ORM support builds on the DAO
support, providing a convenient way to build DAOs for several ORM solutions.
Spring doesn’t attempt to implement its own ORM solution, but does provide
hooks into several popular ORM frameworks, including Hibernate, Java Persis-
tence API, Java Data Objects, and iBATIS SQL Maps. Spring’s transaction manage-
ment supports each of these ORM frameworks as well as JDBC.

 In addition to Spring’s template-based JDBC abstraction, we’ll look at how
Spring provides a similar abstraction for ORM and persistence frameworks in
chapter 5.

Java Management Extensions (JMX)
Exposing the inner workings of a Java application for management is a critical
part of making an application production ready. Spring’s JMX module makes it
easy to expose your application’s beans as JMX MBeans. This makes it possible to
monitor and reconfigure a running application.

 We’ll take a look at Spring’s support for JMX in chapter 12.

Java EE Connector API (JCA)
The enterprise application landscape is littered with a mishmash of applications
running on an array of disparate servers and platforms. Integrating these applica-
tions can be tricky. The Java EE Connection API (better known as JCA) provides a
standard way of integrating Java applications with a variety of enterprise informa-
tion systems, including mainframes and databases.

 In many ways, JCA is much like JDBC, except where JDBC is focused on database
access, JCA is a more general-purpose API connecting to legacy systems. Spring’s
support for JCA is similar to its JDBC support, abstracting away JCA’s boilerplate
code into templates.

The Spring MVC framework
The Model/View/Controller (MVC) paradigm is a commonly accepted approach
to building web applications such that the user interface is separate from the
application logic. Java has no shortage of MVC frameworks, with Apache Struts,
JSF, WebWork, and Tapestry among the most popular MVC choices.

 Even though Spring integrates with several popular MVC frameworks, it also
comes with its own very capable MVC framework that promotes Spring’s loosely
coupled techniques in the web layer of an application.

 We’ll dig into Spring MVC in chapters 13 and 14.

chaiyilin
Highlight

chaiyilin
Highlight

10 CHAPTER 1

Springing into action
Spring Portlet MVC
Many web applications are page based—that is, each request to the application
results in a completely new page being displayed. Each page typically presents a
specific piece of information or prompts the user with a specific form. In contrast,
portlet-based applications aggregate several bits of functionality on a single web
page. This provides a view into several applications at once.

 If you’re building portlet-enabled applications, you’ll certainly want to look at
Spring’s Portlet MVC framework. Spring Portlet MVC builds on Spring MVC to pro-
vide a set of controllers that support Java’s portlet API.

Spring’s web module
Spring MVC and Spring Portlet MVC require special consideration when loading
the Spring application context. Therefore, Spring’s web module provides special
support classes for Spring MVC and Spring Portlet MVC.

 The web module also contains support for several web-oriented tasks, such as
multipart file uploads and programmatic binding of request parameters to your
business objects. It also contains integration support with Apache Struts and Java-
Server Faces (JSF).

Remoting
Not all applications work alone. Oftentimes, it’s necessary for an application to
leverage the functionality of another application to get its work done. When the
other application is accessed over the network, some form of remoting is used
for communication.

 Spring’s remoting support enables you to expose the functionality of your Java
objects as remote objects. Or if you need to access objects remotely, the remoting
module also makes simple work of wiring remote objects into your application as
if they were local POJOs. Several remoting options are available, including
Remote Method Invocation (RMI), Hessian, Burlap, JAX-RPC, and Spring’s own
HTTP Invoker.

 In chapter 8, we’ll explore the various remoting options supported in Spring.

Java Message Service (JMS)
The downside to remoting is that it depends on network reliability and that both
ends of the communication be available. Message-oriented communication, on
the other hand, is more reliable and guarantees delivery of messages, even if the
network and endpoints are unreliable.

 Spring’s Java Message Service (JMS) module helps you send messages to JMS
message queues and topics. At the same time, this module also helps you create

A Spring jump start 11
message-driven POJOs that are capable of consuming asynchronous messages.
We’ll see how to use Spring to send messages in chapter 10.

 Although Spring covers a lot of ground, it’s important to realize that Spring
avoids reinventing the wheel whenever possible. Spring leans heavily on existing
APIs and frameworks. For example, as we’ll see later in chapter 5, Spring doesn’t
implement its own persistence framework—instead, it fosters integration with sev-
eral capable persistence frameworks, including simple JDBC, iBATIS, Hibernate,
and JPA.

 Now that you’ve seen the big picture, let’s see how Spring’s DI and AOP features
work. We’ll get our feet wet by wiring our first bean into the Spring container.

1.2 A Spring jump start

Dependency injection is the most basic thing that Spring does. But what does DI
look like? In the grand tradition of programming books, I’ll start by showing you
how Spring works with the proverbial “Hello World” example. Unlike the original
Hello World program, however, this example will be modified a bit to demon-
strate the basics of Spring.

 The first class that the “Springified” Hello World example needs is a service
class whose purpose is to print the familiar greeting. Listing 1.1 shows the
GreetingService interface, which defines the contract for the service class.

package com.springinaction.chapter01.hello;
public interface GreetingService {
 void sayGreeting();
}

GreetingServiceImpl (listing 1.2) implements the GreetingService interface.
Although it’s not necessary to hide the implementation behind an interface, it’s
highly recommended as a way to separate the implementation from its contract.

package com.springinaction.chapter01.hello;
public class GreetingServiceImpl implements GreetingService {
 private String greeting;
 public GreetingServiceImpl() {}
 public GreetingServiceImpl(String greeting) {
 this.greeting = greeting;
 }

Listing 1.1 The interface for a greeting service

Listing 1.2 GreetingServiceImpl, which prints a friendly greeting

chaiyilin
Highlight

12 CHAPTER 1

Springing into action
 public void sayGreeting() {
 System.out.println(greeting);
 }
 public void setGreeting(String greeting) {
 this.greeting = greeting;
 }
}

The GreetingServiceImpl class has a single property: greeting. This property is
simply a String that holds the message that will be printed when the sayGreet-
ing() method is called. You may have noticed that greeting can be set in two dif-
ferent ways: by the constructor or by the property’s setter method.

 What’s not apparent just yet is who will make the call to either the constructor
or the setGreeting() method to set the property. As it turns out, we’re going to
let the Spring container set the greeting property. The Spring configuration file
(hello.xml) in listing 1.3 tells the container how to configure the greeting service.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

 <bean id="greetingService"
 class="com.springinaction.chapter01.hello.GreetingServiceImpl">
 <property name="greeting" value="Buenos Dias!" />
 </bean>
</beans>

The XML file in listing 1.3 declares an instance of a GreetingServiceImpl in the
Spring container and configures its greeting property with a value of “Buenos
Dias!” Let’s dig into the details of this XML file a bit to understand how it works.

 At the root of this simple XML file is the <beans> element, which is the root
element of any Spring configuration file. The <bean> element is used to tell the
Spring container about a class and how it should be configured. Here, the id
attribute is used to name the bean greetingService and the class attribute spec-
ifies the bean’s fully qualified class name.

 Within the <bean> element, the <property> element is used to set a property,
in this case the greeting property. As shown here, the <property> element tells

Listing 1.3 Configuring Hello World in Spring

chaiyilin
Highlight

chaiyilin
Inserted Text
a

A Spring jump start 13
the Spring container to call setGreeting(), passing in “Buenos Dias!” (for a bit of
Spanish flair) when instantiating the bean.

 The following snippet of code illustrates roughly what the container does
when instantiating the greeting service based on the XML definition in listing 1.3:

GreetingServiceImpl greetingService = new GreetingServiceImpl();
greetingService.setGreeting("Buenos Dias!");

Alternatively, you may choose to have Spring set the greeting property through
GreetingServiceImpl’s single argument constructor. For example:

<bean id="greetingService"
 class="com.springinaction.chapter01.hello.GreetingServiceImpl">
 <constructor-arg value="Buenos Dias!" />
</bean>

The following code illustrates how the container will instantiate the greeting ser-
vice when using the <constructor-arg> element:

GreetingServiceImpl greetingService =
 new GreetingServiceImpl("Buenos Dias");

The last piece of the puzzle is the class that loads the Spring container and uses it
to retrieve the greeting service. Listing 1.4 shows this class.

package com.springinaction.chapter01.hello;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import org.springframework.core.io.FileSystemResource;

public class HelloApp {
 public static void main(String[] args) throws Exception {
 BeanFactory factory =
 new XmlBeanFactory(new FileSystemResource("hello.xml"));

 GreetingService greetingService =
 (GreetingService) factory.getBean("greetingService");

 greetingService.sayGreeting();
 }
}

The BeanFactory class used here is the Spring container. After loading the
hello.xml file into the container, the main() method calls the getBean() method
on the BeanFactory to retrieve a reference to the greeting service. With this

Listing 1.4 The Hello World main class

chaiyilin
Highlight

chaiyilin
Inserted Text
b

14 CHAPTER 1

Springing into action
reference in hand, it finally calls the sayGreeting() method. When you run the
Hello application, it prints (not surprisingly)

Buenos Dias!

This is about as simple a Spring-enabled application as I can come up with.
Despite its simplicity, however, it does illustrate the basics of configuring and
using a class in Spring. Unfortunately, it is perhaps too simple because it only illus-
trates how to configure a bean by injecting a String value into a property. The
real power of Spring lies in how beans can be injected into other beans using DI.

1.3 Understanding dependency injection

Although Spring does a lot of things, DI is at the heart of the Spring Framework. It
may sound a bit intimidating, conjuring up notions of a complex programming
technique or design pattern. But as it turns out, DI is not nearly as complex as it
sounds. In fact, by applying DI in your projects, you’ll find that your code will
become significantly simpler, easier to understand, and easier to test.

 But what does “dependency injection” mean?

1.3.1 Injecting dependencies

Originally, dependency injection was commonly referred to by another name:
inversion of control. But in an article written in early 2004, Martin Fowler asked
what aspect of control is being inverted. He concluded that it is the acquisition of
dependencies that is being inverted. Based on that revelation, he coined the
phrase “dependency injection,” a term that better describes what is going on.

 Any nontrivial application (pretty much anything more complex than Hel-
loWorld.java) is made up of two or more classes that collaborate with each other
to perform some business logic. Traditionally,
each object is responsible for obtaining its own
references to the objects it collaborates with (its
dependencies). This can lead to highly coupled
and hard-to-test code.

 When applying DI, objects are given their
dependencies at creation time by some external
entity that coordinates each object in the system.
In other words, dependencies are injected into
objects. So, DI means an inversion of responsibil-
ity with regard to how an object obtains refer-
ences to collaborating objects (see figure 1.2).

Baz

injected into

injected into

Figure 1.2 Dependency injection in-
volves giving an object its dependen-
cies as opposed to an object having to
acquire those dependencies on its own.

chaiyilin
Highlight

chaiyilin
Highlight

Understanding dependency injection 15
 The key benefit of DI is loose coupling. If an object only knows about its
dependencies by their interface (not their implementation or how they were
instantiated) then the dependency can be swapped out with a different imple-
mentation without the depending object knowing the difference.

 For example, if the Foo class in figure 1.2 only knows about its Bar dependency
through an interface then the actual implementation of Bar is of no importance
to Foo. Bar could be a local POJO, a remote web service, an EJB, or a mock imple-
mentation for a unit test—Foo doesn’t need to know or care.

 If you’re like me, you’re probably anxious to see how this works in code. I aim
to please, so without further delay…

1.3.2 Dependency injection in action

Suppose that your company’s crack marketing team culled together the results of
their expert market analysis and research and determined that what your custom-
ers need is a knight—that is, they need a Java class that represents a knight. After
probing them for requirements, you learn that what they specifically want is for
you to implement a class that represents an Arthurian knight of the Round Table
who embarks on brave and noble quests to find the Holy Grail.

 This is an odd request, but you’ve become accustomed to the strange notions
and whims of the marketing team. So, without hesitation, you fire up your favorite
IDE and bang out the class in listing 1.5.

package com.springinaction.chapter01.knight;

public class KnightOfTheRoundTable {
 private String name;
 private HolyGrailQuest quest;

 public KnightOfTheRoundTable(String name) {
 this.name = name;
 quest = new HolyGrailQuest();
 }

 public HolyGrail embarkOnQuest()
 throws GrailNotFoundException {
 return quest.embark();
 }
}

Listing 1.5 A Knight of the Round Table bean

16 CHAPTER 1

Springing into action
In listing 1.5, the knight is given a name as a parameter of its constructor. Its con-
structor sets the knight’s quest by instantiating a HolyGrailQuest. The implemen-
tation of HolyGrailQuest is fairly trivial, as shown in listing 1.6.

package com.springinaction.chapter01.knight;
public class HolyGrailQuest {
 public HolyGrailQuest() {}

 public HolyGrail embark() throws GrailNotFoundException {
 HolyGrail grail = null;
 // Look for grail
 …
 return grail;
 }
}

Satisfied with your work, you proudly check the code into version control. You
want to show it to the marketing team, but deep down something doesn’t feel
right. You almost dismiss it as the burrito you had for lunch when you realize the
problem: you haven’t written any unit tests.

Knightly testing
Unit testing is an important part of development. Not only does it ensure that
each individual unit functions as expected, but it also serves to document each
unit in the most accurate way possible. Seeking to rectify your failure to write unit
tests, you put together the test case (listing 1.7) for your knight class.

package com.springinaction.chapter01.knight;
import junit.framework.TestCase;
public class KnightOfTheRoundTableTest extends TestCase {
 public void testEmbarkOnQuest() throws GrailNotFoundException {
 KnightOfTheRoundTable knight =
 new KnightOfTheRoundTable("Bedivere");
 HolyGrail grail = knight.embarkOnQuest();
 assertNotNull(grail);

 assertTrue(grail.isHoly());
 }
}

Listing 1.6 A query for the Holy Grail bean that will be given to the knight

Listing 1.7 Testing the knight

Understanding dependency injection 17
After writing this test case, you set out to write a test case for HolyGrailQuest. But
before you even get started, you realize that the KnightOfTheRoundTableTest test
case indirectly tests HolyGrailQuest. You also wonder if you are testing all contin-
gencies. What would happen if HolyGrailQuest’s embark() method returned
null? Or what if it were to throw a GrailNotFoundException?

Who’s calling whom?
The main problem so far with KnightOfTheRoundTable is with how it obtains a
HolyGrailQuest. Whether it is instantiating a new HolyGrail instance or obtain-
ing one via JNDI, each knight is responsible for getting its own quest (as shown in
figure 1.3). Therefore, you have no way to test the knight class in isolation. As it
stands, every time you test KnightOfTheRoundTable, you will also indirectly test
HolyGrailQuest.

 What’s more, you have no way of telling HolyGrailQuest to behave differently
(e.g., return null or throw a GrailNotFoundException) for different tests. What
would help is if you could create a mock implementation of HolyGrailQuest that
lets you decide how it behaves. But even if you were to create a mock implementa-
tion, KnightOfTheRoundTable still retrieves its own HolyGrailQuest, meaning
you would have to make a change to KnightOfTheRoundTable to retrieve the
mock quest for testing purposes (and then change it back for production).

Decoupling with interfaces
The problem, in a word, is coupling. At this point, KnightOfTheRoundTable is stat-
ically coupled to HolyGrailQuest. They’re handcuffed together in such a way that
you can’t have a KnightOfTheRoundTable without also having a HolyGrailQuest.

 Coupling is a two-headed beast. On one hand, tightly coupled code is difficult
to test, difficult to reuse, difficult to understand, and typically exhibits “whack-a-
mole” bugs (i.e., fixing one bug results in the creation of one or more new bugs).
On the other hand, completely uncoupled code doesn’t do anything. In order to

KnightOfThe
Roundtable

HolyGrailQuest

RescueDamsel
Quest

new Ho
lyGrai

lQuest
()

JNDI Lookup

Figure 1.3
A knight is responsible for
getting its own quest,
through instantiation or some
other means.

chaiyilin
Highlight

18 CHAPTER 1

Springing into action
do anything useful, classes need to know about each other somehow. Coupling is
necessary, but it should be managed carefully.

 A common technique used to reduce coupling is to hide implementation
details behind interfaces so that the actual implementation class can be swapped
out without impacting the client class. For example, suppose you were to create a
Quest interface:

package com.springinaction.chapter01.knight;
public interface Quest {
 abstract Object embark() throws QuestFailedException;
}

Then, you change HolyGrailQuest to implement this interface. Also, notice that
embark() now returns an Object and throws a QuestFailedException.

package com.springinaction.chapter01.knight;
public class HolyGrailQuest implements Quest {
 public HolyGrailQuest() {}
 public Object embark() throws QuestFailedException {
 // Do whatever it means to embark on a quest
 return new HolyGrail();
 }
}

Also, the following method must change in KnightOfTheRoundTable to be com-
patible with these Quest types:

private Quest quest;
…
public Object embarkOnQuest() throws QuestFailedException {
 return quest.embark();
}

Likewise, you could also have KnightOfTheRoundTable implement the following
Knight interface:

public interface Knight {
 Object embarkOnQuest() throws QuestFailedException;
}

Hiding your class’s implementation behind interfaces is certainly a step in the
right direction. But where many developers fall short is in how they retrieve a
Quest instance. For example, consider this possible change to KnightOfThe-
RoundTable:

public class KnightOfTheRoundTable implements Knight {
 private String name;
 private Quest quest;

Understanding dependency injection 19
 public KnightOfTheRoundTable(String name) {
 this.name = name;
 quest = new HolyGrailQuest();
 }

 public Object embarkOnQuest() throws QuestFailedException {
 return quest.embark();
 }
}

Here the KnightOfTheRoundTable class embarks on a quest through the Quest
interface. But the knight still retrieves a specific type of Quest (here a
HolyGrailQuest). This isn’t much better than before. A KnightOfTheRoundTable
is stuck going only on quests for the Holy Grail and no other types of quest.

Giving and taking
The question you should be asking at this point is whether a knight should be
responsible for obtaining a quest, or should a knight be given a quest to embark
upon?

 Consider the following change to KnightOfTheRoundTable:

public class KnightOfTheRoundTable implements Knight {
 private String name;
 private Quest quest;

 public KnightOfTheRoundTable(String name) {
 this.name = name;
 }

 public Object embarkOnQuest() throws QuestFailedException {
 return quest.embark();
 }

 public void setQuest(Quest quest) {
 this.quest = quest;
 }
}

Notice the difference? Compare figure 1.4 with figure 1.3 to see the difference in
how a knight obtains its quest.

 Now the knight is given a quest instead of retrieving one itself. KnightOfThe-
RoundTable is no longer responsible for retrieving its own quests. And because it
only knows about a quest through the Quest interface, you could give a knight any
implementation of Quest you want. In one configuration, you might give it a
HolyGrailQuest. In a different configuration, maybe a different Quest implemen-
tation, such as RescueDamselQuest, will be given to the knight. Similarly, in a test
case you would give it a mock implementation of Quest.

chaiyilin
Highlight

chaiyilin
Highlight

chaiyilin
Highlight

20 CHAPTER 1

Springing into action
In a nutshell, that is what DI is all about: the responsibility of coordinating collab-
oration between dependent objects is transferred away from the objects them-
selves.

Assigning a quest to a knight
Now that you’ve written your KnightOfTheRoundTable class to be given any arbi-
trary Quest object, how can you specify which Quest it should be given?

 The act of creating associations between application components is referred to
as wiring. In Spring, there are many ways to wire components together, but the
most common approach is via XML. Listing 1.8 shows a simple Spring configura-
tion file, knight.xml, that gives a quest (specifically, a HolyGrailQuest) to a
KnightOfTheRoundTable.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 ➥spring-beans-2.0.xsd">

 <bean id="quest"
 class="com.springinaction.chapter01.knight.HolyGrailQuest"/>

 <bean id="knight"

 class="com.springinaction.chapter01.knight.
 ➥KnightOfTheRoundTable">

 <constructor-arg value="Bedivere"/ >
 <property name="quest" ref="quest" />
 </bean>
</beans>

Listing 1.8 Wiring a quest into a knight in the Spring configuration XML

KnightOfThe
RoundTable

HolyGrailQuest

RescueDamsel
Quest

injected into

injected into

Figure 1.4
The knight is no longer
responsible for getting its own
quest. Instead, it is given
(injected with) a quest through its
setQuest() method.

Defines a quest

Defines a knight

Sets the knight’s name

Gives the knight a quest

chaiyilin
Highlight

Understanding dependency injection 21
This is just a simple approach to wiring beans. Don’t worry too much about the
details right now. In chapter 2 we’ll explain more about what is going on here, as
well as show you even more ways you can wire your beans in Spring.

 Now that we’ve declared the relationship between a knight and a quest, we
need to load up the XML file and kick off the application.

Seeing it work
In a Spring application, a BeanFactory loads the bean definitions and wires the
beans together. Because the beans in the knight example are declared in an XML
file, an XmlBeanFactory is the appropriate factory for this example. The main()
method in listing 1.9 uses an XmlBeanFactory to load knight.xml and to get a ref-
erence to the Knight object.

package com.springinaction.chapter01.knight;
import org.springframework.beans.factory.BeanFactory;
import org.springframework.beans.factory.xml.XmlBeanFactory;
import org.springframework.core.io.FileSystemResource;

public class KnightApp {
 public static void main(String[] args) throws Exception {
 BeanFactory factory =
 new XmlBeanFactory(new FileSystemResource("knight.xml"));

 Knight knight =
 (Knight) factory.getBean("knight");

 knight.embarkOnQuest();
 }
}

Once the application has a reference to the Knight object, it simply calls the
embarkOnQuest() method to kick off the knight’s adventure. Notice that this class
knows nothing about the quest the knight will take. Again, the only thing that
knows which type of quest will be given to the knight is the knight.xml file.

 It’s been a lot of fun sending knights on quests using dependency injection,
but now let’s see how you can use DI in your real-world enterprise applications.

1.3.3 Dependency injection in enterprise applications

Suppose that you’ve been tasked with writing an online shopping application.
Included in the application is an order service component to handle all functions
related to placing an order. Figure 1.5 illustrates several ways that a web layer

Listing 1.9 Running the knight example

Loads XML beans file

Retrieves knight
from factory

Sends knight
on its quest

22 CHAPTER 1

Springing into action
Checkout component (which, perhaps, could be a WebWork action or a Tapestry
page) might access the order service.

 A simple, but naive, approach would be to directly instantiate the order service
when it’s needed B. Aside from directly coupling the web layer to a specific ser-
vice class, this approach will result in wasteful creation of the OrderServiceImpl
class, when a shared, stateless singleton will suffice.

 If the order service is implemented as a 2.x EJB, you would access the service by
first retrieving the home interface through JNDI C, which would then be used to
access an implementation of the EJB’s service interface. In this case, the web layer
is no longer coupled to a specific interface, but it is coupled to JNDI and to the
EJB 2.x programming model.

 As an EJB 3 bean, the order service could be looked up from JNDI directly D
(without going through a home interface). Again, there’s no coupling to a spe-
cific implementation class, but there is a dependence on JNDI.

 With or without EJB, you might choose to hide the lookup details behind a ser-
vice locator E. This would address the coupling concerns seen with the other
approaches, but now the web layer is coupled to the service locator.

 The key issue with all of these approaches is that the web layer component is
too involved in obtaining its own dependencies. It knows too much about where
the order service comes from and how it’s implemented.

Figure 1.5 Conventional approaches to service lookup would lead to
tight coupling between the checkout object and the order service.

Understanding dependency injection 23
If knowing too much about your dependencies leads to tightly coupled code, it
stands to reason that knowing as little as possible about your dependencies leads
to loosely coupled code. Consider figure 1.6, which shows how the Checkout com-
ponent could be given an OrderService instead of asking for one.
Now let’s see how this would be implemented using DI:

private OrderService orderService;

public void doRequest(HttpServletRequest request) {
 Order order = createOrder(request);
 orderService.createOrder(order);
}

public void setOrderService(OrderService orderService) {
 this.orderService = orderService;
}

No lookup code! The reference to OrderService (which is an interface) is given
to the class through the setOrderService() method. The web component does
not know or care where the OrderService comes from. It could be injected by
Spring or it could be manually injected by an explicit call to setOrderService().
It also has no idea as to how OrderService is implemented—it only knows about
it through the OrderService interface. With DI, your application objects are
freed from the burden of fetching their own dependencies and are able to focus
on their tasks, trusting that their dependencies will be available when needed.

 Dependency injection is a boon to loosely coupled code, making it possible to
keep your application objects at arm’s length from each other. However, we’ve
only scratched the surface of the Spring container and DI. In chapters 2 and 3,
you’ll see more ways to wire objects in the Spring container.

 Dependency injection is only one technique that Spring offers to POJOs in sup-
port of loose coupling. Aspect-oriented programming provides a different kind of
decoupling power by separating application-spanning functionality (such as secu-
rity and transactions) from the objects they affect. Let’s take a quick look at
Spring’s support for AOP.

Checkout OrderService
is injected into

Figure 1.6 By injecting an OrderService into the Checkout component,
Checkout is relieved from knowing how the service is implemented and
where it is found.

24 CHAPTER 1

Springing into action
1.4 Applying aspect-oriented programming

Although DI makes it possible to tie software components together loosely, aspect-
oriented programming enables you to capture functionality that is used through-
out your application in reusable components.

1.4.1 Introducing AOP

Aspect-oriented programming is often defined as a programming technique that
promotes separation of concerns within a software system. Systems are composed
of several components, each responsible for a specific piece of functionality.
Often, however, these components also carry additional responsibility beyond
their core functionality. System services such as logging, transaction management,
and security often find their way into components whose core responsibility is
something else. These system services are commonly referred to as cross-cutting
concerns because they tend to cut across multiple components in a system.

 By spreading these concerns across multiple components, you introduce two
levels of complexity to your code:

■ The code that implements the systemwide concerns is duplicated across
multiple components. This means that if you need to change how those
concerns work, you’ll need to visit multiple components. Even if you’ve
abstracted the concern to a separate module so that the impact to your
components is a single method call, that single method call is duplicated in
multiple places.

■ Your components are littered with code that isn’t aligned with their core
functionality. A method to add an entry to an address book should only be
concerned with how to add the address and not with whether it is secure or
transactional.

Figure 1.7 illustrates this complexity. The business objects on the left are too inti-
mately involved with the system services. Not only does each object know that it is
being logged, secured, and involved in a transactional context, but also each
object is responsible for performing those services for itself.

 AOP makes it possible to modularize these services and then apply them
declaratively to the components that they should affect. This results in compo-
nents that are more cohesive and that focus on their own specific concerns, com-
pletely ignorant of any system services that may be involved. In short, aspects
ensure that POJOs remain plain.

Applying aspect-oriented programming 25
It may help to think of aspects as blankets that cover many components of an
application, as illustrated in figure 1.8. At its core, an application consists of mod-
ules that implement the business functionality. With AOP, you can then cover
your core application with layers of functionality. These layers can be applied
declaratively throughout your application in a flexible manner without your core
application even knowing they exist. This is a powerful concept, as it keeps the
security, transaction, and logging concerns from littering the application’s core
business logic.

 To demonstrate how aspects can be applied in Spring, let’s revisit the knight
example, adding a basic logging aspect.

Figure 1.7 Calls to systemwide concerns such as logging and security are often
scattered about in modules where those concerns are not their primary concern.

Figure 1.8
Using AOP, systemwide concerns
blanket the components that they
impact. This leaves the application
components to focus on their
specific business functionality.

26 CHAPTER 1

Springing into action
1.4.2 AOP in action

Suppose that after showing your progress to marketing, they came back with an
additional requirement. In this new requirement, a minstrel must accompany
each knight, chronicling the actions and deeds of the knight in song.

 Hmm…a minstrel who sings about a knight, eh? That doesn’t sound too hard.
Getting started, you create a Minstrel class, as shown in listing 1.10.

package com.springinaction.chapter01.knight;

import org.apache.log4j.Logger;

public class Minstrel {
 private static final Logger SONG =
 Logger.getLogger(Minstrel.class);

 public void singBefore(Knight knight) {
 SONG.info("Fa la la; Sir " + knight.getName() +
 " is so brave!");
 }

 public void singAfter(Knight knight) {
 SONG.info("Tee-hee-he; Sir " + knight.getName() +
 " did embark on a quest!");
 }
}

In keeping with the dependency injection way of thinking, you alter Knight-
OfTheRoundTable to be given an instance of Minstrel:

public class KnightOfTheRoundTable implements Knight {
…
 private Minstrel minstrel;
 public void setMinstrel(Minstrel minstrel) {
 this.minstrel = minstrel;
 }

…

 public HolyGrail embarkOnQuest() throws QuestFailedException {
 minstrel.singBefore(this);
 HolyGrail grail = quest.embark();
 minstrel.singAfter(this);
 return grail;
 }
}

Listing 1.10 A Minstrel, a musically inclined logging component

Sings
before
quest

Sings
after
quest

Applying aspect-oriented programming 27
That should do it! Oh wait… there’s only one
small problem. As it is, each knight must stop and
tell the minstrel to sing a song before the knight
can continue with his quest (as in figure 1.9).
Then after the quest, the knight must remember
to tell the minstrel to continue singing of his
exploits. Having to remember to stop and tell a
minstrel what to do can certainly impede a
knight’s quest-embarking.

 Ideally, a minstrel would take more initiative and automatically sing songs with-
out being explicitly told to do so. A knight shouldn’t know (or really even care)
that his deeds are being written into song. After all, you can’t have your knight
being late for quests because of a lazy minstrel.

 In short, the services of a minstrel transcend the duties
of a knight. Another way of stating this is to say that a min-
strel’s services (song writing) are orthogonal to a knight’s
duties (embarking on quests). Therefore, it makes sense
to turn the minstrel into an aspect that adds his song-
writing services to a knight. Then the minstrel’s services
would cover the functionality of the knight—all without
the knight even knowing that the minstrel is there, as
shown in figure 1.10.

 As it turns out, it’s rather easy to turn the Minstrel
class in listing 1.10 into an aspect using Spring’s AOP sup-
port. Let’s see how.

Weaving the aspect
There are several ways to implement aspects in Spring, and we’ll dig into all of
them in chapter 4. But for the sake of this example, we’ll use the new AOP
namespace introduced in Spring 2.0. To get started, you’ll want to be sure that
you declare the namespace in the context definition XML:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 ➥spring-beans-2.0.xsd
 http://www.springframework.org/schema/aop

Figure 1.9 Without AOP, a knight
must tell his minstrel to sing songs.
This interferes with the knight’s
primary dragon-slaying and damsel-
rescuing activities.

Figure 1.10 An aspect-
oriented minstrel covers a
knight, chronicling the
knight’s activities without
the knight’s knowledge of
the minstrel.

28 CHAPTER 1

Springing into action
 http://www.springframework.org/schema/aop/spring-aop-2.0.xsd">
…
</beans>

With the namespace declared, we’re ready to create the aspect. The bit of XML in
listing 1.11 declares a minstrel as a bean in the Spring context and then creates an
aspect that advises the knight bean.

<bean id="minstrel"
 class="com.springinaction.chapter01.knight.Minstrel"/>

<aop:config>
 <aop:aspect ref="minstrel">

 <aop:pointcut
 id="questPointcut"
 expression="execution(* *.embarkOnQuest(..))
 ➥and target(bean)" />

 <aop:before
 method="singBefore"
 pointcut-ref="questPointcut"
 arg-names="bean" />

 <aop:after-returning
 method="singAfter"
 pointcut-ref="questPointcut"
 arg-names="bean" />
 </aop:aspect>
</aop:config>

There’s a lot going on in listing 1.11, so let’s break it down one bit at a time:

■ The first thing we find is a <bean> declaration, creating a minstrel bean in
Spring. This is the Minstrel class from listing 1.10. Minstrel doesn’t have
any dependencies, so there’s no need to inject it with anything.

■ Next up is the <aop:config> element. This element indicates that we’re
about to do some AOP stuff. Most of Spring’s AOP configuration elements
must be contained in <aop:config>.

■ Within <aop:config> we have an <aop:aspect> element. This element
indicates that we’re declaring an aspect. The functionality of the aspect is
defined in the bean that is referred to by the ref attribute. In this case,
the minstrel bean, which is a Minstrel, will provide the functionality of
the aspect.

Listing 1.11 Weaving MinstrelAdvice into a knight

Declares
minstrel bean

Creates minstrel
aspect

Creates pointcut
to wrap
embarkOnQuest()

Weaves in
minstrel
before

Weaves in
minstrel after

Applying aspect-oriented programming 29
■ An aspect is made up of pointcuts (places where the aspect functionality will
be applied) and advice (how to apply the functionality). The <aop:point-
cut> element defines a pointcut that is triggered by the execution of an
embarkOnQuest() method. (If you’re familiar with AspectJ, you may recog-
nize the pointcut as being expressed in AspectJ syntax.)

■ Finally, we have two bits of AOP advice. The <aop:before> element declares
that the singBefore() method of Minstrel should be called before the
pointcut, while the <aop:after> element declares that the singAfter()
method of Minstrel should be called after the pointcut. The pointcut in
both cases is a reference to questPointcut, which is the execution of
embarkOnQuest().

That’s all there is to it! We’ve just turned Minstrel into a Spring aspect. Don’t
worry if this doesn’t make complete sense yet—you’ll see plenty more examples of
Spring AOP in chapter 4 that should help clear this up. For now, there are two
important points to take away from this example.

 First, Minstrel is still a POJO—there’s nothing about Minstrel that indicates
that it is to be used as an aspect. Instead, Minstrel was turned into an aspect
declaratively in the Spring context.

 Second, and perhaps more important, the knight no longer needs to tell the
minstrel to sing about his exploits. As an aspect, the minstrel will take care of that
automatically. In fact, the knight doesn’t even need to know of the minstrel’s exist-
ence. Consequently, the KnightOfTheRoundTable class can revert back to a sim-
pler form as before:

public class KnightOfTheRoundTable implements Knight {
 private String name;
 private Quest quest;

 public KnightOfTheRoundTable(String name) {
 this.name = name;
 }

 public HolyGrail embarkOnQuest() throws QuestFailedException {
 return quest.embark();
 }

 public void setQuest(Quest quest) {
 this.quest = quest;
 }
}

Using AOP to chronicle a knight’s activities has been a lot of fun. But Spring’s AOP
can be used for even more practical things than composing ageless sonnets about

30 CHAPTER 1

Springing into action
knights. As you’ll see later, Spring employs AOP to provide enterprise services
such as declarative transactions (chapter 6) and security (chapter 7).

1.5 Summary

You should now have a pretty good idea of what Spring brings to the table. Spring
aims to make enterprise Java development easier and to promote loosely coupled
code. Vital to this is dependency injection and AOP.

 In this chapter, we got a small taste of dependency injection in Spring. DI is a
way of associating application objects such that the objects don’t need to know
where their dependencies come from or how they’re implemented. Rather than
acquiring dependencies on their own, dependent objects are given the objects
that they depend on. Because dependent objects often only know about their
injected objects through interfaces, coupling is kept very low.

 In addition to dependency injection, we also saw a glimpse of Spring’s AOP
support. AOP enables you to centralize logic that would normally be scattered
throughout an application in one place—an aspect. When Spring wires your
beans together, these aspects can be woven in at runtime, effectively giving the
beans new behavior.

 Dependency injection and AOP are central to everything in Spring. Thus you
must understand how to use these principal functions of Spring to be able to use
the rest of the framework. In this chapter, we’ve just scratched the surface of
Spring’s DI and AOP features. Over the next few chapters, we’ll dig deeper into DI
and AOP. Without further ado, let’s move on to chapter 2 to learn how to wire
objects together in Spring using dependency injection.

Basic bean wiring
This chapter covers
■ Introducing the Spring container
■ Declaring beans
■ Injecting constructors and setters
■ Wiring beans
■ Controlling bean creation and destruction
31

32 CHAPTER 2

Basic bean wiring
Have you ever stuck around after a movie long enough to watch the credits? It’s
incredible how many different people it takes to pull together a major motion pic-
ture. There are the obvious participants: the actors, the scriptwriters, the directors,
and the producers. Then there are the not-so-obvious: the musicians, the special
effects crew, and the art directors. And that’s not to mention the key grip, the
sound mixer, the costumers, the make-up artists, the stunt coordinators, the publi-
cists, the first assistant to the cameraperson, the second assistant to the cameraper-
son, the set designers, the gaffer, and (perhaps most importantly) the caterers.

 Now imagine what your favorite movie would have been like had none of these
people talked to one another. Let’s say that they all showed up at the studio and
started doing their own thing without any coordination of any kind. If the direc-
tor keeps to himself and doesn’t say “roll ‘em,” then the cameraperson won’t start
shooting. It probably wouldn’t matter anyway, because the lead actress would still
be in her trailer and the lighting wouldn’t work because the gaffer would not have
been hired. Maybe you’ve seen a movie where it looks like this is what happened.
But most movies (the good ones anyway) are the product of thousands of people
working together toward the common goal of making a blockbuster movie.

 In this respect, a great piece of software isn’t much different. Any nontrivial
application is made up of several objects that must work together to meet some
business goal. These objects must be aware of one another and communicate with
one another to get their job done. In an online shopping application, for instance,
an order manager component may need to work with a product manager compo-
nent and a credit card authorization component. All of these will likely need to
work with a data access component to read from and write to a database.

 But as we saw in chapter 1, the traditional approach to creating associations
between application objects (via construction or lookup) leads to complicated
code that is difficult to reuse and unit test. In the best case, these objects do more
work than they should. In the worst case, they are highly coupled to one another,
making them hard to reuse and hard to test.

 In Spring, objects are not responsible for finding or creating the other objects
that they need to do their job. Instead, they are given references to the objects
that they collaborate with by the container. An order manager component, for
example, may need a credit card authorizer—but it doesn’t need to create the
credit card authorizer. It just needs to show up empty-handed and it will be given
a credit card authorizer to work with.

 The act of creating these associations between application objects is the
essence of dependency injection (DI) and is commonly referred to as wiring. In
this chapter we’ll explore the basics of bean wiring using Spring. As DI is the most

Containing your beans 33
elemental thing Spring does, these are techniques you’ll use almost every time
you develop Spring-based applications.

2.1 Containing your beans

In a Spring-based application, your application objects will live within the Spring
container. As illustrated in figure 2.1, the container will create the objects, wire
them together, configure them, and manage their complete lifecycle from cradle
to grave (or new to finalize() as the case may be).

 In section 2.2, we’ll see how to configure Spring to know what objects it should
create, configure, and wire together. First, however, it’s important to get to know
the container where your objects will be hanging out. Understanding the con-
tainer helps you grasp how your objects will be managed.

 The container is at the core of the Spring Framework. Spring’s container uses
dependency injection (DI) to manage the components that make up an applica-
tion. This includes creating associations between collaborating components. As
such, these objects are cleaner and easier to understand, support reuse, and are
easy to unit-test.

 There is no single Spring container. Spring comes with several container
implementations that can be categorized into two distinct types. Bean factories
(defined by the org.springframework.beans.factory.BeanFactory interface)
are the simplest of containers, providing basic support for DI. Application con-
texts (defined by the org.springframework.context.ApplicationContext inter-
face) build on the notion of a bean factory by providing application framework
services, such as the ability to resolve textual messages from a properties file and
the ability to publish application events to interested event listeners.

Figure 2.1
In a Spring application, objects are
created, wired together, and live within the
Spring container.

34 CHAPTER 2

Basic bean wiring
NOTE Although Spring uses the words “bean” and “JavaBean” liberally when
referring to application components, this does not mean that a Spring
component must follow the JavaBeans specification to the letter. A
Spring component can be any type of POJO (plain-old Java object). In
this book, I assume the loose definition of JavaBean, which is synony-
mous with POJO.

Let’s start our exploration of Spring containers with the most basic of the Spring
containers: the BeanFactory.

2.1.1 Introducing the BeanFactory

As its name implies, a bean factory is an implementation of the Factory design pat-
tern. That is, it is a class whose responsibility is to create and dispense beans. How-
ever, unlike many implementations of the Factory pattern, which often dole out a
single type of object, a bean factory is a general-purpose factory, creating and dis-
pensing many types of beans.

 There’s more to a bean factory than simply instantiation and delivery of appli-
cation objects. Because a bean factory knows about many objects within an appli-
cation, it is able to create associations between collaborating objects as they are
instantiated. This removes the burden of configuration from the bean itself and
the bean’s client. As a result, when a bean factory hands out objects, those objects
are fully configured, are aware of their collaborating objects, and are ready to use.
What’s more, a bean factory also takes part in the lifecycle of a bean, making calls
to custom initialization and destruction methods, if those methods are defined.

 There are several implementations of BeanFactory in Spring. But the one that
is most commonly used is org.springframework.beans.factory.xml.XmlBean-
Factory, which loads its beans based on the definitions contained in an XML file.

 To create an XmlBeanFactory, you must pass an instance of org.springframe-
work.core.io.Resource to the constructor. The Resource object will provide the
XML to the factory. Spring comes with a handful of Resource implementations as
described in table 2.1.

 For example, the following code snippet uses a FileSystemResource to cre-
ate an XmlBeanFactory whose bean definitions are read from an XML file in the
file system:

BeanFactory factory =
 new XmlBeanFactory(new FileSystemResource("c:/beans.xml"));

This simple line of code tells the bean factory to read the bean definitions from
the XML file. But the bean factory doesn’t instantiate the beans just yet. Beans are

Containing your beans 35
“lazily” loaded into bean factories, meaning that while the bean factory will imme-
diately load the bean definitions (the description of beans and their properties),
the beans themselves will not be instantiated until they are needed.

 To retrieve a bean from a BeanFactory, simply call the getBean() method,
passing the ID of the bean you want to retrieve:

MyBean myBean = (MyBean) factory.getBean("myBean");

When getBean() is called, the factory will instantiate the bean and set the bean’s
properties using DI. Thus begins the life of a bean within the Spring container.
We’ll examine the lifecycle of a bean in section 2.1.3, but first let’s look at the
other Spring container: the application context.

2.1.2 Working with an application context

A bean factory is fine for simple applications, but to take advantage of the full
power of the Spring Framework, you’ll probably want to load your application
beans using Spring’s more advanced container: the application context.

Table 2.1 XmlBeanFactorys can be created using one of several Resource implementations to
allow Spring configuration details to come from a variety of sources.

Resource implementation Purpose

org.springframework.core.io.ByteArray
Resource

Defines a resource whose content is
given by an array of bytes

org.springframework.core.io.ClassPath
Resource

Defines a resource that is to be
retrieved from the classpath

org.springframework.core.io.Descriptive
Resource

Defines a resource that holds a
resource description but no actual
readable resource

org.springframework.core.io.FileSystem
Resource

Defines a resource that is to be
retrieved from the file system

org.springframework.core.io.InputStream
Resource

Defines a resource that is to be
retrieved from an input stream

org.springframework.web.portlet.context.
PortletContextResource

Defines a resource that is available
in a portlet context

org.springframework.web.context.support.
ServletContextResource

Defines a resource that is available
in a servlet context

org.springframework.core.io.UrlResource Defines a resource that is to be
retrieved from a given URL

36 CHAPTER 2

Basic bean wiring
 On the surface, an ApplicationContext is much the same as a BeanFactory.
Both load bean definitions, wire beans together, and dispense beans upon
request. But an ApplicationContext offers much more:

■ Application contexts provide a means for resolving text messages, including
support for internationalization (I18N) of those messages.

■ Application contexts provide a generic way to load file resources, such
as images.

■ Application contexts can publish events to beans that are registered as
listeners.

Because of the additional functionality it provides, an ApplicationContext is
preferred over a BeanFactory in nearly all applications. The only times you
might consider using a BeanFactory are in circumstances where resources are
scarce, such as a mobile device. We will be using an ApplicationContext
throughout this book.

 Among the many implementations of ApplicationContext are three that are
commonly used:

■ ClassPathXmlApplicationContext—Loads a context definition from an
XML file located in the classpath, treating context definition files as class-
path resources.

■ FileSystemXmlApplicationContext—Loads a context definition from an
XML file in the file system.

■ XmlWebApplicationContext—Loads context definitions from an XML file
contained within a web application.

We’ll talk more about XmlWebApplicationContext in chapter 13 when we discuss
web-based Spring applications. For now, let’s simply load the application context
from the file system using FileSystemXmlApplicationContext or from the class-
path using ClassPathXmlApplicationContext.

 Loading an application context from the file system or from the classpath is
similar to how you load beans into a bean factory. For example, here’s how you’d
load a FileSystemXmlApplicationContext:

ApplicationContext context =
 new FileSystemXmlApplicationContext("c:/foo.xml");

Containing your beans 37
Similarly, you can load an application context from within the application’s class-
path using ClassPathXmlApplicationContext:

ApplicationContext context =
 new ClassPathXmlApplicationContext("foo.xml");

The difference between these uses of FileSystemXmlApplicationContext and
ClassPathXmlApplicationContext is that FileSystemXmlApplicationContext
will look for foo.xml in a specific location within the file system, whereas Class-
PathXmlApplicationContext will look for foo.xml anywhere in the classpath
(including JAR files).

 In either case, you can retrieve a bean from an ApplicationContext just as you
would from a BeanFactory: by using the getBean() method. This is no surprise
because the ApplicationContext interface extends the BeanFactory interface.

 Aside from the additional functionality offered by application contexts,
another big difference between an application context and a bean factory is how
singleton beans are loaded. A bean factory lazily loads all beans, deferring bean
creation until the getBean() method is called. An application context is a bit
smarter and preloads all singleton beans upon context startup. By preloading sin-
gleton beans, you ensure that they will be ready to use when needed—your appli-
cation won’t have to wait for them to be created.

 Now that you know the basics of how to create a Spring container, let’s take a
closer look at the lifecycle of a bean in the bean container.

2.1.3 A bean’s life

In a traditional Java application, the lifecycle of a bean is quite simple. Java’s new
keyword is used to instantiate the bean (or perhaps it is deserialized) and it’s
ready to use. Once the bean is no longer in use, it is eligible for garbage collection
and eventually goes to the big bit bucket in the sky. In contrast, the lifecycle of a
bean within a Spring container is a bit more elaborate. It is important to under-
stand the lifecycle of a Spring bean, because you may want to take advantage of
some of the opportunities that Spring offers to customize how a bean is created.

 Figure 2.2 shows the startup lifecycle of a typical bean as it is loaded into a
BeanFactory container.

 As you can see, a bean factory performs several setup steps before a bean is
ready to use. Table 2.2 explains each of these steps in more detail.

38 CHAPTER 2

Basic bean wiring

Table 2.2 The steps taken in the life of a bean

Step Description

1. Instantiate. Spring instantiates the bean.

2. Populate properties. Spring injects the bean’s properties.

3. Set bean name. If the bean implements BeanNameAware, Spring passes the
bean’s ID to setBeanName().

4. Set bean factory. If the bean implements BeanFactoryAware, Spring passes the
bean factory to setBeanFactory().

5. Postprocess
 (before initialization).

If there are any BeanPostProcessors, Spring calls their
postProcessBeforeInitialization() method.

6. Initialize beans. If the bean implements InitializingBean, its
afterPropertiesSet() method will be called. If the bean
has a custom init method declared, the specified initialization
method will be called.

Instantiate

Bean Is
Ready to Use

Populate
Properties

BeanNameAware's
setBeanName()

BeanFactoryAware's
setBeanFactory()

Preinitialization
BeanPostProcessors

Postinitialization
BeanPostProcessors

InitializingBean's
afterPropertiesSet()

Call Custom
init-method

Container Is
Shut Down

DisposableBean's
destroy()

Call Custom
destroy-method

Figure 2.2 A bean goes through several steps between creation and destruction in the Spring
container. Each step is an opportunity to customize how the bean is managed in Spring.

Containing your beans 39
The lifecycle of a bean within a Spring application context differs only slightly
from that of a bean within a bean factory, as shown in figure 2.3.

7. Postprocess
 (after initialization).

If there are any BeanPostProcessors, Spring calls their
postProcessAfterInitialization() method.

8. Bean is ready to use. At this point the bean is ready to be used by the application and will
remain in the bean factory until it is no longer needed.

9. Destroy bean. If the bean implements DisposableBean, its destroy()
method will be called.
If the bean has a custom destroy-method declared, the speci-
fied method will be called.

Table 2.2 The steps taken in the life of a bean (continued)

Step Description

Instantiate
Populate
Properties

BeanNameAware's
setBeanName()

Preinitialization
BeanPostProcessors

BeanFactoryAware's
setBeanFactory()

ApplicationContextAware's
setApplicationContext()

Bean Is
Ready to Use

Container Is
Shut Down

DisposableBean's
destroy()

Call Custom
destroy-method

Postinitialization
BeanPostProcessors

InitializingBean's
afterPropertiesSet()

Call Custom
init-method

Figure 2.3 The lifecycle of a bean in a Spring application context extends the lifecycle of
a factory-contained bean by adding a step to make the bean application context aware.

40 CHAPTER 2

Basic bean wiring
 The only difference here is that if the bean implements the ApplicationCon-
textAware interface, the setApplicationContext() method is called.

 Now you know how to create and load a Spring container. However, an empty
container isn’t much good by itself; it doesn’t really contain anything unless you
put something in it. To achieve the benefits of Spring DI, we must wire our appli-
cation objects into the Spring container. Let’s have a look at how to configure
beans in Spring using XML.

2.2 Creating beans

At this point, we’d like to welcome you to the first (and very likely the last) annual
JavaBean talent competition. We’ve searched the nation (actually, just our IDE’s
workspace) for the best JavaBeans to perform and in the next few chapters, we’ll
set up the competition and our judges will weigh in. Spring programmers, this is
your Spring Idol.

 In our competition, we’re going to need some performers, which are defined
by the Performer interface:

public interface Performer {
 void perform() throws PerformanceException;
}

In the Spring Idol talent competition, you’ll meet several contestants, all of which
implement the Performer interface. To get started, let’s meet our first contestant,
who will help us illustrate how Spring supports constructor injection.

2.2.1 Declaring a simple bean

Unlike some similarly named talent competitions that you may have heard of,
Spring Idol doesn’t cater to only singers. In fact, many of the performers can’t
carry a tune at all. For example, one of the performers is a Juggler, as defined in
listing 2.1.

package com.springinaction.springidol;

public class Juggler implements Performer {
 private int beanBags = 3;

 public Juggler() {}

 public Juggler(int beanBags) {
 this.beanBags = beanBags;
 }

Listing 2.1 A juggling bean

Creating beans 41
 public void perform() throws PerformanceException {
 System.out.println("JUGGLING " + beanBags + " BEANBAGS");
 }
}

With the Juggler class defined, please welcome our first performer, Duke, to the
stage. Here’s how Duke is declared in the Spring configuration file (spring-
idol.xml):

<bean id="duke" class="com.springinaction.springidol.Juggler" />

The <bean> element is the most basic configuration unit in Spring. It tells Spring
to create an object for us. Here we’ve declared Duke as a Spring-managed bean
using what is nearly the simplest <bean> declaration possible. The id attribute
gives the bean a name by which it will be referred to in the Spring container. This
bean will be known as duke. Meanwhile, the class attribute tells Spring what type
the bean will be. As you can see, Duke is a Juggler.

 When the Spring container loads its beans, it will instantiate the duke bean
using the default constructor. In essence, duke will be created using the following
Java code:1

new com.springinaction.springidol.Juggler();

To give Duke a try, you can load the Spring application context using the follow-
ing code:

ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "com/springinaction/springidol/spring-idol.xml");

Performer performer = (Performer) ctx.getBean("duke");
performer.perform();

Although this isn’t the real competition, the previous code gives Duke a chance to
practice. When run, this code prints the following:

JUGGLING 3 BEANBAGS

By default, Duke juggles only three beanbags at once. But juggling three bean-
bags isn’t all that impressive—anybody can do that. If Duke is to have any hope of
winning the talent competition, he’s going to need to juggle many more beanbags
at once. Let’s see how to configure Duke to be a champion juggler.

1 Emphasis on “In essence.” Actually, Spring creates its beans using reflection.

42 CHAPTER 2

Basic bean wiring
2.2.2 Injecting through constructors

To really impress the judges, Duke has decided to break the world record by jug-
gling as many as 15 beanbags at once.2

 As you can see in listing 2.1, the Juggler class can be constructed in two differ-
ent ways:

■ Using the default constructor

■ Using a constructor that takes an int argument that indicates the number
of beanbags that the Juggler will attempt to keep in the air

Although the declaration of the duke bean in section 2.2.1 is valid, it uses the Jug-
gler’s default constructor, which limits Duke to juggling only three balls at once.
To make Duke a world-record juggler, we’ll need to use the other constructor.
The following XML redeclares Duke as a 15-ball juggler:

<bean id="duke" class="com.springinaction.springidol.Juggler">
 <constructor-arg value="15" />
</bean>

The <constructor-arg> element is used to give Spring additional information to
use when constructing a bean. If no <constructor-arg>s are given, as in
section 2.2.1, the default constructor is used. But here we’ve given a <construc-
tor-arg> with a value attribute set to 15, so the Juggler’s other constructor will
be used instead.

 Now when Duke performs, the following is printed:

JUGGLING 15 BEANBAGS

Juggling 15 beanbags at once is mighty impressive. But there’s something we
didn’t tell you about Duke. Not only is Duke a good juggler, but he is also skilled
at reciting poetry. Juggling while reciting poetry takes a lot of mental discipline. If
Duke can juggle while reciting a Shakespearean sonnet then he should be able to
establish himself as the clear winner of the competition. (We told you this
wouldn’t be like those other talent shows!)

2 Juggling trivia: Who holds the actual world record for juggling beanbags depends on how many bean-
bags are juggled and for how long. Bruce Sarafian holds several records, including juggling 12 beanbags
for 12 catches. Another record-holding juggler is Anthony Gatto who juggled 7 balls for 10 minutes and
12 seconds in 2005. Another juggler, Peter Bone, claims to have juggled as many as 13 beanbags for 13
catches—but there is no video evidence of the feat.

Creating beans 43
Injecting object references with constructors
Because Duke is more than just an average juggler—he’s a poetic juggler—we
need to define a new type of juggler for him to be. PoeticJuggler (listing 2.2) is
a class more descriptive of Duke’s talent.

package com.springinaction.springidol;

public class PoeticJuggler extends Juggler {
 private Poem poem;

 public PoeticJuggler(Poem poem) {
 super ();
 this.poem = poem;
 }

 public PoeticJuggler(int beanBags, Poem poem) {
 super(beanBags);
 this.poem = poem;
 }

 public void perform() throws PerformanceException {
 super.perform();
 System.out.println("WHILE RECITING...");
 poem.recite();
 }
}

This new type of juggler does everything a regular juggler does, but it also has a
reference to a poem to be recited. Speaking of the poem, here’s an interface that
generically defines what a poem looks like:

public interface Poem {
 void recite();
}

One of Duke’s favorite Shakespearean sonnets is “When in disgrace with fortune
and men’s eyes.” Sonnet29 (listing 2.3) is an implementation of the Poem interface
that defines this sonnet.

package com.springinaction.springidol;

public class Sonnet29 implements Poem {
 private static String[] LINES = {
 "When, in disgrace with fortune and men's eyes,",
 "I all alone beweep my outcast state",
 "And trouble deaf heaven with my bootless cries",

Listing 2.2 A juggler who waxes poetic

Listing 2.3 A class that represents a great work of the Bard

Injects a
Poem and
beanbag
count

44 CHAPTER 2

Basic bean wiring
 "And look upon myself and curse my fate,",
 "Wishing me like to one more rich in hope,",
 "Featured like him, like him with friends possess'd,",
 "Desiring this man's art and that man's scope,",
 "With what I most enjoy contented least;",
 "Yet in these thoughts myself almost despising,",
 "Haply I think on thee, and then my state,",
 "Like to the lark at break of day arising",
 "From sullen earth, sings hymns at heaven's gate;",
 "For thy sweet love remember'd such wealth brings",
 "That then I scorn to change my state with kings."
 };

 public Sonnet29() {}

 public void recite() {
 for (int i = 0; i < LINES.length; i++) {
 System.out.println(LINES[i]);
 }
 }
}

Sonnet29 can be declared as a Spring <bean> with the following XML:

<bean id="sonnet29"
 class="com.springinaction.springidol.Sonnet29" />

With the poem chosen, all we need to do is give it to Duke. Now that Duke is a
PoeticJuggler, his <bean> declaration will need to change slightly:

<bean id="duke" class="com.springinaction.springidol.PoeticJuggler">
 <constructor-arg value="15" />
 <constructor-arg ref="sonnet29" />
</bean>

As you can see from listing 2.2, there is no default constructor. The only way to
construct a PoeticJuggler is to use a constructor that takes arguments. In this
example, we’re using the constructor that takes an int and a Poem as arguments.
The duke bean declaration configures the number of beanbags as 15 through the
int argument using <constructor-arg>’s value attribute.

 But we can’t use value to set the second constructor argument because a Poem
is not a simple type. Instead, the ref attribute is used to indicate that the value
passed to the constructor should be a reference to the bean whose ID is sonnet29.
Although the Spring container does much more than just construct beans, you
may imagine that when Spring encounters the sonnet29 and duke <bean>s, it per-
forms some logic that is essentially the same as the following lines of Java:

Poem sonnet29 = new Sonnet29();
Performer duke = new PoeticJuggler(15, sonnet29);

Creating beans 45
Constructor or setter injection: how do you choose?
There are certain things that most people can agree upon: the fact that the sky
is blue, that Michael Jordan is the greatest player to touch a basketball, and that
Star Trek V should have never happened. And then there are those things that
should never be discussed in polite company, such as politics, religion, and the
eternal “tastes great/less filling” debates.

Likewise, the choice between constructor injection and setter injection stirs up
as much discourse as the arguments surrounding creamy versus crunchy peanut
butter. Both have their merits and their weaknesses. Which should you choose?

Those on the constructor-injection side of the debate will tell you that:

• Constructor injection enforces a strong dependency contract. In short, a
bean cannot be instantiated without being given all of its dependencies. It is
perfectly valid and ready to use upon instantiation. Of course, this assumes
that the bean’s constructor has all of the bean’s dependencies in its param-
eter list.

• Because all of the bean’s dependencies are set through its constructor,
there’s no need for superfluous setter methods. This helps keep the lines of
code at a minimum.

• By only allowing properties to be set through the constructor, you are, effec-
tively, making those properties immutable, preventing accidental change in
the course of application flow.

However, the setter injection-minded will be quick to respond with:

• If a bean has several dependencies, the constructor’s parameter list can be
quite lengthy.

• If there are several ways to construct a valid object, it can be hard to come
up with unique constructors, since constructor signatures vary only by the
number and type of parameters.

• If a constructor takes two or more parameters of the same type, it may be
difficult to determine what each parameter’s purpose is.

• Constructor injection does not lend itself readily to inheritance. A bean’s con-
structor will have to pass parameters to super() in order to set private
properties in the parent object.

Fortunately, Spring doesn’t take sides in this debate and will let you choose the
injection model that suits you best. In fact, you can even mix-and-match construc-
tor and setter injection in the same application… or even in the same bean. Per-
sonally, I tend to favor setter injection in most cases, but will occasionally use
constructor injection should the mood strike me.

46 CHAPTER 2

Basic bean wiring
Now when Duke performs, he not only juggles but will also recite Shakespeare,
resulting in the following being printed to the standard output stream:

JUGGLING 15 BEANBAGS
WHILE RECITING...
When, in disgrace with fortune and men's eyes,
I all alone beweep my outcast state
And trouble deaf heaven with my bootless cries
And look upon myself and curse my fate,
Wishing me like to one more rich in hope,
Featured like him, like him with friends possess'd,
Desiring this man's art and that man's scope,
With what I most enjoy contented least;
Yet in these thoughts myself almost despising,
Haply I think on thee, and then my state,
Like to the lark at break of day arising
From sullen earth, sings hymns at heaven's gate;
For thy sweet love remember'd such wealth brings
That then I scorn to change my state with kings.

Constructor injection is a surefire way to guarantee that a bean is fully configured
before it is used. But it doesn’t lend itself to complex configuration. Fortunately,
Spring doesn’t restrict you to always configuring your beans with constructors and
offers setter injection as another choice. Next up, let’s have a look at how to con-
figure beans using their properties’ setter methods.

2.3 Injecting into bean properties

Typically, a JavaBean’s properties are private and will have a pair of accessor meth-
ods in the form of setXXX() and getXXX(). Spring can take advantage of a prop-
erty’s setter method to configure the property’s value through setter injection.

 To demonstrate Spring’s other form of DI, let’s welcome our next performer
to the stage. Kenny is a talented instrumentalist, as defined by the Instrumental-
ist class in listing 2.4.

package com.springinaction.springidol;

public class Instrumentalist implements Performer {
 public Instrumentalist() {}
 public void perform() throws PerformanceException {
 System.out.print("Playing " + song + " : ");
 instrument.play();
 }

 private String song;

Listing 2.4 Defining a performer who is talented with musical instruments

Injecting into bean properties 47
 public void setSong(String song) {
 this.song = song;
 }

 private Instrument instrument;
 public void setInstrument(Instrument instrument) {
 this.instrument = instrument;
 }
}

From listing 2.4, we can see that an Instrumentalist has two properties: song
and instrument. The song property holds the name of the song that the instru-
mentalist will play and is used in the perform() method. The instrument prop-
erty holds a reference to an Instrument that the instrumentalist will play. An
Instrument is defined by the following interface:

public interface Instrument {
 void play();
}

Because the Instrumentalist class has a default constructor, Kenny could be
declared as a <bean> in Spring with the following XML:

<bean id="kenny"
 class="com.springinaction.springidol.Instrumentalist" />

Although Spring will have no problem instantiating kenny as an Instrumental-
ist, Kenny will have a hard time performing without a song or an instrument.
Let’s look at how to give Kenny his song and instrument by using setter injection.

2.3.1 Injecting simple values

Bean properties can be configured in Spring using the <property> element.
<property> is similar to <constructor-arg> in many ways, except that instead of
injecting values through a constructor argument, <property> injects by calling a
property’s setter method.

 To illustrate, let’s give Kenny a song to perform using setter injection. The fol-
lowing XML shows an updated declaration of the kenny bean:

<bean id="kenny"
 class="com.springinaction.springidol.Instrumentalist">
 <property name="song" value="Jingle Bells" />
</bean>

Once the Instrumentalist has been instantiated, Spring will use property setter
methods to inject values into the properties specified by <property> elements.

Injects song and
instrument

48 CHAPTER 2

Basic bean wiring
The <property> element in this XML instructs Spring to call setSong() to set a
value of “Jingle Bells” for the song property. This is essentially the same as the
following Java code:

Instrumentalist kenny = new Instrumentalist();
kenny.setSong("Jingle Bells");

The key difference between setting the song property through Spring and setting
it through Java is that by setting it in Spring, the Instrumentalist bean is decou-
pled from its configuration. That is, Instrumentalist isn’t hard-coded with a spe-
cific song and is more flexible to perform any song given to it.

 In the case of the song property, the value attribute of the <property> ele-
ment is used to inject a String value into a property. But <property> isn’t limited
to injecting String values. The value attribute can also specify numeric (int,
float, java.lang.Double, etc.) values as well as boolean values.

 For example, let’s pretend that the Instrumentalist class has an age property
of type int to indicate the age of the instrumentalist. We could set Kenny’s age
using the following XML:

<bean id="kenny"
 class="com.springinaction.springidol.Instrumentalist">
 <property name="song" value="Jingle Bells" />
 <property name="age" value="37" />
</bean>

Notice that the value attribute is used exactly the same when setting a numeric
value as it is when setting a String value. Spring will determine the correct type
for the value based on the property’s type. Since the age property is an int,
Spring knows to convert 37 to an int value before calling setAge().

 Using <property> to configure simple properties of a bean is great, but there’s
more to DI than just wiring hard-coded values. The real value of DI is found in wir-
ing an application’s collaborating objects together so that they don’t have to wire
themselves together. To that aim, let’s see how to give Kenny an instrument that
he can play.

2.3.2 Referencing other beans

Kenny’s a very talented instrumentalist and can play virtually any instrument given
to him. As long as it implements the Instrument interface, he can make music
with it. Naturally, however, Kenny does have a favorite instrument. His instrument
of choice is the saxophone, which is defined by the Saxophone class in listing 2.5.

Injecting into bean properties 49
package com.springinaction.springidol;

public class Saxophone implements Instrument {
 public Saxophone() {}

 public void play() {
 System.out.println("TOOT TOOT TOOT");
 }
}

Before we can give Kenny a saxophone to play, we must declare it as a <bean> in
Spring. The following XML should do:

<bean id="saxophone"
 class="com.springinaction.springidol.Saxophone" />

Notice that the Saxophone class has no properties that need to be set. Conse-
quently, there is no need for <property> declarations in the saxophone bean.

 With the saxophone declared, we’re ready to give it to Kenny to play. The fol-
lowing modification to the kenny bean uses setter injection to set the instrument
property:

<bean id="kenny"
 class="com.springinaction.springidol.Instrumentalist">
 <property name="song" value="Jingle Bells" />
 <property name="instrument" ref="saxophone" />
</bean>

Now the kenny bean has been injected with all of its properties and Kenny is ready
to perform. As with Duke, we can prompt Kenny to perform by executing the fol-
lowing Java code (perhaps in a main() method):

ApplicationContext ctx = new ClassPathXmlApplicationContext(
 "com/springinaction/springidol/spring-idol.xml");

Performer performer = (Performer) ctx.getBean("kenny");
performer.perform();

This isn’t the exact code that will run the Spring Idol competition, but it does give
Kenny a chance to practice. When it is run, the following will be printed:

Playing Jingle Bells : TOOT TOOT TOOT

At the same time, it illustrates an important concept. If you compare this code
with the code that instructed Duke to perform, you’ll find that it isn’t much differ-
ent. In fact, the only difference is the name of the bean retrieved from Spring.

Listing 2.5 A saxophone implementation of Instrument

50 CHAPTER 2

Basic bean wiring
The code is the same, even though one causes a juggler to perform and the other
causes an instrumentalist to perform.

 This isn’t a feature of Spring as much as it’s a benefit of coding to interfaces. By
referring to a performer through the Performer interface, we’re able to blindly
cause any type of performer to perform, whether it’s a poetic juggler or a saxo-
phonist. Spring encourages the use of interfaces for this reason. And, as you’re
about to see, interfaces work hand in hand with DI to provide loose coupling.

 As mentioned, Kenny can play virtually any instrument that is given to him as
long as it implements the Instrument interface. Although he favors the saxo-
phone, we could also ask Kenny to play piano. For example, consider the Piano
class defined in listing 2.6.

package com.springinaction.springidol;

public class Piano implements Instrument {
 public Piano() {}

 public void play() {
 System.out.println("PLINK PLINK PLINK");
 }
}

The Piano class can be declared as a <bean> in Spring using the following XML:

<bean id="piano"
 class="com.springinaction.springidol.Piano" />

Now that a piano is available, changing Kenny’s instrument is as simple as chang-
ing the kenny bean declaration as follows:

<bean id="kenny"
 class="com.springinaction.springidol.Instrumentalist">
 <property name="song" value="Jingle Bells" />
 <property name="instrument" ref="piano" />
</bean>

With this change, Kenny will play a piano instead of a saxophone. However,
because the Instrumentalist class only knows about its instrument property
through the Instrument interface, nothing about the Instrumentalist class
needed to change to support a new implementation of Instrument. Although an
Instrumentalist can play either a Saxophone or Piano, it is decoupled from
both. If Kenny decides to take up the hammered dulcimer, the only change

Listing 2.6 A piano implementation of Instrument

Injecting into bean properties 51
required will be to create a HammeredDulcimer class and to change the instru-
ment property on the kenny bean declaration.

Injecting inner beans
We’ve seen that Kenny is able to play saxophone, piano, or any instrument that
implements the Instrument interface. But what’s also true is that the saxophone
and piano beans could also be shared with any other bean by injecting them into
an Instrument property. So, not only can Kenny play any Instrument, any
Instrumentalist can play the saxophone bean. In fact, it’s quite common for
beans to be shared among other beans in an application.

 The problem, however, is that Kenny’s a bit concerned with the hygienic impli-
cations of sharing his saxophone with others. He’d rather keep his saxophone to
himself. To help Kenny avoid germs, we’ll use a handy Spring technique known as
inner beans.

 As a Java developer, you’re probably already familiar with the concept of inner
classes—that is, classes that are defined within the scope of other classes. Similarly,
inner beans are beans that are defined within the scope of another bean. To illus-
trate, consider this new configuration of the kenny bean where his saxophone is
declared as an inner bean:

 <bean id="kenny"
 class="com.springinaction.springidol.Instrumentalist">
 <property name="song" value="Jingle Bells" />
 <property name="instrument">
 <bean class="org.springinaction.springidol.Saxophone" />
 </property>
</bean>

As you can see, an inner bean is defined by declaring a <bean> element directly as
a child of the <property> element to which it will be injected. In this case, a Sax-
ophone will be created and wired into Kenny’s instrument property.

 Inner beans aren’t limited to setter injection. You may also wire inner beans
into constructor arguments, as shown in this new declaration of the duke bean:

<bean id="duke" class="com.springinaction.springidol.PoeticJuggler">
 <constructor-arg value="15" />
 <constructor-arg>
 <bean class="com.springinaction.springidol.Sonnet29" />
 </constructor-arg>
</bean>

Here, a Sonnet29 instance will be created as an inner bean and sent as an argu-
ment to the PoeticJuggler’s constructor.

52 CHAPTER 2

Basic bean wiring
 Notice that the inner beans do not have an id attribute set. While it’s perfectly
legal to declare an ID for an inner bean, it’s not necessary because you’ll never
refer to the inner bean by name. This highlights the main drawback of using
inner beans: they can’t be reused. Inner beans are only useful for injection once
and can’t be referred to by other beans.

 You may also find that using inner-bean definitions has a negative impact on
the readability of the XML in the Spring context files.

 Kenny’s talent extends to virtually any instrument. Nevertheless, he does have
one limitation: he can play only one instrument at a time. Next to take the stage
in the Spring Idol competition is Hank, a performer who can simultaneously play
multiple instruments.

2.3.3 Wiring collections

Up to now, you’ve seen how to use Spring to configure both simple property val-
ues (using the value attribute) and properties with references to other beans
(using the ref attribute). But value and ref are only useful when your bean’s
properties are singular. How can Spring help you when your bean has properties
that are plural—what if a property is a collection of values?

 Spring offers four types of collection configuration elements that come in
handy when configuring collections of values. Table 2.3 lists these elements and
what they’re good for.

 The <list> and <set> elements are useful when configuring properties that
are either arrays or some implementation of java.util.Collection. As you’ll
soon see, the actual implementation of the collection used to define the property
has little correlation to the choice of <list> or <set>. Both elements can be used
almost interchangeably with properties of any type of java.util.Collection.

Table 2.3 Just as Java has several kinds of collections, Spring allows for injecting several kinds of
collections.

Collection
element

Useful for…

<list> Wiring a list of values, allowing duplicates.

<set> Wiring a set of values, ensuring no duplicates

<map> Wiring a collection of name-value pairs where name and value can be of any type

<props> Wiring a collection of name-value pairs where the name and value are both Strings

Injecting into bean properties 53
 As for <map> and <props>, these two elements correspond to collections that
are java.util.Map and java.util.Properties, respectively. These types of col-
lections are useful when you need a collection that is made up of a collection
of key-value pairs. The key difference between the two is that when using
<props>, both the keys and values are Strings, while <map> allows keys and val-
ues of any type.

 To illustrate collection wiring in Spring, please welcome Hank to the Spring
Idol stage. Hank’s special talent is that he is a one-man band. Like Kenny, Hank’s
talent is playing several instruments, but Hank can play several instruments at the
same time. Hank is defined by the OneManBand class in listing 2.7.

package com.springinaction.springidol;
import java.util.Collection;

public class OneManBand implements Performer {
 public OneManBand() {}

 public void perform() throws PerformanceException {
 for(Instrument instrument : instruments) {
 instrument.play();
 }
 }

 private Collection<Instrument> instruments;
 public void setInstruments(Collection<Instrument> instruments) {
 this.instruments = instruments;
 }
}

As you can see, a OneManBand iterates over a collection of instruments when it per-
forms. What’s most important here is that the collection of instruments is injected
through the setInstruments() method. Let’s see how Spring can provide Hank
with his collection of instruments.

Lists and arrays
To give Hank a collection of instruments to perform with, let’s use the <list>
configuration element:

<bean id="hank" class="com.springinaction.springidol.OneManBand">
 <property name="instruments">
 <list>
 <ref bean="guitar" />
 <ref bean="cymbal" />
 <ref bean="harmonica" />

Listing 2.7 A performer that is a one-man-band

Injects Instrument collection

54 CHAPTER 2

Basic bean wiring
 </list>
 </property>
</bean>

The <list> element contains one or more values. Here <ref> elements are used
to define the values as references to other beans in the Spring context, configur-
ing Hank to play a guitar, cymbal, and harmonica. However, it’s also possible to
use other value-setting Spring elements as the members of a <list>, including
<value>, <bean>, and <null/>. In fact, a <list> may contain another <list> as a
member for multidimensional lists.

 In listing 2.7, OneManBand’s instruments property is a java.util.Collection
using Java 5 generics to constrain the collection to Instrument values. But <list>
may be used with properties that are of any implementation of java.util.Col-
lection or an array. In other words, the <list> element we just used would still
work, even if the instruments property were to be declared as

java.util.List<Instrument> instruments;

or even if it were to be declared as

Instrument[] instruments;

Sets
As mentioned, Spring’s <list> element is more about how the collection is han-
dled by Spring than the actual type of the argument. Anywhere you can use
<list>, you may also use <set>. But <set> has a useful side effect that <list>
does not have: <set> ensures that each of its members is unique. To illustrate,
here’s a new declaration of the hank bean using <set> instead of <list> to config-
ure the instruments property:

<bean id="hank" class="com.springinaction.springidol.OneManBand">
 <property name="instruments">
 <set>
 <ref bean="guitar" />
 <ref bean="cymbal" />
 <ref bean="harmonica" />
 <ref bean="harmonica" />
 </set>
 </property>
</bean>

Although Hank can play multiple instruments at once, he can only realistically
play one harmonica at a time (he only has one mouth, after all). In this example,
Hank has been given two references to harmonica. But because <set> is used to
configure the instruments property, the extra harmonica is effectively ignored.

Injecting into bean properties 55
 Just like <list>, the <set> element can be used to configure properties whose
type is an array or an implementation of java.util.Collection. It may seem odd
to configure a java.util.List property using <set>, but it’s certainly possible. In
doing so, you’ll be guaranteed that all members of the List will be unique.

Maps
When a OneManBand performs, each instrument’s sound is printed as the per-
form() method iterates over the collection of instruments. But let’s suppose that
we also want to see which instrument is producing each sound. To accommodate
this, consider the changes to the OneManBand class in listing 2.8.

package com.springinaction.springidol;
import java.util.Map;

public class OneManBand implements Performer {
 public OneManBand() {}

 public void perform() throws PerformanceException {
 for (String key : instruments.keySet()) {
 System.out.print(key + " : ");
 Instrument instrument = instruments.get(key);
 instrument.play();
 }
 }

 private Map<String,Instrument> instruments;
 public void setInstruments(Map<String,Instrument> instruments) {
 this.instruments = instruments;
 }
}

In the new version of OneManBand, the instruments property is a java.util.Map
where each member has a String as its key and an Instrument as its value.
Because a Map’s members are made up of key-value pairs, a simple <list> or
<set> configuration element will not suffice when wiring the property.

 Instead, the following declaration of the hank bean uses the <map> element to
configure the instruments property:

<bean id="hank" class="com.springinaction.springidol.OneManBand">
 <property name="instruments">
 <map>
 <entry key="GUITAR" value-ref="guitar" />
 <entry key="CYMBAL" value-ref="cymbal" />
 <entry key="HARMONICA" value-ref="harmonica" />

Listing 2.8 Changing OneManBand’s instrument collection to a Map

Prints
 instrument’s
key

Injects instruments as Map

56 CHAPTER 2

Basic bean wiring
 </map>
 </property>
</bean>

The <map> element declares a value of type java.util.Map. Each <entry> ele-
ment defines a member of the Map. In the previous example, the key attribute
specifies the key of the entry while the value-ref attribute defines the value of
the entry as a reference to another bean within the Spring context.

 Although our example uses the key attribute to specify a String key and
value-ref to specify a reference value, the <entry> element actually has two
attributes each for specifying the key and value of the entry. Table 2.4 lists those
attributes.

<map> is only one way to inject key-value pairs into bean properties when either of
the objects is not a String. Let’s see how to use Spring’s <props> element to con-
figure String-to-String mappings.

Properties
When declaring a Map of values for OneManBand’s instrument property, it was nec-
essary to specify the value of each entry using value-ref. That’s because each
entry is ultimately another bean in the Spring context.

 But if you find yourself configuring a Map whose entries have both String keys
and String values, you may want to consider using java.util.Properties
instead of a Map. The Properties class serves roughly the same purpose as Map,
but limits the keys and values to Strings.

 To illustrate, imagine that instead of being wired with a collection of refer-
ences to Instrument beans, OneManBand is wired with a collection of Strings that
are the sounds made by the instruments. The new OneManBand class is in
listing 2.9.

Table 2.4 An <entry> in a <map> is made up of a key and a value, either of which can be a primitive
value or a reference to another bean. These attributes help specify the keys and values of an <entry>.

Attribute Purpose

key Specifies the key of the map entry as a String

key-ref Specifies the key of the map entry as a reference to a bean in the Spring context

value Specifies the value of the map entry as a String

value-ref Specifies the value of the map entry as a reference to a bean in the Spring context

Injecting into bean properties 57
package com.springinaction.springidol;
import java.util.Iterator;
import java.util.Properties;

public class OneManBand implements Performer {
 public OneManBand() {}

 public void perform() throws PerformanceException {
 for (Iterator iter = instruments.keySet().iterator();
 iter.hasNext();) {
 String key = (String) iter.next();
 System.out.println(key + " : " +
 ➥instruments.getProperty(key));
 }
 }

 private Properties instruments;
 public void setInstruments(Properties instruments) {
 this.instruments = instruments;
 }
}

To wire the instrument sounds into the instruments property, we use the <props>
element in the following declaration of the hank bean:

<bean id="hank" class="com.springinaction.springidol.OneManBand">
 <property name="instruments">
 <props>
 <prop key="GUITAR">STRUM STRUM STRUM</prop>
 <prop key="CYMBAL">CRASH CRASH CRASH</prop>
 <prop key="HARMONICA">HUM HUM HUM</prop>
 </props>
 </property>
</bean>

The <props> element constructs a java.util.Properties value where each
member is defined by a <prop> element. Each <prop> element has a key attribute
that defines the key of each Properties member, while the value is defined by the
contents of the <prop> element. In our example, the element whose key is “GUI-
TAR” has a value of “STRUM STRUM STRUM”.

 This may very well be the most difficult Spring configuration element to talk
about. That’s because the term “property” is highly overloaded. It’s important to
keep the following straight:

Listing 2.9 Wiring a OneManBand’s instruments as a Properties collection

Injects
instruments
as Properties

58 CHAPTER 2

Basic bean wiring
■ <property> is the element used to inject a value into a property of a
bean class.

■ <props> is the element used to define a collection value of type
java.util.Properties.

■ <prop> is the element used to define a member value of a <props>
collection.

Now you’ve seen several ways of wiring values into a bean’s properties. Now let’s
do something a little different and see how to wire nothing into a bean property.

2.3.4 Wiring nothing (null)

In almost every situation, you will use DI to wire a value or an object reference
into a bean’s properties. But what if you want to ensure that a property is null?

 You’re probably rolling your eyes and thinking, “What’s this guy talking about?
Why would I ever want to wire null into a property? Aren’t all properties null
until they’re set? What’s the point?”

 While it’s often true that properties start out null and will remain that way
until set, some beans may themselves set a property to a non-null default value.
What if, for whatever twisted reasons you have, you want to force that property to
be null? If that’s the case, it’s not sufficient to just assume that the property will
be null—you must explicitly wire null into the property.

 To set a property to null, you simply use the <null/> element. For example:

<property name="someNonNullProperty"><null/></property>

Another reason for explicitly wiring null into a property is to override an autow-
ired property value. What’s auto-wiring, you ask? Keep reading—we’re going to
explore autowiring in the next section.

2.4 Autowiring

So far you’ve seen how to wire all of your bean’s properties using either the <con-
structor-arg> or the <property> element. In a large application, however, all of
this explicit wiring can result in a lot of XML. Rather than explicitly wiring all of
your bean’s properties, you can have Spring automatically figure out how to wire
beans together by setting the autowire property on each <bean> that you want
Spring to autowire.

Autowiring 59
2.4.1 The four types of autowiring

Spring provides four flavors of autowiring:

■ byName—Attempts to find a bean in the container whose name (or ID) is
the same as the name of the property being wired. If a matching bean is not
found, the property will remain unwired.

■ byType—Attempts to find a single bean in the container whose type
matches the type of the property being wired. If no matching bean is found,
the property will not be wired. If more than one bean matches, an
org.springframework.beans.factory.UnsatisfiedDependencyExcep-

tion will be thrown.

■ constructor—Tries to match up one or more beans in the container with
the parameters of one of the constructors of the bean being wired. In the
event of ambiguous beans or ambiguous constructors, an org.springframe-
work.beans.factory.UnsatisfiedDependencyException will be thrown.

■ autodetect—Attempts to autowire by constructor first and then using
byType. Ambiguity is handled the same way as with constructor and
byType wiring.

Each of these options has its pros and cons. Let’s start by looking at how you can
have Spring autowire a bean’s properties by their names.

Autowiring by name
In Spring, everything is given a name. Bean properties are given names. And the
beans that are wired into those properties are given names. If the name of a prop-
erty happens to match the name of the bean that is to be wired into that property,
that could serve as a hint to Spring that the bean should automatically be wired
into the property.

 For example, let’s revisit the kenny bean from section 2.3.2:

<bean id="kenny"
 class="com.springinaction.springidol.Instrumentalist">
 <property name="song" value="Jingle Bells" />
 <property name="instrument" ref="saxophone" />
</bean>

Here we’ve explicitly configured Kenny’s instrument property using <property>.
Just for the moment, let’s pretend that we declared the Saxophone as a <bean>
with an id of instrument:

60 CHAPTER 2

Basic bean wiring
<bean id="instrument"
 class="com.springinaction.springidol.Saxophone" />

If this were the case, the id of the Saxophone bean would be the same as the name
of the instrument property. Spring can take advantage of this to automatically
configure Kenny’s instrument by setting the autowire property as follows:

<bean id="kenny"
 class="com.springinaction.springidol.Instrumentalist"
 autowire="byName">
 <property name="song" value="Jingle Bells" />
</bean>

byName autowiring sets a convention where a property will automatically be wired
with a bean of the same name. In setting the autowire property to byName, you
are telling Spring to consider all properties of kenny and look for beans declared
with the same names as the properties. In this case, the instrument property is eli-
gible for autowiring through setter injection. As illustrated in figure 2.4, if there is
a bean in the context whose id is instrument, it will be autowired into the
instrument property.

 The limitation of using byName autowiring is that it assumes that you’ll have a
bean whose name is the same as the property of another bean that you’ll be inject-
ing into. In our example, it would require creating a bean whose name is instru-
ment. If multiple Instrumentalist beans are configured to be autowired by
name then all of them will be playing the same instrument. This may not be a
problem in all circumstances, but it is a limitation to keep in mind.

Autowiring by type
Autowiring using byType works in a similar way to byName, except that instead of
considering a property’s name, the property’s type is examined. When attempting
to autowire a property by type, Spring will look for beans whose type is assignable
to the property’s type.

 For example, suppose that the kenny bean’s autowire property is set to byType
instead of byName. The container will search itself for a bean whose type is

setInstrument(Instrument)

kenny
Instrumentalist

instrument
Saxophone

instrument setInstrument(Instrument)

Figure 2.4 When autowiring by name, a bean’s name is matched against
properties that have the same name.

Autowiring 61
Instrument and wire that bean into the instrument property. As shown in
figure 2.5, the saxophone bean will be automatically wired into Kenny’s instru-
ment property because both the instrument property and the saxophone bean are
of type Instrument.

 But there is a limitation to autowiring by type. What happens if Spring finds
more than one bean whose type is assignable to the autowired property? In such a
case, Spring isn’t going to guess which bean to autowire and will instead throw an
exception. Consequently, you are allowed to have only one bean configured that
matches the autowired property. In the Spring Idol competition, there are likely to
be several beans whose types are subclasses of Instrument. Therefore, autowiring
by type will not be helpful in our example.

 As with the limitation to byName, this may or may not be a problem for your
application, but you should be aware of Spring’s behavior when ambiguities occur
in autowiring.

Using constructor autowiring
If your bean is configured using constructor injection, you may choose to put
away the <constructor-arg> elements and let Spring automatically choose con-
structor arguments from beans in the Spring context.

 For example, consider the following redeclaration of the duke bean:

<bean id="duke"
 class="com.springinaction.springidol.PoeticJuggler"
 autowire="constructor" />

In this new declaration of duke, the <constructor-arg> elements are gone and
the autowire attribute has been set to constructor. This tells Spring to look at
PoeticJuggler’s constructors and try to find beans in the Spring configuration to
satisfy the arguments of one of the constructors. We’ve already declared the
sonnet29 bean, which is a Poem and matches the constructor argument of one of

saxophone
Saxophone

Instrument

setInstrument(Instrument)

kenny
Instrumentalist

Instrument setInstrument(Instrument)

Figure 2.5 Autowire by type matches beans to properties of the same type.

62 CHAPTER 2

Basic bean wiring
PoeticJuggler’s constructors. Therefore, Spring will use that constructor, passing
in the sonnet29 bean, when constructing the duke bean, as expressed in figure 2.6.

 Autowiring by constructor shares the same limitations as byType. That is,
Spring will not attempt to guess which bean to autowire when it finds multiple
beans that match a constructor’s arguments. Furthermore, if a constructor has
multiple constructors, any of which can be satisfied by autowiring, Spring will not
attempt to guess which constructor to use.

Autodetect autowiring
If you want to autowire your beans, but you can’t decide which type of autowiring
to use, have no fear. By setting the autowire attribute to autodetect, you can let
the container make the decision for you. For example:

<bean id="duke"
 class="com.springinaction.springidol.PoeticJuggler"
 autowire="autodetect" />

When a bean has been configured to autowire by autodetect, Spring will attempt
to autowire by constructor first. If a suitable constructor-bean match can’t be
found then Spring will attempt to autowire by type.

Autowiring by default
By default, beans will not be autowired unless you set the autowire attribute.
However, you can set a default autowiring for all beans within the Spring context
by setting default-autowire on the root <beans> element:

<beans default-autowire="byName">
…
</beans>

Set this way, all beans will be autowired using byName unless specified otherwise.

sonnet29
Poem

PoeticJuggler(Poem)

duke
PoeticJuggler

Poem new PoeticJuggler(Poem)

Figure 2.6 When autowired by constructor, the duke PoeticJuggler is
instantiated with the constructor that takes a Poem argument.

Autowiring 63
2.4.2 Mixing auto with explicit wiring

Just because you choose to autowire a bean, that doesn’t mean you can’t explicitly
wire some properties. You can still use the <property> element on any property as
if you hadn’t set autowire.

 For example, to explicitly wire Kenny’s instrument property even though he is
set to autowire by type, use this code:

<bean id="kenny"
 class="com.springinaction.springidol.Instrumentalist"
 autowire="byType">
 <property name="song" value="Jingle Bells" />
 <property name="instrument" ref="saxophone" />
</bean>

As illustrated here, mixing automatic and explicit wiring is also a great way to deal
with ambiguous autowiring that may occur when autowiring using byType. There
may be several beans in the Spring context that implement Instrument. To keep
Spring from throwing an exception due to the ambiguity of several Instruments
to choose from, we can explicitly wire the instrument property, effectively over-
riding autowiring.

 We mentioned earlier that you could use <null/> to force an autowired prop-
erty to be null. This is just a special case of mixing autowiring with explicit wiring.
For example, if you wanted to force Kenny’s instrument to be null, you’d use the
following configuration:

<bean id="kenny"
 class="com.springinaction.springidol.Instrumentalist"
 autowire="byType">
 <property name="song" value="Jingle Bells" />
 <property name="instrument"><null/></property>
</bean>

This is just for illustration’s sake, of course. Wiring null into instrument will
result in a NullPointerException being thrown when the perform() method is
invoked.

 One final note on mixed wiring: When using constructor autowiring, you must
let Spring wire all of the constructor arguments—you cannot mix <constructor-
arg> elements with constructor autowiring.

2.4.3 To autowire or not to autowire

Although autowiring seems to be a powerful way to cut down on the amount of
manual configuration required when writing the bean wiring file, it may lead to
some problems. As you’ve already seen, autowiring by type or constructor imposes

64 CHAPTER 2

Basic bean wiring
a restriction where you may only have one bean of a given type. And autowiring by
name forces you to name your beans to match the properties that they’ll be autow-
ired into. However, there are other shortcomings associated with autowiring.

 For example, suppose that an Instrumentalist bean is set to be autowired
using byName. As a result, its instrument property will automatically be set to the
bean in the container whose name is instrument. Let’s say that you decide that
you want to refactor the instrument property, renaming it as musicalInstrument.
After refactoring, the container will try to autowire by looking for a bean named
musicalInstrument. Unless you have changed the bean XML file, it won’t find a
bean by that name and will leave the property unwired. When the Instrumental-
ist bean tries to use the musicalInstrument property, you’ll get a NullPointer-
Exception.

 Worse still, what if there is a bean named musicalInstrument (not likely, but it
could happen) but it isn’t the bean you want wired to the musicalInstrument
property? Depending on the type of the musicalInstrument bean, Spring may
quietly wire in the unwanted bean, resulting in unexpected application behavior.

 But the most serious shortcoming of autowiring is that it lacks clarity. When
you autowire a property, your Spring configuration XML no longer contains the
explicit details on how your beans are being wired. When you read the configura-
tion, you are left to perform the autowiring yourself to figure out what’s going on.

 Similarly, Spring documentation tools such as Spring IDE and Spring BeanDoc
won’t have enough information to properly document autowired properties. This
could result in documentation that implies that some beans aren’t wired, even
when they are.

 Autowiring is a powerful feature. Nevertheless, as you may have heard, with
great power comes great responsibility. If you choose to autowire, do so with
caution.

 Because autowiring hides so much of what is going on and because we want
our examples to be abundantly clear, most of the examples in this book will not
use autowiring. We’ll leave it up to you whether you will autowire in your own
applications.

2.5 Controlling bean creation

So far, you’ve seen a few of the most basic ways to configure beans in Spring and
wire them into properties of other beans. In all cases, we’ve created beans in the
most basic way: we’ve assumed that Spring will create one instance of the bean,

Controlling bean creation 65
using a public constructor on the bean’s class, and will perform no special initial-
ization or destruction logic.

 But before we wrap up this chapter, you should also know that Spring provides
a handful of options for creating beans that go beyond what we’ve seen so far. You
can do the following:

■ Control how many instances of a specific bean are created, whether it is one
instance for the entire application, one instance per user request, or a
brand-new instance each time the bean is used.

■ Create beans from static factory methods instead of public constructors.

■ Initialize a bean after it is created and clean up just before it is destroyed.

Let’s start by seeing how we can control how often a bean is created by using bean
scoping.

2.5.1 Bean scoping

By default, all Spring beans are singletons. That is, when the container dispenses a
bean (either through wiring or as the result of a call to the container’s getBean()
method) it will always hand out the exact same instance of the bean. But there
may be times when you need a unique instance of a bean each time it is asked for.
How can you override the default singleton nature of Spring?

 When declaring a <bean> in Spring, you have the option of declaring a scope
for that bean. To force Spring to produce a new bean instance each time one is
needed, you should declare the bean’s scope attribute to be prototype. For
example, consider the following declaration of the saxophone bean:

<bean id="saxophone"
 class="com.springinaction.springidol.Saxophone"
 scope="prototype" />

Now when Spring wires the saxophone bean into an Instrumentalist’s instru-
ment property, each Instrumentalist will get their own instance of Saxophone
instead of sharing the same instance. This is another way to calm Kenny’s con-
cerns about hygiene and sharing his saxophone—other Instrumentalists can
have their own saxophones and keep their spit off his.

 In addition to prototype, Spring offers a handful of other scoping options out
of the box, as listed in table 2.5.

 For the most part, you’ll probably want to leave scoping to the default single-
ton, but prototype scope may be useful in situations where you want to use

66 CHAPTER 2

Basic bean wiring
Spring as a factory for new instances of domain objects. If domain objects are con-
figured as prototype beans, you are able to easily configure them in Spring, just
like any other bean. But Spring is guaranteed to always dispense a unique instance
each time a prototype bean is asked for.

NOTE Scoping is new to Spring 2.0. Prior to Spring 2.0, you would set a <bean>’s
singleton attribute to false to make it a prototype bean. The binary
nature of the singleton attribute was quite limiting and didn’t allow for
more interesting bean scopes, so the scope attribute was added. This is
one area where backward compatibility is somewhat broken between
Spring 1.x and Spring 2.0. If you’re using the Spring 2.0 DTD or XML
schema when defining your context, you must use the scope attribute.
But if you are still using the Spring 1.x DTD, you must use the singleton
attribute.

The astute reader will recognize that Spring's notion of singletons is limited to the
scope of the Spring context. Unlike true singletons, which guarantee only a single
instance of a class per classloader, Spring's singleton beans only guarantee a single
instance of the bean definition per the application context—there's nothing stop-
ping you from instantiating that same class in a more conventional way or even
defining several <bean> declarations that instantiate the same class.

2.5.2 Creating beans from factory methods

Most of the time, the beans that you configure in the Spring application context
will be created by invoking one of the class’s constructors. Sure, you’ll probably

Table 2.5 Spring’s bean scopes let you declare the scope under which beans are created without hard-
coding the scoping rules in the bean class itself.

Scope What it does

singleton Scopes the bean definition to a single instance per Spring container (default).

prototype Allows a bean to be instantiated any number of times (once per use).

request Scopes a bean definition to an HTTP request. Only valid when used with a web-
capable Spring context (such as with Spring MVC).

session Scopes a bean definition to an HTTP session. Only valid when used with a web-
capable Spring context (such as with Spring MVC).

global-session Scopes a bean definition to a global HTTP session. Only valid when used in a
portlet context.

Controlling bean creation 67
write all of your classes with public constructors, but what if you’re using a third-
party API that exposes some of its types through a static factory method? Does this
mean that the class can’t be configured as a bean in Spring?

 To illustrate, consider the case of configuring a singleton3 class as a bean in
Spring. Singleton classes generally ensure that only one instance is created by only
allowing creation through a static factory method. The Stage class in listing 2.10
is a basic example of a singleton class.

package com.springinaction.springidol;

public class Stage {
 private Stage() {}

 private static class StageSingletonHolder {
 static Stage instance = new Stage();
 }

 public static Stage getInstance() {
 return StageSingletonHolder.instance;
 }
}

In the Spring Idol competition, we want to ensure that there’s only one stage for
the performers to show their stuff. Stage has been implemented as a singleton to
ensure that there’s absolutely no way to create more than one instance of Stage.

 But notice that Stage doesn’t have a public constructor. Instead, the static
getInstance() method returns the same instance every time it’s called. (For
thread safety, getInstance() employs a technique known as “initialization on
demand holder” to create the singleton instance.4) How can we configure Stage
as a bean in Spring without a public constructor?

 Fortunately, the <bean> element has a factory-method attribute that lets you
specify a static method to be invoked instead of the constructor to create an
instance of a class. To configure Stage as a bean in the Spring context, we simply
use factory-method as follows:

3 I’m talking about Gang of Four Singleton pattern here, not the Spring notion of singleton bean definitions.

Listing 2.10 The Stage singleton class

4 For information on the “initialization on demand holder” idiom, see
http://en.wikipedia.org/wiki/initialization_on_demand_holder_idiom.

Lazily loads
instance

Returns
 instance

68 CHAPTER 2

Basic bean wiring
<bean id="theStage"
 class="com.springinaction.springidol.Stage"
 factory-method="getInstance" />

Here I’ve shown you how to use factory-method to configure a singleton as a
bean in Spring, but it’s perfectly suitable for any occasion where you need to wire
an object produced by a static method. You’ll see more of factory-method in
chapter 4 when we use it to get references to AspectJ aspects so that they can be
injected with dependencies.

 But there’s more bean-wiring ground to cover first. Some beans need setup
performed after they’re created and teardown work when they’re done. Wrapping
up this chapter, let’s see how to hook into the bean’s lifecycle to perform bean ini-
tialization and cleanup.

2.5.3 Initializing and destroying beans

When a bean is instantiated, it may be necessary to perform some initialization to
get it into a usable state. Likewise, when the bean is no longer needed and is
removed from the container, some cleanup may be in order. To accommodate
setup and teardown of beans, Spring provides hooks into the bean lifecycle.

 To define setup and teardown for a bean, simply declare the <bean> with
init-method and/or destroy-method parameters. The init-method attribute
specifies a method that is to be called on the bean immediately upon instantia-
tion. Similarly, destroy-method specifies a method that is called just before a
bean is removed from the container.

 To illustrate, consider the Instrumentalist class. Anyone who’s talented at
playing musical instruments will tell you that the first thing they do before per-
forming their art is to tune their instrument. So, let’s add the following method to
Instrumentalist:

public void tuneInstrument() {
 instrument.tune();
}

Likewise, after a performance, it’s a good idea to clean the instrument:

public void cleanInstrument() {
 instrument.clean();
}

Now all we need is a way to ensure that the tuneInstrument() method is called
when an Instrumentalist is created and cleanInstrument() is called when it is
destroyed. For that, let’s use the init-method and destroy-method attributes
when declaring the kenny bean:

Controlling bean creation 69
<bean id="kenny"
 class="com.springinaction.springidol.Instrumentalist"
 init-method="tuneInstrument"
 destroy-method="cleanInstrument">
 <property name="song" value="Jingle Bells" />
 <property name="instrument" ref="saxophone" />
</bean>

When declared this way, the tuneInstrument() method will be called soon after
the kenny bean is instantiated, allowing it the opportunity to ensure a properly
tuned instrument. And, just before the bean is removed from the container and
discarded, cleanInstrument() will be called so that Kenny can take steps to pre-
serve his instrument.

Defaulting init-method and destroy-method
If many of the beans in a context definition file will have initialization or destroy
methods with the same name, you don’t have to declare init-method or destroy-
method on each individual bean. Instead you can take advantage of the default-
init-method and default-destroy-method attributes on the <beans> element:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd"
 default-init-method="tuneInstrument"
 default-destroy-method="cleanInstrument">
…
</beans>

The default-init-method attribute sets an initialization method across all beans
in a given context definition. Likewise, default-destroy-method sets a common
destroy method for all beans in the context definition. In this case, we’re asking
Spring to initialize all beans in the context definition file by calling tuneInstru-
ment() and to tear them down with cleanInstrument() (if those methods exist—
otherwise nothing happens).

InitializingBean and DisposableBean
As an option to init-method and destroy-method, we could also rewrite the
Instrumentalist class to implement two special Spring interfaces: Initializing-
Bean and DisposableBean. The Spring container treats beans that implement
these interfaces in a special way by allowing them to hook into the bean lifecycle.
Listing 2.11 shows an updated Instrumentalist class that implements both of
these interfaces.

70 CHAPTER 2

Basic bean wiring

package com.springinaction.springidol;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.beans.factory.DisposableBean;

public class Instrumentalist implements Performer,
 InitializingBean, DisposableBean {
 public Instrumentalist() {}
 public void perform() throws PerformanceException {
 System.out.print("Playing " + song + " : ");
 instrument.play();
 }

 private String song;
 public void setSong(String song) {
 this.song = song;
 }

 private Instrument instrument;
 public void setInstrument(Instrument instrument) {
 this.instrument = instrument;
 }

 public void afterPropertiesSet() throws Exception {
 instrument.tune();
 }

 public void destroy() throws Exception {
 instrument.clean();
 }
}

The InitializingBean interface mandates that the class implements afterProp-
ertiesSet(). This method will be called once all specified properties for the
bean have been set. This makes it possible for the bean to perform initialization
that can’t be performed until the bean’s properties have been completely set. In
the Instrumentalist class, afterPropertiesSet() causes the Instrumentalist
to tune its instrument.

 Similarly, DisposableBean requires that a destroy() method be implemented.
The destroy() method will be called on the other end of the bean’s lifecycle,
when the bean is disposed of by the container. In the case of Instrumentalist,
the destroy() method ensures that the instrument is cleaned at the end of the
bean’s life.

 The chief benefit of using these lifecycle interfaces is that the Spring container
is able to automatically detect beans that implement them without any external

Listing 2.11 A version of Instrumentalist that implements Spring’s lifecycle hook
interfaces

Defines initialization
method

Defines teardown
method

Summary 71
configuration. However, the disadvantage of implementing these interfaces is that
you couple your application’s beans to Spring’s API. For this one reason alone, I
recommend that you rely on the init-method and destroy-method attribute to
initialize and destroy your beans. The only scenario where you might favor
Spring’s lifecycle interfaces is if you are developing a framework bean that is to be
used specifically within Spring’s container.

2.6 Summary

At the core of the Spring Framework is the Spring container. Spring comes with
several implementations of its container, but they all fall into one of two catego-
ries. A BeanFactory is the simplest form of container, providing basic DI and
bean-wiring services. But when more advanced framework services are needed,
Spring’s ApplicationContext is the container to use.

 In this chapter, you’ve seen how to wire beans together within the Spring con-
tainer. Wiring is typically performed within a Spring container using an XML file.
This XML file contains configuration information for all of the components of an
application, along with information that helps the container perform DI to associ-
ate beans with other beans that they depend on.

 You’ve also seen how to instruct Spring to automatically wire beans together by
using reflection and making some guesses about which beans should be associ-
ated with each other.

 Everything you learned in this chapter is the basis for what is to come. It is the
day-to-day stuff that you’ll use when developing Spring-based applications. You’ll
continue working with Spring’s bean definition XML file as we build the samples
throughout the remainder of the book.

 Whereas the techniques in this chapter are common to virtually every Spring
application, the tricks in the next chapter are less commonplace. Coming up
next, we’ll explore some of the more advanced Spring configuration practices
that, while not day-to-day, are very powerful and useful when you need them.

Advanced bean wiring
This chapter covers
■ Parent/child bean creation
■ Custom property editors
■ Postprocessing beans
■ Dynamically scripted beans
72

Declaring parent and child beans 73
Most people have at least one drawer, cabinet, or closet somewhere in their house
where miscellaneous odds and ends are kept. Although it’s often called a junk
drawer, many useful things end up in there. Things like measuring tape, binder
clips, pens, pencils, thumbtacks, a handful of spare batteries, and endless supplies
of twist ties tend to find a home in these places. You usually don’t have a day-to-
day use for those items, but you know that the next time that there’s a power out-
age, you’ll be digging in that drawer to find batteries to put in your flashlight.

 In chapter 2, I showed you the day-to-day basics of Spring bean wiring. There’s
no doubt you’ll have plenty of opportunities to use those techniques in your
Spring-based applications. You’ll keep them nearby and use them frequently.

 In this chapter, however, we’re going to dig a little into the Spring container’s
junk drawer. While the topics covered in this chapter are handy when you need
them, they won’t see nearly as much use as what we discussed in chapter 2. It’s not
often you’ll need to replace a method in a bean or create a bean that knows its
own name. And not every project needs to inject a Ruby class into a Spring-based
Java application. But when you find yourself needing to do these kinds of things…
well, you’re just going to need them.

 Since this chapter covers a few of Spring’s more unusual features, you may
want to skip past this chapter and move on to Spring’s aspect-oriented features in
chapter 4. This chapter will still be here waiting for you when you need it. But if
you stick around, you’ll see how to take your beans to the extreme, starting with
how to create and extend abstract beans.

3.1 Declaring parent and child beans

One of the essentials of object-oriented programming is the ability to create a
class that extends another class. The new class inherits many of the properties and
methods of the parent class, but is able to introduce new properties and methods
or even override the parent’s properties and methods. If you’re reading this book,
you’re probably a Java programmer and subclassing is old news to you. But did
you know that your Spring beans can “sub-bean” other Spring beans?

 A <bean> declaration in Spring is typically defined with a class attribute to
indicate the type of the bean and zero or more <property> elements to inject
values into the bean’s properties. Everything about the <bean> is declared in
one place.

 But creating several individual <bean> declarations can make your Spring con-
figuration unwieldy and brittle. For the same reasons you’d create hierarchies of
classes in Java—to collect common functionality and properties in parent classes

74 CHAPTER 3

Advanced bean wiring
that can be inherited by child classes—you’ll find it useful to create <bean>s that
extend and inherit from other <bean> definitions. And it’s a great way to cut down
on the amount of redundant XML in the Spring context definition files.

 To accommodate sub-beaning, the <bean> element provides two special
attributes:

■ parent—Indicates the id of a <bean> that will be the parent of the <bean>
with the parent attribute. The parent attribute is to <bean> what extends is
to a Java class.

■ abstract—If set to true, indicates that the <bean> declaration is abstract.
That is, it should never be instantiated by Spring.

To illustrate Spring’s sub-beaning capabilities, let’s revisit the Spring Idol competi-
tion.

3.1.1 Abstracting a base bean type

As you’ll recall from chapter 2, Kenny was a contestant who entered the competi-
tion as an Instrumentalist. Specifically, Kenny’s specialty is the saxophone. Thus
Kenny was declared as a bean in Spring using the following XML:

<bean id="kenny"
 class="com.springinaction.springidol.Instrumentalist">
 <property name="song" value="Jingle Bells" />
 <property name="instrument" ref="saxophone" />
</bean>

In the time that has passed since you read chapter 2, a new contestant has entered
the contest. Coincidentally, David is also a saxophonist. What’s more, he will be
playing the same song as Kenny. David is declared in Spring as follows:

<bean id="david"
 class="com.springinaction.springidol.Instrumentalist">
 <property name="song" value="Jingle Bells" />
 <property name="instrument" ref="saxophone" />
</bean>

Now we have two <bean>s declared in Spring with virtually the same XML. In fact,
as illustrated in figure 3.1, the only difference between these two <bean>s are
their ids. This may not seem like a big problem now, but imagine what might
happen if we had 50 more saxophonists enter the contest, all wanting to perform
“Jingle Bells.”

 An obvious solution to the problem would be to disallow any further contes-
tants from entering the competition. But we’ve already set a precedent by letting

Declaring parent and child beans 75
David in. And besides, we need an example for sub-beaning. So, we’ll leave the
contest open a little longer.

 The other solution is to create a bean that will be the parent bean for all of our
saxophonist contestants. The baseSaxophonist bean should do the trick:

<bean id="baseSaxophonist"
 class="com.springinaction.springidol.Instrumentalist"
 abstract="true">
 <property name="instrument" ref="saxophone" />
 <property name="song" value="Jingle Bells" />
</bean>

The baseSaxophonist bean isn’t much different from the kenny and david beans
from earlier. But notice that the abstract attribute has been set to true. This tells
Spring to not try to instantiate this bean… even if it is explicitly requested from
the container. In many ways this is the same as an abstract class in Java, which can’t
be instantiated.

 Although it can’t be instantiated, the baseSaxophonist bean is still very useful,
because it contains the common properties that are shared between Kenny and
David. Thus, we are now able to declare the kenny and david beans as follows:

<bean id="kenny" parent="baseSaxophonist" />
<bean id="david" parent="baseSaxophonist" />

 The parent attribute indicates that both the kenny and david beans will
inherit their definition from the baseSaxophonist bean. Notice that there’s no
class attribute. That’s because kenny and david will inherit the parent bean’s
class as well as its properties. The redundant XML is now gone and these <bean>
elements are much simpler and more concise, as shown in figure 3.2.

 It is appropriate at this point to mention that the parent bean doesn’t have to
be abstract. It’s entirely possible to create sub-beans that extend a concrete bean.

instrument=saxophone
song="Jingle Bells"

kenny:Instrumentalist
instrument=saxophone
song="Jingle Bells"

david:Instrumentalist

Duplicated Properties

Same Class

Figure 3.1 The two beans are the same type and have properties that are injected with the
same values.

76 CHAPTER 3

Advanced bean wiring
But in this example, we know that there’s never any reason for Spring to instanti-
ate the baseSaxophonist bean, so we declared it to be abstract.

Overriding inherited properties
Now let’s suppose that another saxophonist were to enter the contest (I told you it
would happen). But this saxophonist will be performing “Mary Had a Little
Lamb” instead of “Jingle Bells.” Does this mean that we can’t sub-bean baseSaxo-
phonist when declaring the new contestant?

 Not at all. We can still sub-bean baseSaxophonist. But instead of accepting all
of the inherited property values, we’ll override the song property. The following
XML defines the new saxophonist:

<bean id="frank" parent="baseSaxophonist">
 <property name="song" value="Mary had a little lamb" />
</bean>

 The frank bean will still inherit the class and <property>s of the baseSaxo-
phonist bean. But, as shown in figure 3.3, frank overrides the song property so
that he can perform a song of a girl and her wooly pet.

 In many ways, parent and child <bean> declarations mirror the capabilities of
parent and child class definitions in Java. But hang on… I’m about to show you
something that Spring inheritance can do that can’t be done in Java.

3.1.2 Abstracting common properties

In the Spring Idol talent competition, we may have several musically inclined con-
testants. As you’ve seen already, we have several instrumentalists who perform
songs on their instruments. But there may also be vocalists who use their voices to
sing their songs.

instrument=saxophone
song="Jingle Bells"

baseSaxophonist:Instrumentalist

davidkenny

Class and properties are
inherited from parent bean

Figure 3.2 The kenny and david beans share some common
configuration. By creating a parent bean with the common properties
and inheriting from it, redundant configuration can be eliminated.

Declaring parent and child beans 77
Suppose that the Spring Idol talent competition has two performers, one vocalist
and one guitarist, who will be performing the same song. Configured as separate
beans, these performers may appear like this in the Spring configuration file:

<bean id="taylor"
 class="com.springinaction.springidol.Vocalist">
 <property name="song" value="Somewhere Over the Rainbow" />
</bean>

<bean id="stevie"
 class="com.springinaction.springidol.Instrumentalist">
 <property name="instrument" ref="guitar" />
 <property name="song" value="Somewhere Over the Rainbow" />
</bean>

As before, these two beans share some common configuration. Specifically, they
both have the same value for their song attribute. But unlike the example in the
previous section, the two beans do not share a common class. So, we can’t create a
common parent bean for them. Or can we?

 In Java, children classes share a common base type that is determined by their
parent bean. This means that there’s no way in Java for children classes to extend
a common type to inherit properties and/or methods but not to inherit the com-
mon parent.

 In Spring, however, sub-beans do not have to share a common parent type.
Two <bean>s with completely different values in their class attributes can still
share a common set of properties that are inherited from a parent bean.

 Consider the following abstract parent <bean> declaration:

<bean id="basePerformer" abstract="true">
 <property name="song" value="Somewhere Over the Rainbow" />
</bean>

instrument=saxophone
song="Jingle Bells"

baseSaxophonist:Instrumentalist

kenny david
song="Mary had a..."

frank

The frank bean overrides
the song property

Figure 3.3 The frank bean inherits from the baseSaxophonist bean, but
overrides the song property.

78 CHAPTER 3

Advanced bean wiring
This basePerformer bean declares the common song property that our two per-
formers will share. But notice that it doesn’t have a class attribute set. That’s
okay, because each child bean will determine its own type with its own class
attribute. The new declarations of taylor and stevie are as follows:

<bean id="taylor"
 class="com.springinaction.springidol.Vocalist"
 parent="basePerformer" />

<bean id="stevie"
 class="com.springinaction.springidol.Instrumentalist"
 parent="basePerformer">
 <property name="instrument" ref="guitar" />
</bean>

Notice that these beans use both the class attribute and the parent attribute
alongside each other. This makes it possible for two or more otherwise disparate
beans to share and inherit property values from a common base <bean> declara-
tion. As illustrated in figure 3.4, the song property value is inherited from the
basePerformer bean, even though each child bean has a completely different and
unrelated type.

 Sub-beaning is commonly used to reduce the amount of XML required to
declare aspects and transactions. In chapter 6 (section 6.4.2), you’ll see how sub-
beaning can greatly reduce the amount of redundant XML when declaring trans-
actions with TransactionProxyFactoryBean.

 But for now, it’s time to continue rummaging through the junk drawer to see
what other useful tools we might find. We’ve already seen setter and construc-
tor injection in chapter 2. Next up, let’s see how Spring provides another kind
of injection that allows you to declaratively inject methods into your beans,
effectively altering a bean’s functionality without having to change its underly-
ing Java code.

instrument=guitar
stevie:Instrumentalisttaylor:Vocalist

song="Somewhere over the..."
basePerformer

Different typesThe song property
is inherited

Figure 3.4 Parent beans don’t have to specify a type. They can also be used to hold
common configuration that can be inherited by beans of any type.

Applying method injection 79
3.2 Applying method injection

In chapter 2, you saw two basic forms of dependency injection (DI). Constructor
injection lets you configure your beans by passing values to the beans’ construc-
tors. Meanwhile, setter injection lets you configure your beans by passing values
through the setter methods. Before you’re finished with this book, you’ll see hun-
dreds of examples of setter injection and maybe a few more examples of construc-
tor injection.

 But in this section, I’d like to show you an unusual form of DI called method
injection. With setter and constructor injection, you were injecting values into a
bean’s properties. But as illustrated in figure 3.5, method injection is quite differ-
ent, because it lets you inject entire method definitions into a bean.

 Some languages, such as Ruby, allow you to add new methods to any class at
runtime, without changing the class’s definition. For example, if you’d like to add
a new method to Ruby’s String class that will print the string’s length, it’s a simple
matter of defining the new method:

class String
 def print_length
 puts "This string is #{self.length} characters long"
 end
end

With the method defined, you’ll be able to invoke it on any String you create.
For example:

message = "Hello"
message.print_length

will print “This string is 5 characters long” to the standard output.
 But that’s Ruby—the Java language isn’t quite as flexible. Nevertheless, Spring

offers Java programmers method injection to allow runtime injection of methods
into Java classes. It’s not quite as elegant as Ruby’s language constructs for method
injection, but it’s a step in that direction.

getContents() : Object
MagicBoxImpl

public Object getContents() {
 return "A ferocious tiger";
}

Injected

Figure 3.5 Method injection is a type of injection where a class’s methods are replaced by
an alternate implementation.

80 CHAPTER 3

Advanced bean wiring
 Spring supports two forms of method injection:

■ Method replacement—Enables existing methods (abstract or concrete) to be
replaced at runtime with new implementations.

■ Getter injection—Enables existing methods (abstract or concrete) to be
replaced at runtime with a new implementation that returns a specific bean
from the Spring context.

To get started with method injection, let’s have a look at how Spring supports gen-
eral-purpose method replacement.

3.2.1 Basic method replacement

Do you like magic shows? Magicians use sleight of hand and distraction to make
the seemingly impossible appear right before our eyes. One of our favorite magic
tricks is when the magician puts his assistant in a box, spins the box around,
chants some magic words, then… PRESTO! The box opens to reveal that a tiger
has replaced the assistant.

 It just so happens that the Harry, a promising prestidigitator, has entered the
Spring Idol talent competition and will be performing our favorite illusion. Allow
me to introduce you to Harry, first by showing you the Magician class in
listing 3.1.

package com.springinaction.springidol;

public class Magician implements Performer {
 public Magician() {}

 public void perform() throws PerformanceException {
 System.out.println(magicWords);
 System.out.println("The magic box contains...");
 System.out.println(magicBox.getContents());
 }

 // injected
 private MagicBox magicBox;
 public void setMagicBox(MagicBox magicBox) {
 this.magicBox = magicBox;
 }

 private String magicWords;
 public void setMagicWords(String magicWords) {
 this.magicWords = magicWords;
 }
}

Listing 3.1 A magician and his magic box

Inspects contents
of magic box

Injects magic box

Applying method injection 81
As you can see, the Magician class has two properties that will be set by Spring DI.
The Magician needs some magic words to make the illusion work, so those will be
set with the magicWords property. But most importantly, he’ll be given his magic
box through the magicBox property. Speaking of the magic box, you’ll find it
implemented in listing 3.2.

package com.springinaction.springidol;

public class MagicBoxImpl implements MagicBox {
 public MagicBoxImpl() {}

 public String getContents() {
 return "A beautiful assistant";
 }
}

The key thing about the MagicBoxImpl class that you should draw your attention
to is the getContents() method. You’ll notice that it’s hard-coded to always return
“A beautiful assistant”—but as you’ll soon see, things aren’t always as they appear.

 But before I show you the trick, here’s how Harry and his magic box are wired
up in the Spring application context:

<bean id="harry"
 class="com.springinaction.springidol.Magician">
 <property name="magicBox" ref="magicBox" />
 <property name="magicWords" value="Bippity boppity boo" />
</bean>

<bean id="magicBox"
 class="com.springinaction.springidol.MagicBoxImpl" />

If you’ve ever seen this trick before, you’ll know that the magician always teases
the audience by closing the box, then opening it again to show that the assistant is
still in there. Harry’s act is no different. Let’s kick off the magic trick using the fol-
lowing code snippet:

ApplicationContext ctx = … // load Spring context
Performer magician = (Performer) ctx.getBean("harry");
magician.perform();

When this code snippet is run to retrieve the harry bean from the application
context and when the perform() method is invoked, you’ll see that everything is
as it is supposed to be:

Listing 3.2 The magic box implementation contains a beautiful assistant… or does it?

Contains a
beautiful assistant

82 CHAPTER 3

Advanced bean wiring
Bippity boppity boo
The magic box contains...
A beautiful assistant

This output should be no surprise to you. After all, the MagicBoxImpl is hard-
coded to return “A beautiful assistant” when getContents() is invoked. But as I
said, this was just a teaser. Harry hasn’t performed the actual magic trick yet. But
now it’s time for the illusion to begin, so let’s tweak the configuration XML to
appear as follows:

<bean id="magicBox"
 class="com.springinaction.springidol.MagicBoxImpl">
 <replaced-method
 name="getContents"
 replacer="tigerReplacer" />
</bean>

 <bean id="tigerReplacer"
 class="com.springinaction.springidol.TigerReplacer" />

Now the magicBox bean has a <replaced-method> element (see figure 3.6). As its
name implies, this element is used to replace a method with a new method imple-
mentation. In this case, the name attribute specifies the getContents() method to
be replaced. And the replacer attribute refers to a bean called tigerReplacer to
implement the replacement.

Here’s where the real sleight-of-hand takes place. The tigerReplacer bean is a
TigerReplacer, as defined in listing 3.3.

package com.springinaction.springidol;
import java.lang.reflect.Method;
import org.springframework.beans.factory.support.MethodReplacer;

Listing 3.3 TigerReplacer, which replaces a method implementation

getContents()

 "A beautiful assistant"

getContents()

 "A ferocious tiger"<replaced-method>

Figure 3.6 Using Spring’s <replaced-method> injection, it’s easy to
replace the getContents() method that returns “A beautiful assistant” with
an implementation that produces a tiger.

Applying method injection 83
public class TigerReplacer implements MethodReplacer {
 public Object reimplement(Object target, Method method,
 Object[] args) throws Throwable {

 return "A ferocious tiger";
 }
}

TigerReplacer implements Spring’s MethodReplacer interface. MethodReplacer
only requires that the reimplement() method be implemented. reimplement()
takes three arguments: the target object that the method will be replaced on, the
method that will be replaced, and the arguments passed to the method. In our
case, we won’t be using those parameters, but they’re available if you need them.

 The body of the reimplement() method effectively becomes the new imple-
mentation for the magic box’s getContents() method. For our example, the only
thing we want to do is return “A ferocious tiger.” Effectively, the contents of the
box are replaced with a tiger, as shown in figure 3.6.

 Now when we invoke the magician’s perform() method, the following is
printed to the console:

Bippity boppity boo
The magic box contains...
A ferocious tiger

Ta-da! The beautiful assistant has been replaced by a ferocious tiger—without
changing the actual MagicBoxImpl code. The magic trick has been successfully
performed with the help of Spring’s <replaced-method>.

 It’s worth noting here that although MagicBoxImpl has a concrete implemen-
tation of the getContents() method, it would’ve also been possible for getCon-
tents() to have been written as an abstract method. In fact, method injection is
a trick that is useful when the actual implementation of the method isn’t known
until deployment time. At that time, the actual method replacer class can be pro-
vided in a JAR file placed in the application’s classpath.

 General replacement of methods is certainly a neat trick. But there’s a more
specific form of method injection that enables runtime binding of beans to a get-
ter method. Let’s see how to perform getter injection on Spring beans.

3.2.2 Using getter injection

Getter injection is a special case of method injection where a method (which is
typically abstract) is declared to return a bean of a certain type, but the actual
bean to be returned is configured in the Spring context.

Replaces
method

Puts tiger
in box

84 CHAPTER 3

Advanced bean wiring
 To illustrate, consider the new method-injected form of the Instrumentalist
class in listing 3.4.

package com.springinaction.springidol;

public abstract class Instrumentalist implements Performer {
 public Instrumentalist() {}

 public void perform() throws PerformanceException {
 System.out.print("Playing " + song + " : ");
 getInstrument().play();
 }

 private String song;
 public void setSong(String song) {
 this.song = song;
 }

 public abstract Instrument getInstrument();
}

Unlike the original Instrumentalist, this class isn’t given its instrument through
setter injection. Instead, there’s an abstract getInstrument() method that will
return the performer’s instrument. But if getInstrument() is abstract then the
big question is how the method gets implemented.

 One possible approach is to use general-purpose method replacement as
described in the last section. But that would require writing a class that imple-
ments MethodReplacer, when all we really need to do is override the getInstru-
ment() method to return a specific bean.

 For getter-style injection, Spring offers the <lookup-method> configuration
element. Like <replaced-method>, <lookup-method> replaces a method with a
new implementation at runtime. But <lookup-method> is a getter-injection short-
cut for <replaced-method> where you can specify which bean in the Spring con-
text to return from the replaced method. <lookup-method> will take care of the
rest. There’s no need to write a MethodReplacer class.

 The following XML demonstrates how to use <lookup-method> to replace the
getInstrument() method with one that returns a reference to the guitar bean:

<bean id="stevie"
 class="com.springinaction.springidol.Instrumentalist">
 <lookup-method name="getInstrument" bean="guitar" />
 <property name="song" value="Greensleeves" />
</bean>

Listing 3.4 A method-injected Instrumentalist

Uses injected
getInstrument() method

Injects
getInstrument()

Injecting non-Spring beans 85
As with <replaced-method>, the name attribute of <lookup-method> indicates the
method that is to be replaced. Here we’re replacing the getInstrument()
method. The bean attribute refers to a bean that should be returned when getIn-
strument() is called. In this case, we’re wiring in the bean whose id is guitar. As
a result, the getInstrument() method is effectively overridden as follows:

public Instrument getInstrument() {
 ApplicationContext ctx = …;

 return (Instrument) ctx.getBean("guitar");
}

On its own, getter injection is just a reversal of setter injection. However, it makes
a difference when the referenced bean is prototype scoped:

 <bean id="guitar" class="com.springinaction.springidol.Guitar"
 scope="prototype" />

Even though it’s prototype scoped, the guitar method would only be injected
once into a property if we were using setter injection. By injecting it into the get-
Instrument() method through getter injection, however, we ensure that every
call to getInstrument() will return a different guitar. This can come in handy if a
guitarist breaks a string in the middle of a performance and needs a freshly
stringed instrument.

 You should be aware that although we used <lookup-method> to perform get-
ter injection on the getInstrument() method, there’s nothing about <lookup-
method> that requires that the replaced method actually be a getter method (i.e.,
one whose name starts with get). Any non-void method is a candidate for replace-
ment with <lookup-method>.

 It’s important to note that while method injection allows you to change a
method’s implementation, it’s not capable of replacing a method’s signature. The
parameters and return type must remain the same. For <lookup-method>, this
means that the bean attribute must refer to a bean that is assignable to the type
being returned from the method (Instrument in the previous examples).

3.3 Injecting non-Spring beans

As you learned in chapter 2, one of Spring’s main jobs is to configure instances of
beans. But up to now there has always been one implied caveat: Spring can only
configure beans that it also instantiates. This may not seem too odd at first glance,
but it presents some interesting problems. Not all objects in an application are
created by Spring. Consider the following scenarios:

86 CHAPTER 3

Advanced bean wiring
■ Custom JSP tags are instantiated by the web container that the application is
running within. If a JSP tag needs to collaborate with some other object, it
must explicitly create the object itself.

■ Domain objects are typically instantiated at runtime by an ORM tool such as
Hibernate or iBATIS. In a rich domain model, domain objects have both
state and behavior. But if you can’t inject service objects into a domain
object then your domain object must somehow obtain its own instance of
the service object or the behavior logic must be fully contained in the
domain object.

And there may be other very valid reasons why you may want Spring to configure
objects that it doesn’t create. To illustrate, suppose that we were to explicitly
instantiate an Instrumentalist from the Spring Idol example:

Instrumentalist pianist = new Instrumentalist();
pianist.perform();

Because Instrumentalist is a POJO, there’s no reason why we can’t instantiate it
directly. But when the perform() method is invoked, a NullPointerException
will be thrown. That’s because although we are allowed to instantiate an Instru-
mentalist ourselves, the instrument property will be null.

 Naturally, we could manually configure the properties of the Instrumental-
ist. For example:

Piano piano = new Piano();
pianist.setInstrument(piano);
pianist.setSong("Chopsticks");

Although manually injecting the properties of the Instrumentalist will work, it
doesn’t take advantage of Spring’s ability to separate configuration from code.
Moreover, if an ORM were to instantiate Instrumentalist, we’d never get a
chance to configure its properties.

 Fortunately, Spring 2.0 introduced the ability to declaratively configure beans
that are instantiated outside of Spring. The idea is that these beans are Spring
configured but not Spring created.

 Consider the Instrumentalist bean that was explicitly created earlier. Ide-
ally, we would like to configure the pianist external to our code and let Spring
inject it with an instrument and a song to play. The following XML shows how we
might do this:

<bean id="pianist"
 class="com.springinaction.springidol.Instrumentalist"
 abstract="true">

Injecting non-Spring beans 87
 <property name="song" value="Chopsticks" />
 <property name="instrument">
 <bean class="com.springinaction.springidol.Piano" />
 </property>
</bean>

For the most part, there should be nothing out of the ordinary about this <bean>
declaration. It declares the pianist bean as being an Instrumentalist. And it
wires values into the song and instrument properties. It’s just your run-of-the-mill
Spring <bean>, except for one small thing: its abstract attribute is set to true.

 As you’ll recall from section 3.1, setting abstract to true tells Spring that you
don’t want the container to instantiate the bean. It’s often used to declare a par-
ent bean that will be extended by a sub-bean. But in this case we’re just indicating
to Spring that the pianist bean shouldn’t be instantiated—it will be created out-
side of Spring.

 Actually, the pianist bean only serves as a blueprint for Spring to follow when
it configures an Instrumentalist that is created outside of Spring. With this blue-
print defined, we need some way to associate it with the Instrumentalist class.
To do that, we’ll annotate the Instrumentalist class with @Configurable:

package com.springinaction.springidol;
import org.springframework.beans.factory.annotation.Configurable;

@Configurable("pianist")
public class Instrumentalist implements Performer {
…
}

 The @Configurable annotation does two things:

■ First, it indicates that Instrumentalist instances can be configured by
Spring, even if they’re created outside of Spring.

■ It also associates the Instrumentalist class with a bean whose id is pia-
nist. When Spring tries to configure an instance of Instrumentalist, it
will look for a pianist bean to use as a template.

So, just how does Spring know to configure beans with @Configurable annota-
tions? Well, there’s one last thing to add to the Spring configuration:

<aop:spring-configured />

The <aop:spring-configured> configuration element is one of the many new
configuration elements introduced in Spring 2.0. Its presence indicates to Spring
that there are some beans that it will configure, even though they will be created
elsewhere.

88 CHAPTER 3

Advanced bean wiring
 Under the hood, <aop:spring-configured> sets up an AspectJ aspect with a
pointcut that is triggered when any bean annotated with @Configurable is instan-
tiated. Once the bean has been created, the aspect cuts in and injects values into
the new instance based on the <bean> template in the Spring configuration.

 Because the Spring-configured aspect is an AspectJ aspect, this means that
your application will need to run within an AspectJ-enabled JVM. The best way to
AspectJ-enable a Java 5 JVM is to start it with the following JVM argument:

-javaagent:/path/to/aspectjweaver.jar

This effectively tells the JVM to perform load-time weaving of any AspectJ aspects.
To do this, it will need to know where AspectJ’s weaver classes are located. You’ll
need to replace

/path/to/aspectjweaver.jar

with the actual path to the aspectjweaver.jar file on your system (unless, of course,
your aspectjweaver.jar file is located in the /path/to directory).

 In this section we explicitly instantiated an Instrumentalist as a simple dem-
onstration of Spring’s ability to configure beans that it didn’t create. Neverthe-
less, as I mentioned before, the configured bean more likely would’ve been
instantiated by an ORM or some third-party library if this had been a real-world
application.

 Now let’s see how Spring’s property editors make simple work of injecting
complex values based on String representations.

3.4 Registering custom property editors

As you go through this book, you’ll see several examples where a complex prop-
erty is set with a simple String value. For example, in chapter 9, you’ll see how to
wire web services in Spring using JaxRpcPortProxyFactoryBean. One of the
properties of JaxRpcPortProxyFactoryBean that you’ll need to set is wsdlDocu-
mentUrl. This property is of the type java.net.URL. But instead of creating a
java.net.URL bean and wiring it into this property, you can configure it using a
String like this:

<property name="wsdlDocumentUrl"
 value="http://www.xmethods.net/sd/BabelFishService.wsdl" />

Under the covers, Spring automagically converts the String value to a URL object.
Actually, the magic behind this trick isn’t something Spring provides, but rather
comes from a little-known feature of the original JavaBeans API. The

Registering custom property editors 89
java.beans.PropertyEditor interface provides a means to customize how
String values are mapped to non-String types. A convenience implementation
of this interface—java.beans.PropertyEditorSupport—has two methods of
interest to us:

■ getAsText() returns the String representation of a property’s value.

■ setAsText(String value) sets a bean property value from the String
value passed in.

If an attempt is made to set a non-String property to a String value, the setAs-
Text() method is called to perform the conversion. Likewise, the getAsText()
method is called to return a textual representation of the property’s value.

 Spring comes with several custom editors based on PropertyEditorSupport,
including org.springframework.beans.propertyeditors.URLEditor, which is
the custom editor used to convert Strings to and from java.net.URL objects.
Spring’s selection of custom editors appears in table 3.1.

 In addition to the custom editors in table 3.1, you can write your own custom
editor by extending the PropertyEditorSupport class. For example, suppose
that your application has a Contact bean that conveniently carries contact

Table 3.1 Spring comes with several custom property editors that automatically turn injected String
values into more complex types.

Property editor What it does

ClassEditor Sets a java.lang.Class property from a String whose value
contains a fully qualified class name

CustomDateEditor Sets a java.util.Date property from a String using a cus-
tom java.text.DateFormat object

FileEditor Sets a java.io.File property from a String value containing
the file’s path

LocaleEditor Sets a java.util.Locale property from a String value that
contains a textual representation of the local (i.e., en_US)

StringArrayProperty
Editor

Converts a comma-delimited String to a String array property

StringTrimmerEditor Automatically trims String properties with an option to convert
empty String values to null

URLEditor Sets a java.net.URL property from a String containing a URL
specification

90 CHAPTER 3

Advanced bean wiring
information about the people in your organization. Among other things, the
Contact bean has a phoneNumber property that holds the contact phone number:

public Contact {
 private PhoneNumber phoneNumber;

 public void setPhoneNumber(PhoneNumber phoneNumber) {
 this.phoneNumber = phoneNumber;
 }
}

The phoneNumber property is of type PhoneNumber and is defined as follows:

public PhoneNumber {
 private String areaCode;
 private String prefix;
 private String number;

 public PhoneNumber() { }

 public PhoneNumber(String areaCode, String prefix,
 String number) {
 this.areaCode = areaCode;
 this.prefix = prefix;
 this.number = number;
 }
…
}

Using basic wiring techniques learned in chapter 2, you could wire a PhoneNumber
object into the Contact bean’s phoneNumber property as follows:

<beans>
 <bean id="infoPhone"
 class="com.springinaction.chapter03.propeditor.PhoneNumber">
 <constructor-arg value="888" />
 <constructor-arg value="555" />
 <constructor-arg value="1212" />
 </bean>
 <bean id="contact"
 class="com.springinaction.chapter03.propeditor.Contact">
 <property name="phoneNumber" ref="infoPhone" />
 </bean>
</beans>

Notice that you had to define a separate infoPhone bean to configure the
PhoneNumber object and then wire it into the phoneNumber property of the con-
tact bean.

 Instead, let’s suppose you were to write a custom PhoneEditor like this:

public class PhoneEditor
 extends java.beans.PropertyEditorSupport {

Registering custom property editors 91
 public void setAsText(String textValue) {
 String stripped = stripNonNumeric(textValue);

 String areaCode = stripped.substring(0,3);
 String prefix = stripped.substring(3,6);
 String number = stripped.substring(6);
 PhoneNumber phone = new PhoneNumber(areaCode, prefix, number);
 setValue(phone);
 }

 private String stripNonNumeric(String original) {
 StringBuffer allNumeric = new StringBuffer();

 for(int i=0; i<original.length(); i++) {
 char c = original.charAt(i);
 if(Character.isDigit(c)) {
 allNumeric.append(c);
 }
 }

 return allNumeric.toString();
 }
}

Now the only thing left is to get Spring to recognize your custom property editor
when wiring bean properties. For that, you’ll need to use Spring’s CustomEditor-
Configurer. CustomEditorConfigurer is a BeanFactoryPostProcessor that
loads custom editors into the BeanFactory by calling the registerCustomEdi-
tor() method. (Optionally, you can call the registerCustomEditor() method in
your own code after you have an instance of the bean factory.)

 By adding the following piece of XML to the bean configuration file, you’ll tell
Spring to register the PhoneEditor as a custom editor:

<bean
 class="org.springframework.beans.factory.config.
 ➥CustomEditorConfigurer">
 <property name="customEditors">
 <map>
 <entry key="com.springinaction.chapter03.propeditor.
 ➥PhoneNumber">
 <bean id="phoneEditor"
 class="com.springinaction.chapter03.propeditor.
 ➥PhoneEditor">
 </bean>
 </entry>
 </map>
 </property>
</bean>

92 CHAPTER 3

Advanced bean wiring
Now you’ll be able to configure the Contact object’s phoneNumber property using
a simple String value and without creating a separate infoPhone bean:

<bean id="contact"
 class="com.springinaction.chapter03.propeditor.Contact">
 <property name="phoneNumber" value="888-555-1212" />
</bean>

Note that many of the custom editors that come with Spring (such as URLEditor
and LocaleEditor) are already registered with the bean factory upon container
startup. You do not need to register them yourself using CustomEditorConfigurer.

 Property editors are just one way to customize how Spring creates and injects
beans. There are other types of beans that the Spring container gives special con-
sideration. Next up, let’s see how to create some special beans that let you custom-
ize how the Spring container wires up beans.

3.5 Working with Spring’s special beans

Most beans configured in a Spring container are treated equally. Spring config-
ures them, wires them together, and makes them available for use within an appli-
cation. Nothing special.

 But some beans have a higher purpose. By implementing certain interfaces,
you can cause Spring to treat beans as special—as part of the Spring Framework
itself. By taking advantage of these special beans, you can configure beans that

■ Become involved in the bean’s creation and the bean factory’s lifecycles by
postprocessing bean configuration

■ Load configuration information from external property files

■ Load textual messages from property files, including internationalized
messages

■ Listen for and respond to application events that are published by other
beans and by the Spring container itself

■ Are aware of their identity within the Spring container

In some cases, these special beans already have useful implementations that come
packaged with Spring. In other cases, you’ll probably want to implement the inter-
faces yourself.

 Let’s start the exploration of Spring’s special beans by looking at Spring’s spe-
cial beans that perform postprocessing of other beans after the beans have been
wired together.

Working with Spring’s special beans 93
3.5.1 Postprocessing beans

In chapter 2, you learned how to define beans within the Spring container and
how to wire them together. For the most part, you have no reason to expect beans
to be wired in any way different than how you define them in the bean definition
XML file. The XML file is perceived as the source of truth regarding how your
application’s objects are configured.

 But as you saw in figures 2.2 and 2.3, Spring offers two opportunities for you to
cut into a bean’s lifecycle and review or alter its configuration. This is called post-
processing. From the name, you probably deduced that this processing is done after
some event has occurred. The event this postprocessing follows is the instantia-
tion and configuration of a bean. The BeanPostProcessor interface gives you two
opportunities to alter a bean after it has been created and wired:

public interface BeanPostProcessor {
 Object postProcessBeforeInitialization(
 Object bean, String name) throws BeansException;

 Object postProcessAfterInitialization(
 Object bean, String name) throws BeansException;
}

The postProcessBeforeInitialization() method is called immediately prior
to bean initialization (the call to afterPropertiesSet() and the bean’s custom
init-method). Likewise, the postProcessAfterInitialization() method is
called immediately after initialization.

Writing a bean postprocessor
For example, suppose that you wanted to alter all String properties of your appli-
cation beans to translate them into Elmer Fudd-speak. The Fuddifier class in list-
ing 3.5 is a BeanPostProcessor that does just that.

public class Fuddifier implements BeanPostProcessor {
 public Object postProcessAfterInitialization(
 Object bean, String name) throws BeansException {
 Field[] fields = bean.getClass().getDeclaredFields();

 try {
 for(int i=0; i < fields.length; i++) {
 if(fields[i].getType().equals(
 java.lang.String.class)) {
 fields[i].setAccessible(true);
 String original = (String) fields[i].get(bean);
 fields[i].set(bean, fuddify(original));
 }

Listing 3.5 Listing 3.5 Fuddifying String properties using a BeanPostProcessor

“Fuddifies” all
String properties
of beans

94 CHAPTER 3

Advanced bean wiring
 }
 } catch (IllegalAccessException e) {
 e.printStackTrace();
 }

 return bean;
 }

 private String fuddify(String orig) {
 if(orig == null) return orig;
 return orig.replaceAll("(r|l)", "w")
 .replaceAll("(R|L)", "W");
 }

 public Object postProcessBeforeInitialization(
 Object bean, String name) throws BeansException {
 return bean;
 }
}

The postProcessAfterInitialization() method cycles through all of the
bean’s properties, looking for those that are of type java.lang.String. For each
String property, it passes it off to the fuddify() method, which translates the
String into Fudd-speak. Finally, the property is changed to the “Fuddified” text.
(You’ll also notice a call to each property’s setAccessible() method to get
around the private visibility of a property. I realize that this breaks encapsulation,
but how else could I pull this off?)

 The postProcessBeforeInitialization() method is left purposefully unex-
citing; it simply returns the bean unaltered. Actually, the “Fuddification” process
could have occurred just as well in this method.

 Now that we have a Fuddifying BeanPostProcessor, let’s look at how to tell the
container to apply it to all beans.

Registering bean postprocessors
If your application is running within a bean factory, you’ll need to programmati-
cally register each BeanPostProcessor using the factory’s addBeanPostProces-
sor() method:

BeanPostProcessor fuddifier = new Fuddifier();
factory.addBeanPostProcessor(fuddifier);

More likely, however, you’ll be using an application context. For an application
context, you’ll only need to register the postprocessor as a bean within the con-
text:

“Fuddifies” all String
properties of beans

Does nothing
before
initialization

Working with Spring’s special beans 95
<bean
 class="com.springinaction.chapter03.postprocessor.Fuddifier"/>

The container will recognize the fuddifier bean as a BeanPostProcessor and
call its postprocessing methods before and after each bean is initialized.

 As a result of the fuddifier bean, all String properties of all beans will be
Fuddified. For example, suppose you had the following bean defined in XML:

<bean id="bugs" class="com.springinaction.chapter03.postprocessor.Rabbit">
 <property name="description" value="That rascally rabbit!" />
</bean>

When the fuddifier postprocessor is finished, the description property will
hold “That wascawwy wabbit!”

Spring’s own bean postprocessors
The Spring Framework itself uses several implementations of BeanPostProcessor
under the covers. For example, ApplicationContextAwareProcessor is a Bean-
PostProcessor that sets the application context on beans that implement the
ApplicationContextAware interface (see section 3.5.6). You do not need to regis-
ter ApplicationContextAwareProcessor yourself. It is preregistered by the appli-
cation context itself.

 In the next chapter, you’ll learn of another implementation of BeanPostPro-
cessor. You’ll also learn how to automatically apply aspects to application beans
using DefaultAdvisorAutoProxyCreator, which is a BeanPostProcessor that cre-
ates AOP proxies based on all candidate advisors in the container.

3.5.2 Postprocessing the bean factory

Whereas a BeanPostProcessor performs postprocessing on a bean after it has
been loaded, a BeanFactoryPostProcessor performs postprocessing on the
entire Spring container. The BeanFactoryPostProcessor interface is defined as
follows:

public interface BeanFactoryPostProcessor {
 void postProcessBeanFactory(
 ConfigurableListableBeanFactory beanFactory)
 throws BeansException;
}

The postProcessBeanFactory() method is called by the Spring container after
all bean definitions have been loaded but before any beans are instantiated
(including BeanPostProcessor beans).

96 CHAPTER 3

Advanced bean wiring
 For example, the following BeanFactoryPostProcessor implementation gives
a completely new meaning to the term “bean counter”:

public class BeanCounter implements BeanFactoryPostProcessor {
 private Logger LOGGER = Logger.getLogger(BeanCounter.class);
 public void postProcessBeanFactory(
 ConfigurableListableBeanFactory factory)
 throws BeansException {
 LOGGER.debug("BEAN COUNT: " +
 factory.getBeanDefinitionCount());
 }
}

BeanCounter is a BeanFactoryPostProcessor that simply logs the number of
bean definitions that have been loaded into the bean factory. If you’re using an
application context container, registering a BeanFactoryPostProcessor is as sim-
ple as declaring it as a regular bean:

<bean id="beanCounter"
 class="com.springinaction.chapter03.postprocessor.
 ➥BeanCounter"/>

When the container sees that beanCounter is a BeanFactoryPostProcessor, it will
automatically register it as a bean factory postprocessor. You cannot use BeanFac-
toryPostProcessors with basic bean factory containers—this feature is only avail-
able with application context containers.

 BeanCounter is a naive use of BeanFactoryPostProcessor. To find more
meaningful examples of BeanFactoryPostProcessor, we have to look no further
than the Spring Framework itself. You’ve already seen CustomerEditorConfig-
urer (see section 3.4), which is an implementation of BeanFactoryPostProces-
sor used to register custom PropertyEditors in Spring.

 Another very useful BeanFactoryPostProcessor implementation is Property-
PlaceholderConfigurer. PropertyPlaceholderConfigurer loads properties
from one or more external property files and uses those properties to fill in place-
holder variables in the bean wiring XML file. Speaking of PropertyPlaceholder-
Configurer, that’s what we’ll look at next.

3.5.3 Externalizing configuration properties

For the most part, it is possible to configure your entire application in a single
bean-wiring file. But sometimes you may find it beneficial to extract certain pieces
of that configuration into a separate property file. For example, a configuration
concern that is common to many applications is configuring a data source. In

Working with Spring’s special beans 97
Spring, you could configure a data source with the following XML in the bean-
wiring file:

<bean id="dataSource" class=
 "org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="url"
 value="jdbc:hsqldb:Training" />
 <property name="driverClassName"
 value="org.hsqldb.jdbcDriver" />
 <property name="username" value="appUser" />
 <property name="password" value="password" />
</bean>

Configuring the data source directly in the bean-wiring file may not be appropri-
ate. The database specifics are a deployment detail. Conversely, the purpose of the
bean-wiring file is mainly oriented toward defining how components within your
application are put together. That’s not to say that you cannot configure your
application components within the bean-wiring file. In fact, when the configura-
tion is application specific (as opposed to deployment specific), it makes perfect
sense to configure components in the bean-wiring file. But deployment details
should be separated.

 Fortunately, externalizing properties in Spring is easy if you are using an
ApplicationContext as your Spring container. You use Spring’s PropertyPlace-
holderConfigurer to tell Spring to load certain configuration from an external
property file. To enable this feature, configure the following bean in your bean-
wiring file:

<bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.
 ➥PropertyPlaceholderConfigurer">
 <property name="location" value="jdbc.properties" />
</bean>

The location property tells Spring where to find the property file. In this case,
the jdbc.properties file contains the following JDBC information:

database.url=jdbc:hsqldb:Training
database.driver=org.hsqldb.jdbcDriver
database.user=appUser
database.password=password

The location property allows you to work with a single property file. If you want
to break down your configuration into multiple property files, use Property-
PlaceholderConfigurer’s locations property to set a List of property files:

<bean id="propertyConfigurer"
 class="org.springframework.beans.factory.config.

98 CHAPTER 3

Advanced bean wiring
 ➥PropertyPlaceholderConfigurer">
 <property name="locations">
 <list>
 <value>jdbc.properties</value>
 <value>security.properties</value>
 <value>application.properties</value>
 </list>
 </property>
</bean>

Now you are able to replace the hard-coded configuration in the bean-wiring file
with placeholder variables. Syntactically, the placeholder variables take the form
${variable}, resembling both Ant properties and the JavaServer Pages (JSP)
expression language. After plugging in the placeholder variables, the new data-
Source bean declaration looks like this:

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.
 ➥DriverManagerDataSource">
 <property name="url"
 value="${database.url}" />
 <property name="driverClassName"
 value="${database.driver}" />
 <property name="username"
 value="${database.user}" />
 <property name="password"
 value="${database.password}" />
</bean>

When Spring creates the dataSource bean, the PropertyPlaceholderConfigurer
will step in and replace the placeholder variables with the values from the prop-
erty file, as shown in figure 3.7.

Spring Context Definition

<bean id="dataSource"
 class="DriverManagerDataSource">
 <property name="url"
 value="${database.url} />
 <property name="driverClassName"
 value="${database.driver} />
 <property name="username"
 value="${database.user} />
 <property name="password"
 value="${database.password} />
</bean>

"

"

"

"

jdbc.properties

 atabase.url=jdbc:hsqldb:Training
 atabase.driver=org.hsqldb.jdbcDriver
 atabase.user=appUser
atabase.password=password

d
d
d
d

Figure 3.7 PropertyPlaceholderConfigurer enables externalizing configuration values into
property files and then loading those values into placeholder variables in the Spring context definition.

Working with Spring’s special beans 99
 PropertyPlaceholderConfigurer is useful for externalizing part of a
Spring configuration into property files. But Java uses property files for more than
just configuration; they’re also commonly used to store text messages and for
internationalization. Let’s see how Spring message sources can be used to resolve
text messages from a property file.

3.5.4 Resolving text messages

Often you may not want to hard-code certain text that will be displayed to the user
of your application. This may be because the text is subject to change, or perhaps
your application will be internationalized and you will display text in the user’s
native language.

 Java’s support for parameterization and internationalization (I18N) of mes-
sages enables you to define one or more property files that contain the text that is
to be displayed in your application. There should always be a default message file
along with optional language-specific message files. For example, if the name of
your application’s message bundle is “trainingtext,” you may have the following
set of message property files:

■ trainingtext.properties—Default messages when a locale cannot be deter-
mined or when a locale-specific properties file is not available

■ trainingtext_en_US.properties—Text for English-speaking users in the United
States

■ trainingtext_es_MX.properties—Text for Spanish-speaking users in Mexico

■ trainingtext_de_DE.properties—Text for German-speaking users in Germany

For example, both the default and English property files may contain entries
such as

course=class
student=student
computer=computer

Meanwhile, the Spanish message file would look like this:

course=clase
student=estudiante
computer=computadora

Spring’s ApplicationContext supports parameterized messages by making them
available to the container through the MessageSource interface:

public interface MessageSource {
 String getMessage(

100 CHAPTER 3

Advanced bean wiring
 MessageSourceResolvable resolvable, Locale locale)
 throws NoSuchMessageException;
 String getMessage(
 String code, Object[] args, Locale locale)
 throws NoSuchMessageException;
 String getMessage(
 String code, Object[] args, String defaultMessage,
 Locale locale);
}

Spring comes with a ready-to-use implementation of MessageSource. Resource-
BundleMessageSource simply uses Java’s own java.util.ResourceBundle to
resolve messages. To use ResourceBundleMessageSource, add the following to the
bean-wiring file:

<bean id="messageSource"

 class="org.springframework.context.support.ResourceBundleMessageSource">
 <property name="basename">
 <value>trainingtext</value>
 </property>
</bean>

It is very important that this bean be named messageSource because the Applica-
tionContext will look for a bean specifically by that name when setting up its
internal message source. You’ll never need to inject the messageSource bean into
your application beans, but will instead access messages via ApplicationContext’s
own getMessage() methods. For example, to retrieve the message whose name is
computer, use this code:

Locale locale = … ; //determine locale
String text =
 context.getMessage("computer", new Object[0], locale);

You’ll likely be using parameterized messages in the context of a web application,
displaying the text on a web page. In that case, you’ll want to use Spring’s
<spring:message> JSP tag to retrieve messages and will not need to directly access
the ApplicationContext:

<spring:message code="computer"/>

But if you need your beans, not a JSP, to retrieve the messages, how can you write
them to access the ApplicationContext? Well, you’re going to have to wait a bit
for that. Or you can skip ahead to section 3.5.6, where I discuss making your
beans aware of their container.

 Right now, however, let’s move on to examine the events that occur during an
application context’s lifecycle and how to handle these events to perform special

Working with Spring’s special beans 101
processing. You’ll also see how to publish our own events to trigger behavior
between otherwise decoupled beans.

3.5.5 Decoupling with application events

Dependency injection is the primary way that Spring promotes loose coupling
among application objects—but it isn’t the only way. Another way for objects to
interact with one another is to publish and listen for application events. Using
events, an event publisher object can communicate with other objects without
even knowing which objects are listening. Likewise, an event listener can react to
events without knowing which object published the events.

 This event-driven interaction is analogous to a radio station and its audience
of listeners, as illustrated in figure 3.8. The radios are not wired directly to the
radio station, and the radio station has no idea what radios are tuning in. Never-
theless, the station is still able to communicate with its listeners in a completely
decoupled fashion.

 In Spring, any bean in the container can be either an event listener, an event
publisher, or both. Let’s see how to create beans that participate in events, starting
with beans that publish application events.

Publishing events
Imagine that in a college’s online enrollment system, you want to alert one or
more application objects any time that a student signs up for a course and, as a
result, the course is full. Maybe you want to fire off a routine to automatically
schedule another course to handle the overflow.

Event
Publisher

Application
Event

Listener

Application
Event

Listener

Application
Event

Listener

Application
Event

Listener
Event

Eve
nt

Event

Event Figure 3.8
An event publisher is like a radio
station that broadcasts
application events to its
listeners. The publisher and its
listeners are completely
decoupled from each other.

102 CHAPTER 3

Advanced bean wiring
 First, define a custom event, such as the following CourseFullEvent:

public class CourseFullEvent extends ApplicationEvent {
 private Course course;

 public CourseFullEvent(Object source, Course course) {
 super(source);
 this.course = course;
 }

 public Course getCourse() {
 return course;
 }
}

Next, you’ll need to publish the event. The ApplicationContext interface has a
publishEvent() method that enables you to publish ApplicationEvents. Any
ApplicationListener that is registered in the application context will receive the
event in a call to its onApplicationEvent() method:

ApplicationContext context = …;
Course course = …;
context.publishEvent(new CourseFullEvent(this, course));

Unfortunately, in order to publish events, your beans will need to have access to
the ApplicationContext. This means that beans will have to be made aware of
the container that they’re running in. You’ll see how to make beans aware of their
container in section 3.5.6.

 But first, if an event publisher publishes an event and nobody listens to it, did
the event really happen? I’ll leave the philosophical questions for you to ponder
later. For now, let’s make sure that no events go unheard by creating beans that lis-
ten for events.

Listening for events
In addition to events that are published by other beans, the Spring container itself
publishes a handful of events during the course of an application’s lifetime. These
events are all subclasses of the abstract class org.springframework.con-

text.ApplicationEvent. Here are three such application events:

■ ContextClosedEvent—Published when the application context is closed

■ ContextRefreshedEvent—Published when the application context is ini-
tialized or refreshed

■ RequestHandledEvent—Published within a web application context when a
request is handled

Working with Spring’s special beans 103
For the most part, these events are published rather… uh… well, uneventfully.
Most beans will never know or care that they were published. But what if you want
to be notified of application events?

 If you want a bean to respond to application events, whether published by
another bean or by the container, all you need to do is implement the
org.springframework.context.ApplicationListener interface. This interface
forces your bean to implement the onApplicationEvent() method, which is
responsible for reacting to the application event:

public class RefreshListener implements ApplicationListener {
 public void onApplicationEvent(ApplicationEvent event) {
 …
 }
}

The only thing you need to do to tell Spring about an application event listener is
to simply register it as a bean within the context:

<bean id="refreshListener"
 class="com.springinaction.foo.RefreshListener"/>

When the container loads the bean within the application context, it will notice
that it implements ApplicationListener and will remember to call its onAppli-
cationEvent() method when an event is published.

 One thing to keep in mind is that application events are handled synchro-
nously. So, you want to take care that any events handled in this fashion are han-
dled quickly. Otherwise, your application’s performance could be negatively
impacted.

 As mentioned before, a bean must be aware of the application container to be
able to publish events. Even if an object isn’t interested in publishing events, you
may want to develop a bean that knows about the application context that it lives
in. Next up, let’s see how to create beans that are injected with references to
their container.

3.5.6 Making beans aware

Have you seen The Matrix? In the movie, humans have been unwittingly enslaved
by machines, living their everyday lives in a virtual world while their life essence
is being farmed to power the machines. Thomas Anderson, the main character,
is given a choice between taking a red pill and learning the truth of his exist-
ence or taking a blue pill and continuing his life ignorant of the truth. He
chooses the red pill, becoming aware of his real-world identity and the truth
about the virtual world.

104 CHAPTER 3

Advanced bean wiring
 For the most part, beans running in the Spring container are like the humans
in The Matrix. For these beans, ignorance is bliss. They don’t know (or even need
to know) their names or even that they are running within a Spring container.
This is usually a good thing because if a bean is aware of the container, it becomes
coupled with Spring and may not be able to exist outside the container.

 But sometimes, beans need to know more. Sometimes they need to know who
they are and where they are running. Sometimes they need to take the red pill.

 The red pill, in the case of Spring beans, comes in the form of the Bean-
NameAware, BeanFactoryAware, and ApplicationContextAware interfaces. By
implementing these three interfaces, beans can be made aware of their name,
their BeanFactory, and their ApplicationContext, respectively.

 Be warned, however, that by implementing these interfaces, a bean becomes
coupled with Spring. And, depending on how your bean uses this knowledge, you
may not be able to use it outside Spring.

Knowing who you are
The Spring container tells a bean what its name is through the BeanNameAware
interface. This interface has a single setBeanName() method that takes a String
containing the bean’s name, which is set through either the id or the name
attribute of <bean> in the bean-wiring file:

public interface BeanNameAware {
 void setBeanName(String name);
}

It may be useful for a bean to know its name for bookkeeping purposes. For exam-
ple, if a bean can have more than one instance within the application context, it
may be beneficial for that bean to identify itself by both name and type when log-
ging its actions.

 Within the Spring Framework itself, BeanNameAware is used several times. One
notable use is with beans that perform scheduling. CronTriggerBean, for exam-
ple, implements BeanNameAware to set the name of its Quartz CronTrigger job.
The following code snippet from CronTriggerBean illustrates this:

package org.springframework.scheduling.quartz;
public class CronTriggerBean extends CronTrigger
 implements …, BeanNameAware, … {
…
 private String beanName;
…
 public void setBeanName(String beanName) {
 this.beanName = beanName;
 }

Working with Spring’s special beans 105
…
 public void afterPropertiesSet() … {
 if (getName() == null){
 setBeanName(this.beanName);
 }
…
 }
…
}

You don’t need to do anything special for a Spring container to call setBean-
Name() on a BeanNameAware class. When the bean is loaded, the container will see
that the bean implements BeanNameAware and will automatically call setBean-
Name(), passing the name of the bean as defined by either the id or the name
attribute of the <bean> element in the bean-wiring XML file.

 Here CronTriggerBean extends CronTrigger. After the Spring context has set
all properties on the bean, the bean name is sent to setBeanName() (defined in
CronTriggerBean), which is used to set the name of the scheduled job.

 This example illustrated how to use BeanNameAware by showing how it is
used in Spring’s own scheduling support. I’ll talk more about scheduling in
chapter 12. For now, let’s see how to make a bean aware of the Spring con-
tainer that it lives within.

Knowing where you live
As you’ve seen in this section, sometimes it’s helpful for a bean to be able to access
the application context. Perhaps your bean needs access to parameterized text
messages in a message source. Or maybe it needs to be able to publish application
events for application event listeners to respond to. Whatever the case, your bean
should be aware of the container in which it lives.

 Spring’s ApplicationContextAware and BeanFactoryAware interfaces enable
a bean to be aware of its container. These interfaces declare a setApplication-
Context() method and a setBeanFactory() method, respectively. The Spring
container will detect whether any of your beans implement either of these inter-
faces and provide the BeanFactory or ApplicationContext.

 With access to the ApplicationContext, the bean can actively interact with
the container. This can be useful for programmatically retrieving dependencies
from the container (when they’re not injected) or publishing application events.
Going back to our event-publishing example earlier, we would finish that exam-
ple like this:

public class StudentServiceImpl
 implements StudentService, ApplicationContextAware {

106 CHAPTER 3

Advanced bean wiring
 private ApplicationContext context;
 public void setApplicationContext(ApplicationContext context) {
 this.context = context;
 }
 public void enrollStudentInCourse(Course course, Student student)
 throws CourseException;
 …
 context.publishEvent(new CourseFullEvent(this, course));
 …
 }
 …
}

Being aware of the application container is both a blessing and a curse for a bean.
On the one hand, access to the application context affords the bean a lot of
power. On the other hand, being aware of the container couples the bean to
Spring and is something that should be avoided if possible.

 So far we’ve been assuming that the beans in the Spring container are all
implemented as Java classes. That’s a reasonable assumption, but it doesn’t neces-
sarily have to be the case. Let’s see how to add dynamic behavior to an application
by wiring beans that are implemented using a scripting language.

3.6 Scripting beans

When writing the Java code that will become the beans in your Spring application,
you eventually run that code through a compiler that compiles it into the byte-
code that the JVM will execute. Moreover, you will likely package that compiled
code into a JAR, WAR, or EAR file for deployment. But what if, after the applica-
tion is deployed, you want to change the behavior of the code?

 You see, the problem with statically compiled code is that… well… it’s static.
Once it’s compiled into a class file and packaged in a deployment archive, it’s dif-
ficult to change without recompiling, repackaging, and redeploying the entire
application. In many circumstances, that is acceptable (and perhaps even
desired). Even so, statically compiled code makes it difficult to respond quickly to
dynamic business needs.

 For example, suppose that you’ve developed an e-commerce application.
Within that application is code that calculates the subtotal and total purchase
based on the items in the cart and any applicable shipping charges and sales tax.
But what if you need the ability to waive the sales tax for one day?

 If the tax calculation portion of your application is statically compiled to the
totaling code, the only option you’ll have is to deploy a tax-free version of your

Scripting beans 107
application at midnight, then redeploy the original version at the next midnight.
You had better start brewing the coffee, because you’re going to be up late two
nights in a row.

 With Spring, it’s possible to write scripted code in either Ruby, Groovy, or
BeanShell and wire it into a Spring application context as if it were any other Java-
based bean, as illustrated in figure 3.9. In the next few subsections, I’ll demon-
strate how to wire Ruby, Groovy, and BeanShell scripts as Spring-managed beans.

If you’re fan of Calypso music then you’re in for a treat—I’m going to demon-
strate scripted beans to the tune of one of the genre’s most famous songs. Please
follow along as I demonstrate dynamically scripted beans by putting a scripted
lime in a Java coconut.

3.6.1 Putting the lime in the coconut

To illustrate how to script beans in Spring, let’s inject a scripted implementation
of a Lime interface into a Java Coconut object. To start, let’s look at the Coconut
class as defined in listing 3.6.

package com.springinaction.scripting;

public class Coconut {
 public Coconut() {}

 public void drinkThemBothUp() {
 System.out.println("You put the lime in the coconut...");
 System.out.println("and drink 'em both up...");
 System.out.println("You put the lime in the coconut...");

Listing 3.6 A Java in a coconut shell

POJO

JRuby
Script

Groovy
Script

BeanShell
Script Figure 3.9

Spring isn’t limited to only injecting
POJOs into POJOs. You can also
dynamically modify your application by
injecting scripted beans into POJOs.

108 CHAPTER 3

Advanced bean wiring
 lime.drink();
 }

 // injected
 private Lime lime;
 public void setLime(Lime lime) {
 this.lime = lime;
 }
}

The Coconut class has one simple method, called drinkThemBothUp(). When this
method is invoked, certain lyrics from Mr. Nilsson’s song are printed to the Sys-
tem.out. The last line of the method invokes a drink() method on an injected
Lime instance to print the final lyric. The injected Lime is any object that imple-
ments the following interface:

package com.springinaction.scripting;

public interface Lime {
 void drink();
}

When wired up in Spring, the Coconut class is injected with a reference to a Lime
object using the following XML:

<bean id="coconut" class="com.springinaction.scripting.Coconut">
 <property name="lime" ref="lime" />
</bean>

At this point, I’ve shown you nothing special about the Coconut class or the Lime
interface that hints to scripted beans. For the most part, the code presented up to
this point resembles the basic JavaBean and DI examples from chapter 2.

 The only thing missing is the exact implementation of the Lime interface and
its declaration in the Spring context. The fact is that any Java-based implementa-
tion of the Lime interface will do. But I promised you a scripted Lime and so a
scripted Lime is what I’ll deliver next.

3.6.2 Scripting a bean

When scripting the Lime interface, we can choose to implement it as either a
Ruby, Groovy, or BeanShell script. But regardless of which scripting language is
chosen, we first need to do some setup in the Spring context definition file. Con-
sider the following <beans> declaration to see what needs to be done:

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Invokes the Lime’s
drink() method

Injects the Lime

Scripting beans 109
 xmlns:lang="http://www.springframework.org/schema/lang"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://www.springframework.org/schema/lang
 http://www.springframework.org/schema/lang/
 ➥spring-lang-2.0.xsd">
…
</beans>

Spring 2.0 comes with several new configuration elements, each defined in an
XML namespace and schema. We'll see a lot more of Spring’s custom configura-
tion namespaces throughout this book. But for now, suffice it to say that the high-
lighted portions of this <beans> declaration tell Spring that we’re going to use
certain configuration elements from the lang namespace.

 Now that the namespace has been declared in the Spring context file, we’re
ready to begin scripting our Lime. Let’s start with a Ruby-colored Lime.

Scripting the Lime in Ruby
In recent years, Ruby has caught the attention of many Java developers, so it’d be
no surprise if you’d like to write your scripted beans using this very popular script-
ing language. The following Ruby script implements the Lime interface and its
drink() method:

class Lime
 def drink
 puts "Called the doctor woke him up!"
 end
end
Lime.new

A very important thing to note here is that the last line of the script instantiates a
new Lime object. This line is crucial—without it, there will be no instance of the
Lime created that can be wired into other Spring objects.

 Wiring the Ruby Lime in Spring is a simple matter of using the <lang:jruby>
configuration element as follows:

<lang:jruby id="lime"
 script-source="classpath:com/springinaction/scripting/Lime.rb"
 script-interfaces="com.springinaction.scripting.Lime" />

<lang:jruby> requires two attributes to be set. The first, script-source, tells
Spring where it can locate the script file. Here, the script file is Lime.rb and can
be found in the classpath in the same package as the rest of the example code.
Meanwhile, the script-interfaces attribute tells Spring what Java interface that
the script will be implementing. Here it has been set to our Lime interface.

110 CHAPTER 3

Advanced bean wiring
Scripting a Groovy Lime
Despite Ruby’s growing popularity, many developers will be targeting the Java
platform for some time to come. Groovy is a language that mixes some of the best
features of Ruby and other scripting languages into a familiar Java syntax—effec-
tively giving a best-of-both-worlds option for Java developers.

 For those of you who favor Groovy scripting, here’s an implementation of the
Lime interface as a Groovy class:

class Lime implements com.springinaction.scripting.Lime {
 void drink() {
 print "Called the doctor woke him up!"
 }
}

Wiring a Groovy script as a Spring bean is as simple as using the <lang:groovy>
configuration element. The following <lang:groovy> configuration loads the
Groovy implementation of the Lime interface:

<lang:groovy id="lime"
 script-source="classpath:com/springinaction/
 ➥scripting/Lime.groovy" />

As with the <lang:jruby> element, the script-source attribute specifies the
location of the Groovy script file. Again, we’re locating the script file in the class-
path in the same package as the example code.

 Unlike the <lang:jruby> element, however, <lang:groovy> doesn’t require
(or even support) a script-interfaces attribute. That’s because there’s enough
information in the Groovy script itself to indicate what interfaces the script imple-
ments. Notice that the Groovy Lime class explicitly implements com.springinac-
tion.scripting.Lime.

Writing the Lime in BeanShell
Another scripting language supported in Spring is BeanShell. Unlike Ruby and
Groovy, which both provide their own syntax, BeanShell is a scripting language
that mimics Java’s own syntax. This makes it an appealing option if you want to
script portions of your application but do not want to have to learn another lan-
guage.

 Completing our tour of scripting languages that can be wired in Spring, here’s
a BeanShell implementation of the Lime interface:

void drink() {
 System.out.println("Called the doctor woke him up!");
}

Scripting beans 111
Probably the first thing you noticed about this BeanShell implementation of Lime
is that there isn’t a class definition—only a drink() method is defined. In Bean-
Shell scripts, you only define the methods required by the interface, but no class.

 Wiring the BeanShell lime is quite similar to wiring the Ruby lime, except that
you use the <lang:bsh> element as follows:

<lang:bsh id="lime"
 script-source="classpath:com/springinaction/scripting/Lime.bsh"
 script-interfaces="com.springinaction.scripting.Lime" />

As with all of the scripting elements, script-source indicates the location of the
script file. And, as with the <lang:jruby> element, script-interfaces specifies
the interface being defined in the script.

 Now you’ve seen how to configure a scripted bean in Spring and how to wire it
into a property of a POJO. But what if you want the injection to work the other
way? Let’s see how to inject a POJO into a scripted bean.

3.6.3 Injecting properties of scripted beans

To illustrate how to inject properties of a scripted bean, let’s flip our lime-coconut
example on its head. This time, the coconut will be a scripted bean and the lime
will be a Java-based POJO. First up, here’s the Lime class in Java:

package com.springinaction.scripting;

public class LimeImpl implements Lime {
 public LimeImpl() {}

 public void drink() {
 System.out.println("Called the doctor woke him up!");
 }
}

LimeImpl is just a simple Java class that implements the Lime interface. And here
it is configured as a bean in Spring:

<bean id="lime" class="com.springinaction.scripting.LimeImpl" />

Nothing special so far. Now let’s write the Coconut class as a script in Groovy:

class Coconut implements com.springinaction.scripting.ICoconut {
 public void drinkThemBothUp() {
 println "You put the lime in the coconut..."
 println "and drink 'em both up..."
 println "You put the lime in the coconut..."
 lime.drink()
 }

112 CHAPTER 3

Advanced bean wiring
 com.springinaction.scripting.Lime lime;
}

As with the Java version of Coconut, a few lyrics are printed and then the drink()
method is called on the lime property to finish the verse. Here the lime property
is defined as being some implementation of the Lime interface.

 Now all that’s left is to configure the scripted Coconut bean and inject it with
the lime bean:

<lang:groovy id="coconut"
 script-source="classpath:com/springinaction/scripting/
 ➥ Coconut.groovy">
 <lang:property name="lime" ref="lime" />
</lang:groovy>

Here the scripted Coconut has been declared similar to how we declared the
scripted Lime in previous sections. But along with the <lang:groovy> element is a
<lang:property> element to help us with dependency injection.

 The <lang:property> element is available for use with all of the scripted bean
elements. It is virtually identical in use to the <property> element that you
learned about in chapter 2, except that its purpose is to inject values into the
properties of scripted beans instead of into properties of POJO beans.

 In this case, the <lang:property> element is the lime property of the coconut
bean with a reference to the lime bean—which in this case is a JavaBean. You may
find it interesting, however, that you can also wire scripted beans into the proper-
ties of other scripted beans. In fact, it’s quite possible to wire a BeanShell-scripted
bean into a Groovy-scripted bean, which is then wired into a Ruby-scripted bean.
Following that thought to an extreme, it’s theoretically possible to develop an
entire Spring application using scripted languages!

3.6.4 Refreshing scripted beans

One of the key benefits of scripting certain code instead of writing it in statically
compiled Java is that it can be changed on the fly without a recompile or rede-
ployment of the application. If the Lime implementation were to be written in
Java and you decided to change the lyric that it prints, you’d have to recompile
the implementation class and then redeploy the application. But with a scripting
language, you can change the implementation at any time and have the change
applied almost immediately.

 When I say “almost immediately,” that really depends on how often you’d like
Spring to check for changes to the script. All of the scripting configuration ele-

Scripting beans 113
ments have a refresh-check-delay attribute that allows you to define how often
(in milliseconds) a script is refreshed by Spring.

 By default, refresh-check-delay is set to –1, meaning that refreshing is dis-
abled. But suppose that you’d like the Lime script refreshed every 5 seconds. The
following <lang:jruby> configuration will do just that:

<lang:jruby id="lime"
 script-source="classpath:com/springinaction/scripting/Lime.rb"
 script-interfaces="com.springinaction.scripting.Lime"
 refresh-check-delay="5000"/>

It should be pointed out that although this example is for <lang:jruby>, the
refresh-check-delay attribute works equally well with <lang:groovy> and
<lang:bsh>.

3.6.5 Writing scripted beans inline

Typically you’ll define your scripted beans in external scripting files and refer to
them using the script-source attribute of the scripting configuration elements.
However, in some cases, it may be more convenient to write the scripting code
directly in the Spring configuration file.

 To accommodate this, all of the scripting configuration elements support a
<lang:inline-script> element as a child element. For example, the following
XML defines a BeanShell-scripted Lime directly in the Spring configuration:

<lang:bsh id="lime"
 script-interfaces="com.springinaction.scripting.Lime">
 <lang:inline-script><![CDATA[
 void drink() {
 System.out.println("Called the doctor woke him up!");
 }
]]>
 </lang:inline-script>
</lang:bsh>

Instead of using script-source, this lime bean has the BeanShell code written as
the content of a <lang:inline-script> element.

 Take note of the use of <![CDATA[…]]> when writing the inline script. The
script code may contain characters or text that may be misinterpreted as XML.
The <![CDATA[…]]> construct prevents scripted code from being parsed by the
XML parser. In this example the script contains nothing that would confuse the
XML parser. Nevertheless it’s a good idea to use <![CDATA[…]]> anyway, just in
case the scripted code changes.

114 CHAPTER 3

Advanced bean wiring
 In this section, you were exposed to several Spring configuration elements that
step beyond the <bean> and <property> elements that you were introduced to in
chapter 2. These are just a few of the new configuration elements that were intro-
duced in Spring 2.0. As you progress through this book, you’ll be introduced to
even more configuration elements.

3.7 Summary

Spring’s primary function is to wire application objects together. While chapter 2
showed how to do the basic day-to-day wiring, this chapter showed the more odd-
ball wiring techniques.

 To reduce the amount of repeated XML that defines similar beans, Spring
offers the ability to declare abstract beans that describe common properties and
then “sub-bean” the abstract bean to create the actual bean definitions.

 Perhaps one of the oddest features of Spring is the ability to alter a bean’s
functionality through method injection. Using method injection, you can swap
out a bean’s existing functionality for a replaced method definition. Alternatively,
using setter injection, you can replace a getter method with a Spring-defined get-
ter method that returns a specific bean reference.

 Not all objects in an application are created or managed by Spring. To enable
DI for those objects that Spring doesn’t create, Spring provides a means to declare
objects as “Spring configured.” Spring-configured beans are intercepted by
Spring, after they are created, and configured based on a Spring bean template.

 Spring takes advantage of property editors so that even complex objects such
as URLs and arrays can be configured using String values. In this chapter you
saw how to create custom property editors to simplify configuration of complex
properties.

 Sometimes it is necessary for a bean to interact with the Spring container. For
those circumstances, Spring provides several interfaces that enable a bean to be
postprocessed, receive properties from an external configuration file, handle
application events, and even know their own name.

 Finally, for the fans of dynamically scripted languages, Spring lets you write
beans in scripted languages such as Ruby, Groovy, and BeanShell. This feature
supports dynamic behavior in an application by making it possible to hot-swap
bean definitions written in one of three different scripting languages.

Summary 115
 Now you know how to wire together objects in the Spring container and have
seen how DI helps to loosen the coupling between application objects. But DI is
only one of the ways that Spring supports loose coupling. In the next chapter, I’ll
look at how Spring’s AOP features help break out common functionality from the
application objects that it affects.

Advising beans
This chapter covers
■ Basics of aspect-oriented programming
■ Creating aspects from POJOs
■ Automatically proxying beans
■ Using @AspectJ annotations
■ Injecting dependencies into AspectJ aspects
116

117
As I’m writing this chapter, Texas (where I reside) is going through several days of
record-high temperatures. It’s really hot. In weather like this, air-conditioning is a
must. But the downside of air-conditioning is that it uses electricity and electricity
costs money. And there’s very little we can do to avoid paying for a cool and com-
fortable home. That’s because every home has a meter that measures every single
kilowatt, and once a month someone comes by to read that meter so that the elec-
tric company accurately knows how much to bill us.

 Now imagine what would happen if the meter went away and nobody came by
to measure our electricity usage. Suppose that it were up to each homeowner to
contact the electric company and report their electricity usage. Although it’s pos-
sible that some obsessive homeowners would keep careful record of their lights,
televisions, and air-conditioning, most wouldn’t bother. Most would estimate their
usage and others wouldn’t bother reporting it at all. It’s too much trouble to mon-
itor electrical usage and the temptation to not pay is too great.

 Electricity on the honor system might be great for consumers, but it would be
less than ideal for the electric companies. That’s why we all have electric meters
on our homes and why a meter-reader drops by once per month to report the
consumption to the electric company.

 Some functions of software systems are like the electric meters on our homes.
The functions need to be applied at multiple points within the application, but
it’s undesirable to explicitly call them at every point.

 Monitoring electricity consumption is an important function, but it isn’t fore-
most in most homeowners’ minds. Mowing the lawn, vacuuming the carpet, and
cleaning the bathroom are the kinds of things that homeowners are actively
involved in. Monitoring the amount of electricity used by their house is a passive
event from the homeowner’s point of view.

 In software, several activities are common to most applications. Logging, secu-
rity, and transaction management are important things to do, but should they be
activities that your application objects are actively participating in? Or would it be
better for your application objects to focus on the business domain problems
they’re designed for and leave certain aspects to be handled by someone else?

 In software development, functions that span multiple points of an application
are called cross-cutting concerns. Typically, these cross-cutting concerns are concep-
tually separate from (but often embedded directly within) the application’s busi-
ness logic. Separating these cross-cutting concerns from the business logic is
where aspect-oriented programming (AOP) goes to work.

 In chapter 2, you learned how to use dependency injection (DI) to manage
and configure your application objects. Whereas DI helps you decouple your

118 CHAPTER 4

Advising beans
application objects from each other, AOP helps you decouple cross-cutting con-
cerns from the objects that they affect.

 Logging is a common example of the application of aspects. But it isn’t the
only thing aspects are good for. Throughout this book, you’ll see several practical
applications of aspects, including declarative transactions, security, and caching.

 This chapter explores Spring’s support for aspects, including the exciting new
AOP features added in Spring 2.0. In addition, you’ll see how AspectJ—another
popular AOP implementation—can complement Spring’s AOP framework. But
first, before we get too carried away with transactions, security, and caching, let’s
see how aspects are implemented in Spring, starting with a primer on a few of
AOP’s fundamentals.

4.1 Introducing AOP

As stated earlier, aspects help to modularize cross-cutting concerns. In short, a
cross-cutting concern can be described as any functionality that affects multiple
points of an application. Security, for example, is a cross-cutting concern in that
many methods in an application can have security rules applied to them.
Figure 4.1 gives a visual depiction of cross-cutting concerns.

 Figure 4.1 represents a typical application that is broken down into modules.
Each module’s main concern is to provide services for its particular domain. How-
ever, each of these modules also requires similar ancillary functionalities, such as
security and transaction management.

 A common object-oriented technique for reusing common functionality is to
apply inheritance or delegation. But inheritance can lead to a brittle object
hierarchy if the same base class is used throughout an application, and
delegation can be cumbersome because complicated calls to the delegate object
may be required.

CourseService

StudentService

MiscService

S
ecurity

Transactions

O
ther

Figure 4.1
Aspects modularize cross-
cutting concerns, applying
logic that spans multiple
application objects.

Introducing AOP 119
 Aspects offer an alternative to inheritance and delegation that can be cleaner
in many circumstances. With AOP, you still define the common functionality in
one place, but you can declaratively define how and where this functionality is
applied without having to modify the class to which you are applying the new fea-
ture. Cross-cutting concerns can now be modularized into special objects called
aspects. This has two benefits. First, the logic for each concern is now in one place,
as opposed to being scattered all over the code base. Second, our service modules
are now cleaner since they only contain code for their primary concern (or core
functionality) and secondary concerns have been moved to aspects.

4.1.1 Defining AOP terminology

Like most technologies, AOP has formed its own jargon. Aspects are often
described in terms of advice, pointcuts, and joinpoints. Figure 4.2 illustrates how
these concepts are tied together.

 Unfortunately, many of the terms used to describe AOP features are not intui-
tive. Nevertheless, they are now part of the AOP idiom, and in order to under-
stand AOP, you must know these terms. In other words, before you walk the walk,
you have to learn to talk the talk.

Advice
When a meter-reader shows up at your house, their purpose is to report the num-
ber of kilowatt-hours back to the electric company. Sure, they have a list of houses
that they must visit and the information that they report is important. But the
actual act of recording electricity usage is the meter-reader’s main job.

 Likewise, aspects have a purpose—a job that they are meant to do. In AOP
terms, the job of an aspect is called advice.

 Advice defines both the what and the when of an aspect. In addition to describ-
ing the job that an aspect will perform, advice addresses the question of when to

Joinpoints

P
ointcut

Advice

Program Execution

Figure 4.2
An aspect’s functionality (advice) is
woven into a program’s execution at one
or more joinpoints.

120 CHAPTER 4

Advising beans
perform the job. Should it be applied before a method is invoked? After the
method is invoked? Both before and after method invocation? Or should it only
be applied if a method throws an exception?

Joinpoint
An electric company services several houses, perhaps even an entire city. Each
house will have an electric meter that needs to be read and thus each house is a
potential target for the meter-reader. The meter-reader could potentially read all
kinds of devices, but to do his job, he needs to target electric meters that are
attached to houses.

 In the same way, your application may have thousands of opportunities for
advice to be applied. These opportunities are known as joinpoints. A joinpoint is a
point in the execution of the application where an aspect can be plugged in. This
point could be a method being called, an exception being thrown, or even a field
being modified. These are the points where your aspect’s code can be inserted
into the normal flow of your application to add new behavior.

Pointcut
It’s not possible for any one meter-reader to visit all houses serviced by the electric
company. Instead, they are assigned a subset of all of the houses to visit. Likewise,
an aspect doesn’t necessarily advise all joinpoints in an application. Pointcuts help
narrow down the joinpoints advised by an aspect.

 If advice defines the what and when of aspects then pointcuts define the where.
A pointcut definition matches one or more joinpoints at which advice should be
woven. Often you specify these pointcuts using explicit class and method names
or through regular expressions that define matching class and method name pat-
terns. Some AOP frameworks allow you to create dynamic pointcuts that deter-
mine whether to apply advice based on runtime decisions, such as the value of
method parameters.

Aspect
When a meter-reader starts his day, he knows both what he is supposed to do
(report electricity usage) and which houses to collect that information from. Thus
he knows everything he needs to know to get his job done.

 An aspect is the merger of advice and pointcuts. Taken together, advice and
pointcuts define everything there is to know about an aspect—what it does and
where and when it does it.

Introducing AOP 121
Introduction
An introduction allows you to add new methods or attributes to existing classes
(kind of mind-blowing, huh?). For example, you could create an Auditable
advice class that keeps the state of when an object was last modified. This could be
as simple as having one method, setLastModified(Date), and an instance vari-
able to hold this state. The new method and instance variable can then be intro-
duced to existing classes without having to change them, giving them new
behavior and state.

Target
A target is the object that is being advised. This can be either an object you write or
a third-party object to which you want to add custom behavior. Without AOP, this
object would have to contain its primary logic plus the logic for any cross-cutting
concerns. With AOP, the target object is free to focus on its primary concern,
oblivious to any advice being applied.

Proxy
A proxy is the object created after applying advice to the target object. As far as the
client objects are concerned, the target object (pre-AOP) and the proxy object
(post-AOP) are the same—as they should be. That is, the rest of your application
will not have to change to support the proxy object.

Weaving
Weaving is the process of applying aspects to a target object to create a new, prox-
ied object. The aspects are woven into the target object at the specified joinpoints.
The weaving can take place at several points in the target object’s lifetime:

■ Compile time—Aspects are woven in when the target class is compiled. This
requires a special compiler. AspectJ’s weaving compiler weaves aspects this
way.

■ Classload time—Aspects are woven in when the target class is loaded into the
JVM. This requires a special ClassLoader that enhances that target class’s
bytecode before the class is introduced into the application. AspectJ 5’s
load-time weaving (LTW) support weaves aspects in this way.

■ Runtime—Aspects are woven in sometime during the execution of the appli-
cation. Typically, an AOP container will dynamically generate a proxy object
that will delegate to the target object while weaving in the aspects. This is
how Spring AOP aspects are woven.

122 CHAPTER 4

Advising beans
That’s a lot of new terms to get to know. Revisiting figure 4.2, you can now under-
stand that advice contains the cross-cutting behavior that needs to be applied to
an application’s objects. The joinpoints are all the points within the execution
flow of the application that are candidates to have advice applied. The pointcut
defines where (at what joinpoints) that advice is applied. The key concept you
should take from this? Pointcuts define which joinpoints get advised.

 Now that you’re familiar with some basic AOP terminology, let’s see how these
core AOP concepts are implemented in Spring.

4.1.2 Spring’s AOP support

Not all AOP frameworks are created equal. They may differ in how rich of a join-
point model they offer. Some allow you to apply advice at the field modification
level, while others only expose the joinpoints related to method invocations. They
may also differ in how and when they weave the aspects. Whatever the case, the
ability to create pointcuts that define the joinpoints at which aspects should be
woven is what makes it an AOP framework.

 Much has changed in the AOP framework landscape in the past few years.
There has been some housecleaning among the AOP frameworks, resulting in
some frameworks merging and others going extinct. In 2005, the AspectWerkz
project merged with AspectJ, marking the last significant activity in the AOP world
and leaving us with three dominant AOP frameworks:

■ AspectJ (http://eclipse.org/aspectj)

■ JBoss AOP (http://labs.jboss.com/portal/jbossaop/index.html)

■ Spring AOP (http://www.springframework.org)

Since this is a Spring book, we will, of course, focus on Spring AOP. Even so,
there’s a lot of synergy between the Spring and AspectJ projects, and the AOP sup-
port in Spring 2.0 borrows a lot from the AspectJ project. In fact, the
<aop:spring-configured /> configuration element described in chapter 3 (see
section 3.3) takes advantage of AspectJ’s support for constructor pointcuts and
load-time weaving.

 Spring’s support for AOP comes in four flavors:

■ Classic Spring proxy-based AOP (available in all versions of Spring)

■ @AspectJ annotation-driven aspects (only available in Spring 2.0)

■ Pure-POJO aspects (only available in Spring 2.0)

■ Injected AspectJ aspects (available in all versions of Spring)

Introducing AOP 123
The first three items are all variations on Spring’s proxy-based AOP. Consequently,
Spring’s AOP support is limited to method interception. If your AOP needs exceed
simple method interception (constructor or property interception, for example),
you’ll want to consider implementing aspects in AspectJ, perhaps taking advan-
tage of Spring DI to inject Spring beans into AspectJ aspects.

 I’ll talk about AspectJ and how it fits into Spring a little later in this chapter (in
sections 4.3.2 and 4.5). Because Spring’s AOP support is proxy based, that will be
the focus of most of this chapter. But before we get started, it’s important to
understand a few key points of Spring’s AOP framework.

Spring advice is written in Java
All of the advice you create within Spring will be written in a standard Java class.
That way, you will get the benefit of developing your aspects in the same inte-
grated development environment (IDE) you would use for your normal Java devel-
opment. What’s more, the pointcuts that define where advice should be applied
are typically written in XML in your Spring configuration file. This means both the
aspect’s code and configuration syntax will be familiar to Java developers.

 Contrast this with AspectJ, which is implemented as a language extension to
Java. There are benefits and drawbacks to this approach. By having an AOP-
specific language, you get more power and fine-grained control, as well as a richer
AOP toolset. However, you are required to learn a new tool and syntax to accom-
plish this.

Spring advises objects at runtime
In Spring, aspects are woven into Spring-managed beans at runtime by wrapping
them with a proxy class. As illustrated in figure 4.3, the proxy class poses as the tar-
get bean, intercepting advised method calls and forwarding those calls to the tar-
get bean.

Proxy

TargetCaller
Figure 4.3
Spring aspects are implemented as
proxies that wrap the target object.
The proxy handles method calls,
performs additional aspect logic,
and then invokes the target method.

124 CHAPTER 4

Advising beans
 Between the time that the proxy intercepts the method call and the time it
invokes the target bean’s method, the proxy performs the aspect logic.

 Spring does not create a proxied object until that proxied bean is needed by
the application. If you are using an ApplicationContext, the proxied objects will
be created when it loads all of the beans from the BeanFactory. Because Spring
creates proxies at runtime, you do not need a special compiler to weave aspects in
Spring’s AOP.

 Spring generates proxied classes in two ways. If your target object implements
an interface(s) that exposes the required methods, Spring will use the JDK’s
java.lang.reflect.Proxy class. This class allows Spring to dynamically generate
a new class that implements the necessary interfaces, weave in any advice, and
proxy any calls to these interfaces to your target class.

 If your target class does not implement an interface, Spring uses the CGLIB
library to generate a subclass to your target class. When creating this subclass,
Spring weaves in advice and delegates calls to the subclass to your target class.
There are two important things to take note of when using this approach:

■ Creating a proxy with interfaces is favored over proxying classes, since this
leads to a more loosely coupled application. The ability to proxy classes is
provided so that legacy or third-party classes that do not implement inter-
faces can still be advised. This approach should be taken as the exception,
not the rule.

■ Methods marked as final cannot be advised. Remember, Spring generates
a subclass to your target class. Any method that needs to be advised is over-
ridden and advice is woven in. This is not possible with final methods.

Spring only supports method joinpoints
As mentioned earlier, multiple joinpoint models are available through various
AOP implementations. Because it is based on dynamic proxies, Spring only sup-
ports method joinpoints. This is in contrast to some other AOP frameworks, such
as AspectJ and JBoss, which provide field and constructor joinpoints in addition to
method pointcuts. Spring’s lack of field pointcuts prevents you from creating very
fine-grained advice, such as intercepting updates to an object’s field. And without
constructor pointcuts, there’s no way to apply advice when a bean is instantiated.

 However, as Spring focuses on providing a framework for implementing J2EE
services, method interception should suit most, if not all, of your needs. If you
find yourself in need of more than method interception, you’ll want to comple-
ment Spring AOP with AspectJ.

Creating classic Spring aspects 125
 Now you have a general idea of what AOP does and how it is supported by
Spring. It’s time to get our hands dirty creating aspects in Spring.

4.2 Creating classic Spring aspects

In chapter 2, we demonstrated dependency injection by putting on a talent show
called Spring Idol. In that example, we wired up several performers as <bean>s to
show their stuff. It was all greatly amusing. But a show like that needs an audience
or else there’s little point in it.

 Therefore, we’re now going to provide an audience for the talent show. The
Audience class in listing 4.1 defines the functions of an audience.

package com.springinaction.springidol;

public class Audience {
 public Audience() {}

 public void takeSeats() {
 System.out.println("The audience is taking their seats.");
 }

 public void turnOffCellPhones() {
 System.out.println("The audience is turning off " +
 "their cellphones");
 }

 public void applaud() {
 System.out.println("CLAP CLAP CLAP CLAP CLAP");
 }

 public void demandRefund() {
 System.out.println("Boo! We want our money back!");
 }
}

There’s nothing particularly special about the Audience class. In fact, it’s just a
simple POJO. Nonetheless, this class will provide the basis for many of the exam-
ples in this chapter. It can be wired as Spring <bean> with the following XML:

<bean id="audience"
 class="com.springinaction.springidol.Audience" />

Taking a closer look at the Audience class, you can see that it defines four differ-
ent things that an Audience can do:

Listing 4.1 Defining an audience for the Spring Idol competition

Executes before
performance

Executes after
performance

Executes after
bad performance

126 CHAPTER 4

Advising beans
■ They can take their seats.
■ They can courteously turn off their cell phones.
■ They can give a round of applause.
■ They can demand a refund.

Although these functions clearly define an Audience’s behavior, it’s not clear
when each method will be called. What we’d like is for the Audience to take
their seats and turn off their cell phones prior to the performance, to applaud
when the performance is good, and to demand a refund when the perfor-
mance goes bad.

 One option would be for us to inject an Audience into each performer and to
change the perform() method to call the Audience’s methods. For example, con-
sider an updated version of Instrumentalist in listing 4.2.

package com.springinaction.springidol;

public class Instrumentalist implements Performer {
 public Instrumentalist() {}

 public void perform() throws PerformanceException {
 audience.takeSeats();
 audience.turnOffCellPhones();

 try {
 System.out.print("Playing " + song + " : ");
 instrument.play();

 audience.applaud();
 } catch (Throwable e) {
 audience.demandRefund();
 }
 }

 private String song;
 public void setSong(String song) {
 this.song = song;
 }

 private Instrument instrument;
 public void setInstrument(Instrument instrument) {
 this.instrument = instrument;
 }

 private Audience audience;
 public void setAudience(Audience audience) {
 this.audience = audience;
 }
}

Listing 4.2 An instrumentalist that tells its audience how to respond

Manipulates
Audience

Injects
Audience

Creating classic Spring aspects 127
This would certainly work, but doesn’t it seem odd that the Instrumentalist has
to tell its Audience what to do? The performer’s job is to give a performance, not
to prompt its audience to respond to the performance. The audience’s job is to
respond to that performance on its own, without being prompted to do so.

 Another caveat to this approach is that every performer will need to be
injected with an Audience and will need to call the Audience’s methods. As a
result, the various implementations of Performer are dependent and coupled to
the Audience class. This would mean that a performer couldn’t perform without
an audience. So much for singing in the shower!

 The most notable thing about injecting an audience into a performer is that
the performer is completely responsible for asking the audience to applaud. In
real life, this would be like a performer holding up an “Applaud!” sign. But when
you think about it, the performer should focus on performing and not concern
himself with whether or not the audience applauds. The audience should react to
the performer’s performance… not be prodded by the performer.

 In other words, the audience is a cross-cutting concern relative to the per-
former. Since cross-cutting concerns are the province of aspects, perhaps we
should define the audience as an aspect. And that’s precisely what we’re going to
do. Let’s start by defining some advice.

4.2.1 Creating advice

As mentioned earlier in this chapter, advice defines what an aspect does and when
it does it. In Spring AOP, there are five types of advice, each defined by an inter-
face (see table 4.1).

 Notice that all of these interfaces are part of the Spring Framework, except for
MethodInterceptor. When defining around advice, Spring takes advantage of a

Table 4.1 Spring AOP advice comes in five forms that let you choose when advice is executed relative
to a joinpoint.

Advice type Interface

Before org.springframework.aop.MethodBeforeAdvice

After-returning org.springframework.aop.AfterReturningAdvice

After-throwing org.springframework.aop.ThrowsAdvice

Around org.aopalliance.intercept.MethodInterceptor

Introduction org.springframework.aop.IntroductionInterceptor

128 CHAPTER 4

Advising beans
suitable interface that is already provided by the AOP Alliance, an open source
project whose goal is to facilitate and standardize AOP. You can read more about
the AOP Alliance on their website at http://aopalliance.sourceforge.net.

 When you think about what an audience is expected to do and match it up
against the advice types in table 4.1, it seems clear that taking their seats and turn-
ing off their cell phones is best performed as before advice. Likewise, applause is
an after-returning advice. And after-throwing is an appropriate advice for
demanding a refund.

 AudienceAdvice (listing 4.3) is a class that implements three of the five advice
interfaces from table 4.1 to define the advice applied by an audience. (We’ll talk
about the other advice types a little later in this chapter.)

package com.springinaction.springidol;
import java.lang.reflect.Method;
import org.springframework.aop.AfterReturningAdvice;
import org.springframework.aop.MethodBeforeAdvice;
import org.springframework.aop.ThrowsAdvice;

public class AudienceAdvice implements
 MethodBeforeAdvice,
 AfterReturningAdvice,
 ThrowsAdvice {

 public AudienceAdvice() {}

 public void before(Method method, Object[] args, Object target)
 throws Throwable {
 audience.takeSeats();
 audience.turnOffCellPhones();
 }

 public void afterReturning(Object returnValue, Method method,
 Object[] args, Object target) throws Throwable {
 audience.applaud();
 }

 public void afterThrowing(Throwable throwable) {
 audience.demandRefund();
 }

 private Audience audience;
 public void setAudience(Audience audience) {
 this.audience = audience;
 }
}

Listing 4.3 Advice that defines how an audience’s functionality is applied

Implements three
types of advice

Invokes before
method

Executes after successful return

Executes after
exception thrown

Creating classic Spring aspects 129
There’s a lot going on in listing 4.3, but one thing to take notice of is that Audi-
enceAdvice has an Audience as a dependency. Therefore, we’ll need to declare
the AudienceAdvice in Spring as follows:

<bean id="audienceAdvice"
 class="com.springinaction.springidol.AudienceAdvice">
 <property name="audience" ref="audience" />
</bean>

AudienceAdvice is a single class that implements three different types of AOP
advice. Let’s break it down one advice type at a time, starting with before advice.

Before advice
We want our audience to take their seats and turn off their cell phones prior to a
performance. Therefore, AudienceAdvice provides before advice by implement-
ing the MethodBeforeAdvice interface. This interface requires that a before()
method be implemented:

public void before(Method method, Object[] args, Object target)
 throws Throwable {
 audience.takeSeats();
 audience.turnOffCellPhones();
}

The before() method takes three parameters. The first parameter is a
java.lang.reflect.Method object that represents the method to which the
advice is being applied. The second parameter is an array of Objects that are the
arguments that were passed to the method when the method was called. The final
parameter is the target of the method invocation (i.e., the object on which the
method was called).

 If you’re familiar with Java’s dynamic proxy support that was introduced in Java
1.3, these parameters may seem familiar. They are nearly the same parameters
that are given to the invoke() method of java.lang.reflect.InvocationHan-
dler.

 These parameters are available to you if your advice needs them. In this case,
however, they’re ignored, as their values have no bearing on the functionality of
the audience.

After returning advice
If a performance goes well (i.e., if no exceptions are thrown), we’d like the
audience to graciously applaud. We know that a performance is successful if the
perform() method returns. Therefore, AudienceAdvice implements After-

130 CHAPTER 4

Advising beans
ReturningAdvice to applaud a good performance. AfterReturningAdvice

requires that an afterReturning() method be implemented:

public void afterReturning(Object returnValue, Method method,
 Object[] args, Object target) throws Throwable {
 audience.applaud();
}

You’ll notice that the parameters to the afterReturning() method aren’t much
different than the parameters to the before() method of MethodBeforeAdvice.
The only difference is that an additional parameter has been added as the first
parameter. This parameter holds the value that was returned from the invoked
method.

 Again, as with before(), the parameters are irrelevant to the audience and are
thus ignored.

After throwing advice
People paid good money to be in the audience to see these performances. If any-
thing goes wrong, they’re going to want their money back. Therefore, if the per-
form() method fails for any reason—that is, if the method throws an exception—
the audience will demand their money back. To accommodate after throwing
advice, the AudienceAdvice class implements the ThrowsAdvice interface.

 Unlike MethodBeforeAdvice and AfterReturningAdvice, however, ThrowsAd-
vice doesn’t require that any method be implemented. ThrowsAdvice is only a
marker interface that tells Spring that the advice may wish to handle a thrown
exception.

 An implementation of ThrowsAdvice may implement one or more after-
Throwing() methods whose signatures take the following form:

public void afterThrowing([method], [args], [target], throwable);

All of the parameters of afterThrowing() are optional except for the one that is a
Throwable type. It is this parameter that tells Spring which exceptions should be
handled by the advice. For example, suppose we want to write a log entry every
time that a NullPointerException is thrown. The following afterThrowing()
method handles that task:

public void afterThrowing(Method method, Object[] args,
 Object target, NullPointerException e) {
 LOGGER.error("NPE thrown from " + method.getName());
}

Creating classic Spring aspects 131
In the case of AudienceAdvice, only one afterThrowing() method is defined:

public void afterThrowing(Throwable throwable) {
 audience.demandRefund();
}

This indicates that we want the audience to demand a refund if any Exception is
thrown from the perform() method. Furthermore, since the invocation target,
method, and arguments are unimportant to the audience, the parameters are left
out of the method signature.

 With the audience advice class defined, we’re ready to associate the advice with
a pointcut to create a complete aspect. But first, let’s look at how the same advice
could have been implemented as an around advice.

Around advice
Around advice is effectively before, after-returning, and after-throwing advice all
rolled into one. In Spring, around advice is defined by the AOP Alliance’s Method-
Interceptor interface. In our example, the AudienceAdvice class could be
rewritten as around advice, as shown in listing 4.4. This new AudienceAroundAd-
vice class is equivalent to AudienceAdvice, but is implemented as around advice.

package com.springinaction.springidol;
import org.aopalliance.intercept.MethodInterceptor;
import org.aopalliance.intercept.MethodInvocation;

public class AudienceAroundAdvice
 implements MethodInterceptor {
 public Object invoke(MethodInvocation invocation)
 throws Throwable {

 try {
 audience.takeSeats();
 audience.turnOffCellPhones();

 Object returnValue = invocation.proceed();

 audience.applaud();

 return returnValue;
 } catch (PerformanceException throwable) {
 audience.demandRefund();

 throw throwable;
 }

 }

 // injected

Listing 4.4 Defining audience advice as around advice

Implements MethodInterceptor

Executes before
method call

Calls target
method

Executes after
successful return

Executes after
exception thrown

132 CHAPTER 4

Advising beans
 private Audience audience;
 public void setAudience(Audience audience) {
 this.audience = audience;
 }
}

The MethodInterceptor interface requires that only an invoke() method be
implemented. In the case of AudienceAroundAdvice, the invoke() method
instructs the audience to take their seats and turn off their cell phones. Next it
calls proceed() on the method invocation to cause the advised method to be
invoked. If a PerformanceException is caught from calling invocation.pro-
ceed(), the audience will demand a refund. Otherwise, the audience will applaud.

 The nice thing about writing around advice is that you can succinctly define
before and after advice in one method. If you have advice that will be applied
both before and after a method, you may find around advice preferable to imple-
menting the individual interface for each advice type. It’s less beneficial, however,
if you only need before advice or after advice (but not both).

 Around advice also offers you the opportunity to inspect and alter the value
returned from the advised method. This makes it possible to write advice that per-
forms some postprocessing on a method’s return value before returning the value
to the caller. AfterReturningAdvice only allows you to inspect the returned
value—you can’t change it.

 But around advice has one minor gotcha: you must remember to call pro-
ceed(). Failure to call proceed() will result in the advice being applied but the
target method never being executed. But then again, that may be what you
want. Perhaps you’d like to prevent execution of a method under certain condi-
tions. Compare that to MethodBeforeAdvice, where you can inspect the method
and its parameters prior to invocation but you can’t stop the method from
being invoked (short of throwing an exception, breaking the execution chain).

 At this point, we’ve seen several ways to create advice that defines both the
what and the when of aspects. But if you take a close look at either AudienceAdvice
or AudienceAroundAdvice, you won’t find any clues as to what methods those
advices will be applied to. That brings us to the topic of pointcuts to define the
where characteristic of aspects.

4.2.2 Defining pointcuts and advisors

So far we have only discussed how to create AOP advice. This is not very useful if we
cannot expressively define where this advice should be applied in our application.

Creating classic Spring aspects 133
This is where pointcuts come in. Recall that joinpoints are the points within appli-
cation code where aspect advice could be woven in. Pointcuts are a way of selecting
a subset of all possible joinpoints where advice should be woven, as illustrated in
figure 4.4.

 Spring comes with several different types of pointcuts to choose from. Two of
the most useful pointcuts are regular expression pointcuts and AspectJ expression
pointcuts. Let’s look at regular expression pointcuts first.

Declaring a regular expression pointcut
The main purpose of a pointcut is to choose which method(s) that advice will be
applied to, usually by matching a method signature against some pattern. If
you’re a fan of regular expressions, you may want to use a regular expression
pointcut to match the method signature.

 Spring comes with two classes that implement regular expression pointcuts:

■ org.springframework.aop.support.Perl5RegexpMethodPointcut—Use-
ful when an application will be running in a pre-Java 1.4 environment.
Requires Jakarta ORO.

■ org.springframework.aop.support.JdkRegexpMethodPointcut—Best
choice when running in Java 1.4 or higher. Does not require Jakarta ORO.

Since we’ll be targeting a Java 1.5 runtime, we’re going to define the pointcut
using JdkRegexpMethodPointcut as follows:

public class AccountService {
 public void transferFunds() {..}
 public void withdraw() {..}

 public void deposit() {..}

 public void transferBalance() {..}
 public void closeAccount() {..}
}

Joinpoints

Pointcut
"execution(

* AccountService.transfer*(..))"

Figure 4.4 Pointcuts select one or more joinpoints where advice should be applied by an aspect. In this
case, all methods that perform a transfer operation are singled out by the pointcut.

134 CHAPTER 4

Advising beans
<bean id="performancePointcut"
 class="org.springframework.aop.support.JdkRegexpMethodPointcut">
 <property name="pattern" value=".*perform" />
</bean>

The pattern property is used to specify the pointcut pattern used in method
matching. Here the pattern property has been set to a regular expression that
should match any method called perform() on any class.

 Once you have defined a pointcut, you’ll need to associate it with advice. The
following <bean> associates the regular expression pointcut we just defined with
the audience advice defined in the previous section:

<bean id="audienceAdvisor"
 class="org.springframework.aop.support.DefaultPointcutAdvisor">
 <property name="advice" ref="audienceAdvice" />
 <property name="pointcut" ref="performancePointcut" />
</bean>

DefaultPointcutAdvisor is an advisor class that simply associates advice with a
pointcut. Here the advice property has been set to reference the audienceAd-
vice bean from the previous section. Meanwhile, the pointcut property refer-
ences the performancePointcut bean, which is our pointcut that matches the
perform() method.

Combining a pointcut with an advisor
Although the audienceAdvisor bean completely defines an aspect by associating
a pointcut with advice, there’s a slightly terser way to define an advisor with a reg-
ular expression pointcut.

 RegexpMethodPointcutAdvisor is a special advisor class that lets you define
both a pointcut and an advisor in a single bean. To illustrate, consider the follow-
ing <bean> declaration:

<bean id="audienceAdvisor"
 class="org.springframework.aop.support.
 ➥ RegexpMethodPointcutAdvisor">
 <property name="advice" ref="audienceAdvice" />
 <property name="pattern" value=".*perform" />
</bean>

This single <bean> does the work of two beans. It is effectively equivalent to both
the performancePointcut bean and the previously defined audienceAdvisor
bean.

Creating classic Spring aspects 135
Defining AspectJ pointcuts
Although regular expressions work fine as a pointcut definition language, their
purpose is for general-purpose text parsing—they weren’t created with pointcuts
in mind. Contrast them with how pointcuts are defined in AspectJ and you’ll find
that AspectJ’s pointcut language is a true pointcut expression language.

 If you’d prefer to use AspectJ-style expressions when defining your Spring
pointcuts, you’ll want to use AspectJExpressionPointcut instead of JdkRegexp-
MethodPointcut. The following <bean> declares the performance pointcut using
an AspectJ pointcut expression:

<bean id="performancePointcut"
 class="org.springframework.aop.aspectj.
 ➥ AspectJExpressionPointcut">
 <property name="expression" value="execution(* Performer+.perform(..))" />
</bean>

The pointcut expression is defined as a value of the expression property. In this
case, we’re indicating that the pointcut should trigger advice when any perform()
method taking any arguments is executed on a Performer, returning any type.
Figure 4.5 summarizes the AspectJ expression used.

 To associate the AspectJ expression pointcut with the audience advice, you
could use DefaultPointcutAdvisor, just as with regular expression pointcut. But
just as with regular expression pointcuts, you can also simplify how pointcuts and
advice are tied together by using a special advisor that lets you define the point-
cut expression as a property of the advisor. For AspectJ pointcut expressions, the
advisor class to use is AspectJExpressionPointcutAdvisor. The following
<bean> applies the audience advice to the perform() method using an AspectJ
pointcut expression:

<bean id="audienceAdvisor"
 class="org.springframework.aop.aspectj.
 ➥ AspectJExpressionPointcutAdvisor">
 <property name="advice" ref="audienceAdvice" />
 <property name="expression" value="execution(* *.perform(..))" />
</bean>

execution(* *.perform(..))

When the method
is executed

On any class

With any
return type

The perform()
method

With any set
of parameters

Figure 4.5
Spring AOP uses AspectJ-style pointcuts to
select places to apply advice. This pointcut
specifies that advice should be applied on any
method named “perform” on any class with
any number of arguments.

136 CHAPTER 4

Advising beans
The advice property references the advice being applied—here it’s the audi-
enceAdvice bean from earlier. The expression property is where the AspectJ
pointcut expression is set.

 In Spring AOP, advisors completely define an aspect by associating advice
with a pointcut. But aspects in Spring are proxied. Whether you use regular
expression pointcuts or AspectJ pointcuts, you’ll still need to proxy your target
beans for the advisors to take effect. For that, you’ll need to declare one or more
ProxyFactoryBeans.

4.2.3 Using ProxyFactoryBean

As you may recall from chapter 2, one of the performers in the Spring Idol compe-
tition is the juggling poet named Duke. As a quick reminder, here’s how Duke is
declared as a <bean> in Spring:

<bean id="dukeTarget"
 class="com.springinaction.springidol.PoeticJuggler"
 autowire="constructor">
 <constructor-arg ref="sonnet29" />
</bean>

If you’re paying close attention, you’ve probably noticed one small change that
was made to this <bean> declaration. The id attribute has changed from duke to
dukeTarget. We’ll explain why this has been done in a moment. But for now we
wanted to draw your attention to this new id.

 For a bean to be advised by an advisor, it must be proxied. Spring’s ProxyFac-
toryBean is a factory bean that produces a proxy that applies one or more inter-
ceptors (and advisors) to a bean. The following <bean> definition creates a proxy
for the duke bean:

<bean id="duke"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="target" ref="dukeTarget" />
 <property name="interceptorNames" value="audienceAdvisor" />
 <property name="proxyInterfaces"
 value="com.springinaction.springidol.Performer" />
</bean>

The most notable thing about this bean is that its id is duke. But hold on—won’t
that mean that when the Spring container is asked for a bean named duke it will
be the proxy and not the PoeticJuggler that is returned? That’s absolutely right.
In fact, that’s elemental to how Spring AOP works. As depicted in figure 4.6, when
you invoke a method on an advised bean, you are actually invoking a method on

Creating classic Spring aspects 137
the proxy. The proxy will use the pointcut to decide whether advice should be
applied (or not), and then it invokes the advised bean itself.

 Because the ProxyFactoryBean has been given the id of the advised bean
(duke), the advised bean will need to be given a new id. That’s why we renamed
the actual PoeticJuggler bean as dukeTarget. And it’s the dukeTarget bean that
is referenced by the target property of ProxyFactoryBean. Put simply, this prop-
erty tells ProxyFactoryBean which bean it will be proxying.

 The interceptorNames property tells ProxyFactoryBean which advisors to
apply to the proxied bean. This property takes an array of Strings, of which each
member is the name of an interceptor/advisor bean in the Spring context. In our
case, we only want to apply a single advisor, so we provide a single value of audi-
enceAdvisor (don’t worry; Spring will automatically turn that value into a single
member array). However, we could have just as easily set that property explicitly as
an array using the following XML:

<property name="interceptorNames">
 <list>
 <value>audienceAdvisor</value>
 </list>
</property>

The final property set on ProxyFactoryBean is proxyInterfaces. ProxyFactory-
Bean produces a Java dynamic proxy that advises the target bean, but you’ll still
need a way to invoke methods on that proxy. The proxyInterfaces property tells

Caller

 audienceAdvisor

 dukeTarget
PoeticJuggler

perform()

 duke
Proxy

Figure 4.6 When the perform() method is called on the PoeticJuggler, the
call is intercepted by the proxy and execution is given to the audienceAdvisor
bean before the actual perform() method is executed.

138 CHAPTER 4

Advising beans
ProxyFactoryBean which interface(s) the proxy should implement. As with the
interceptorNames property, this property is an array property—actually, an array
of java.lang.Class. But we specified the value as a single String value. Fortu-
nately, Spring is smart enough (using the ClassEditor property editor from
table 3.1) to translate that single String value into a single-member Class array.

Abstracting ProxyFactoryBean
So far we’ve only proxied Duke. This means that the audience will only attend
Duke’s performance. If we want the audience to take their seats, turn off their cell
phones, and applaud for our other performers, then we’ll need to proxy the
other performers as well.

 To that end, here’s Stevie, proxied with the audience advisor:

<bean id="stevie"
 class="org.springframework.aop.framework.ProxyFactoryBean">
 <property name="target" ref="stevieTarget" />
 <property name="proxyInterfaces"
 value="com.springinaction.springidol.Performer" />
 <property name="interceptorNames" value="audienceAdvisor" />
</bean>

Now the audience will watch Stevie’s performance as well as Duke’s. But wait a
minute—do we have to write all of this XML for each and every bean that we want
to proxy? The proxyInterfaces property will be the same for all performers. And
the interceptorNames property will be the same. It seems a bit too much to have
to repeat this information for all of our performers when the only thing that will
be different will be the target property.

 It’s often the case that an aspect will be applied to multiple beans in your appli-
cation. In fact, that’s why aspects are said to handle cross-cutting concerns—
because an aspect’s concern cuts across multiple objects. Although you could
write the same ProxyFactoryBean declaration for all of the beans to be advised,
there’s a better way that cuts down on the amount of redundant XML.

 The trick is to declare a single ProxyFactoryBean as an abstract bean, then
reuse that declaration as a parent for each of the advised beans. For example,
audienceProxyBase declares an abstract bean with the common proxyInter-
faces and interceptorNames properties set:

<bean id="audienceProxyBase"
 class="org.springframework.aop.framework.ProxyFactoryBean"
 abstract="true">
 <property name="proxyInterfaces"
 value="com.springinaction.springidol.Performer" />
 <property name="interceptorNames" value="audienceAdvisor" />
</bean>

Autoproxying 139
The audienceProxyBase bean has its abstract attribute set to true, indicating
that it is an abstract bean and that Spring shouldn’t try to instantiate it directly.
Instead, this bean will serve as the basis for the other performer beans. Here are
the new, terser, declarations of stevie and duke, which use the parent attribute
to extend the audienceProxyBase bean:

<bean id="stevie" parent="audienceProxyBase">
 <property name="target" ref="stevieTarget" />
</bean>

<bean id="duke" parent="audienceProxyBase">
 <property name="target" ref="dukeTarget" />
</bean>

That’s much more succinct, isn’t it? In this form, only the variant target property
is declared. The common properties are inherited from the parent bean.

 Using abstract beans to define a parent for all of your advised beans is a great
way to cut down on the amount of XML in your Spring configuration. However,
there’s still more that you can do to reduce the amount of XML required to proxy
beans with advisors. Coming up next, you’ll learn how to eliminate the need for
ProxyFactoryBean and have Spring automatically proxy beans to be advised.

4.3 Autoproxying

One thing that may have struck you as odd from the previous section is that we
had to rename our bean to dukeTarget and then give the ProxyFactoryBean an
id of duke. This left us with a strange arrangement of beans: the bean that actually
represents Duke is named dukeTarget, while the bean named duke is really a
ProxyFactoryBean with the purpose of proxying the real Duke with an audience.

 If you found that unclear, don’t feel too bad. It’s a confusing concept that baf-
fles most programmers who are just getting their feet wet with Spring AOP.

 In addition to confusion, ProxyFactoryBean also lends to the verbosity in the
Spring configuration file. Even if you define an abstract ProxyFactoryBean, you
will still need declare two beans for each bean that is advised: the target bean and
the proxy bean. It would be so much nicer if we could simply declare the advisor
once and let Spring automatically create proxies for beans whose methods match
the advisor’s pointcut.

 Good news! Spring provides support for automatic proxying of beans. Auto-
proxying provides a more complete AOP implementation by letting an aspect’s
pointcut definition decide which beans need to be proxied, rather than requiring
you to explicitly create proxies for specific beans.

140 CHAPTER 4

Advising beans
 Actually, there are two ways to autoproxy beans:

■ Basic autoproxying of beans based on advisor beans declared in the Spring context—
The advisor’s pointcut expression is used to determine which beans and
which methods will be proxied.

■ Autoproxying based on @AspectJ annotation-driven aspects—The pointcut speci-
fied on the advice contained within the aspect will be used to choose which
beans and methods will be proxied.

Using either of these autoproxying strategies can eliminate ProxyFactoryBean
from your Spring context XML file. The former approach to autoproxying uses
the advisors we’ve already created up to this point in Spring. Let’s start by looking
at this basic autoproxy mechanism.

4.3.1 Creating autoproxies for Spring aspects

If you take a look at the audienceAdvisor bean declared in section 4.2.2, you’ll
see that it has all of the information needed to advise our performer beans:

<bean id="audienceAdvisor"
 class="org.springframework.aop.aspectj.
 ➥ AspectJExpressionPointcutAdvisor">
 <property name="advice" ref="audienceAdvice" />
 <property name="expression" value="execution(* *.perform(..))" />
</bean>

The advice property tells it what advice to apply and the expression property
tells it where to apply that advice. Despite that wealth of information, we still have
to explicitly declare a ProxyFactoryBean for Spring to proxy our performers.

 However, Spring comes with a handy implementation of BeanPostProcessor
(see chapter 3) called DefaultAdvisorAutoProxyCreator, which automatically
checks to see whether an advisor’s pointcut matches a bean’s methods and
replaces that bean’s definition with a proxy that applies the advice. In a nutshell,
it automatically proxies beans with matching advisors.

 To use DefaultAdvisorAutoProxyCreator, all you have to do is declare the fol-
lowing <bean> in your Spring context:

<bean class="org.springframework.aop.framework.autoproxy.
 ➥ DefaultAdvisorAutoProxyCreator" />

Notice that this bean doesn’t have an id. That’s because we’ll never refer to it
directly. Instead, the Spring container will recognize it as a BeanPostProcessor
and put it to work creating proxies.

Autoproxying 141
 With DefaultAdvisorAutoProxyCreator declared, we no longer need to
declare ProxyFactoryBeans in the Spring context. What’s more, we no longer
have to give our beans weird names that end with target. We can now give them
appropriate names like steve or duke:

<bean id="duke"
 class="com.springinaction.springidol.PoeticJuggler"
 autowire="constructor">
 <constructor-arg ref="sonnet29" />
</bean>

In this way, we are able to keep both bean declarations and bean code free from
the aspect-related details.

 Spring’s basic autoproxy facility is fine for working with simple advice or when
in a pre–Java 5 environment. But if you’re targeting Java 5, you may want to con-
sider Spring’s support for AspectJ’s annotation-based aspects. Let’s see how to cre-
ate aspects in Spring that are annotation based.

4.3.2 Autoproxying @AspectJ aspects

A major new feature of AspectJ 5 is the ability to annotate POJO classes to be
aspects. This new feature is commonly referred to as @AspectJ. Prior to AspectJ 5,
writing AspectJ aspects involved learning a Java language extension. But AspectJ’s
new aspect annotations make it simple to turn any class into an aspect just by
sprinkling a few annotations around.

 Looking back at our Audience class, we see that Audience contained all of the
functionality needed for an audience, but none of the details to make it an aspect.
That left us having to create advice, pointcuts, and advisors—AOP plumbing—to
define an audience aspect.

 But with @AspectJ annotations, we can revisit our Audience class and turn it
into an aspect without the need for any additional classes or bean declarations.
Listing 4.5 shows the new Audience class, now annotated to be an aspect.

package com.springinaction.springidol;
import org.aspectj.lang.annotation.AfterReturning;
import org.aspectj.lang.annotation.AfterThrowing;
import org.aspectj.lang.annotation.Aspect;
import org.aspectj.lang.annotation.Before;
import org.aspectj.lang.annotation.Pointcut;

@Aspect
public class Audience {

Listing 4.5 Annotating Audience to be an aspect

Declares aspect

142 CHAPTER 4

Advising beans
 public Audience() {}

 @Pointcut("execution(* *.perform(..))")
 public void performance() {}

 @Before("performance()")
 public void takeSeats() {
 System.out.println("The audience is taking their seats.");
 }

 @Before("performance()")
 public void turnOffCellPhones() {
 System.out.println("The audience is turning off
 ➥ their cellphones");
 }

 @AfterReturning("performance()")
 public void applaud() {
 System.out.println("CLAP CLAP CLAP CLAP CLAP");
 }

 @AfterThrowing("performance()")
 public void demandRefund() {
 System.out.println("Boo! We want our money back!");
 }
}

The new Audience class is now annotated with @Aspect. This annotation indicates
that Audience is not just any old POJO but that it is an aspect.

 The @Pointcut annotation is used to define a reusable pointcut within an
@AspectJ aspect. The value given to the @Pointcut annotation is an AspectJ point-
cut expression—here indicating that the pointcut should match the perform()
method of any class. The name of the pointcut is derived from the name of the
method to which the annotation is applied. Therefore, the name of this pointcut
is performance(). The actual body of the performance() method is irrelevant
and, in fact, should be empty. The method itself is just a marker, giving the
@Pointcut annotation something to attach itself to.

 Each of the audience’s methods has been annotated with advice annotations.
The @Before annotation has been applied to both takeSeats() and turnOff-
CellPhones() to indicate that these two methods are before advice. The @After-
Returning annotation indicates that the applaud() method is an after-returning
advice method. And the @AfterThrowing annotation is placed on demandRefund()
so that it will be called if any exceptions are thrown during the performance.

 The name of the performance() pointcut is given as the value parameter to all
of the advice annotations. This tells each advice method where it should be
applied.

Defines performance
pointcut

Executes before
performance

Executes after
performance

Executes
after bad
performance

Autoproxying 143
 Notice that aside from the annotations and the no-op performance() method,
the Audience class is functionally unchanged. This means that it’s still a simple
Java object and can be used as such. It can also still be wired in Spring as follows:

<bean id="audience"
 class="com.springinaction.springidol.Audience" />

Because the Audience class contains everything that’s needed to define its own
pointcuts and advice, there’s no more need for a class that explicitly implements
one of Spring’s advice interfaces. There’s also no further need to declare an advi-
sor bean in Spring. Everything needed to use Audience as advice is now contained
in the Audience class itself.

 There’s just one last thing to do to make Spring apply Audience as an aspect.
You must declare an autoproxy bean in the Spring context that knows how to turn
@AspectJ-annotated beans into proxy advice.

 For that purpose, Spring comes with an autoproxy creator class called Annota-
tionAwareAspectJAutoProxyCreator. You could register an AnnotationAwar-
eAspectJAutoProxyCreator as a <bean> in the Spring context, but that would
require a lot of typing (believe me… I’ve typed it twice so far). Instead, to simplify
that rather long name, Spring also provides a custom configuration element in
the aop namespace that’s much easier to remember:

<aop:aspectj-autoproxy />

<aop:aspectj-autoproxy/> will create an AnnotationAwareAspectJAutoProxy-
Creator in the Spring context and will automatically proxy beans whose meth-
ods match the pointcuts defined with @Pointcut annotations in @Aspect-
annotated beans.

 To use the <aop:aspectj-autoproxy> configuration element, you’ll need to
remember to include the aop namespace in your Spring configuration file:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 ➥ spring-beans-2.0.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.0.xsd">
…
</beans>

You should be aware that AnnotationAwareAspectJAutoProxyCreator only uses
@AspectJ’s annotations as a guide for creating proxy-based aspects. Under the
covers, it’s still Spring-style aspects. This is significant because it means that

144 CHAPTER 4

Advising beans
although you are using @AspectJ’s annotations, you are still limited to proxying
method invocations.

 You may also be interested to know that AnnotationAwareAspectJAutoProxy-
Creator also creates proxies based on classic Spring advisors. That is, it also does
the same job that DefaultAdvisorAutoProxyCreator does. So, if you have any
advisor beans declared in your Spring context, those will also automatically be
used to advise proxied beans.

Annotating around advice
Just as with classic Spring advice, you are not limited to before and after advice
types when using @AspectJ annotations. You may also choose to create around
advice. For that, you must use the @Around annotation, as in the following example:

@Around("performance()")
public void watchPerformance (ProceedingJoinPoint joinpoint) {
 System.out.println("The audience is taking their seats.");
 System.out.println("The audience is turning off " +
 "their cellphones");

 try {
 joinpoint.proceed();

 System.out.println("CLAP CLAP CLAP CLAP CLAP");
 } catch (PerformanceException throwable) {
 System.out.println("Boo! We want our money back!");
 }
}

Here the @Around annotation indicates that the watchPerformance() method is
to be applied as around advice to the performance() pointcut.

 As you may recall from section 4.2.1, around advice methods must remember
to explicitly invoke proceed() so that the proxied method will be invoked. But
simply annotating a method with @Around isn’t enough to provide a proceed()
method to call. Therefore, methods that are to be around advice must take a Pro-
ceedingJoinPoint object as an argument and then call the proceed() method
on that object.

 Autoproxying of aspects sure makes configuring Spring aspects a lot simpler
and makes the application of aspects transparent. But in its transparency, auto-
proxying obscures many details of the aspects. With autoproxying it is less appar-
ent as to which beans are aspects and which beans are being proxied. In the next
section, we’ll see how some new features in Spring 2.0 achieve a middle ground
where aspects are explicitly defined but without all of the XML verbosity of using
ProxyFactoryBean.

Declaring pure-POJO aspects 145
4.4 Declaring pure-POJO aspects

The Spring development team recognized that using ProxyFactoryBean is some-
what clumsy. So, they set out to provide a better way of declaring aspects in Spring.
The outcome of this effort is found in the new XML configuration elements that
come with Spring 2.0.

 You’ve already seen one of the new elements in the aop namespace—
<aop:aspectj-autoproxy>. But Spring 2.0 comes with several more configura-
tion elements in the aop namespace that make it simple to turn any class into an
aspect. The new AOP configuration elements are summarized in table 4.2.

 Revisiting our audience example one last time, you’ll recall that the Audience
class has all of the methods that define an audience’s functionality. We only need
to turn that Audience class into an aspect with pointcuts that tell it when to per-
form each of its actions. In the previous section we did that with @AspectJ annota-
tions, but this time we’ll do it using Spring’s AOP configuration elements.

 The great thing about Spring’s AOP configuration elements is that they can be
used to turn any class into an aspect. The original Audience class from listing 4.1,
for instance, is just a plain Java class—no special interfaces or annotations. Using
Spring’s AOP configuration elements, as shown in listing 4.6, we can turn the
audience bean into an aspect.

Table 4.2 Spring 2.0’s AOP configuration elements simplify declaration of POJO-based aspects.

AOP configuration element Purpose

<aop:advisor> Defines an AOP advisor.

<aop:after> Defines an AOP after advice (regardless of whether the
advised method returns successfully).

<aop:after-returning> Defines an AOP after-returning advice.

<aop:after-throwing> Defines an AOP after-throwing advice.

<aop:around> Defines an AOP around advice.

<aop:aspect> Defines an aspect.

<aop:before> Defines an AOP before advice.

<aop:config> The top-level AOP element. Most <aop:*> elements must
be contained within <aop:config>.

<aop:pointcut> Defines a pointcut.

146 CHAPTER 4

Advising beans

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xsi:schemaLocation="http://www.springframework.org/
 ➥ schema/beans
 http://www.springframework.org/schema/beans/
 ➥ spring-beans-2.0.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/
 ➥ spring-aop-2.0.xsd">

 <bean id="audience"
 class="com.springinaction.springidol.Audience" />

 <aop:config>
 <aop:aspect ref="audience">

 <aop:before
 method="takeSeats"
 pointcut="execution(* *.perform(..))" />

 <aop:before
 method="turnOffCellPhones"
 pointcut="execution(* *.perform(..))" />

 <aop:after-returning
 method="applaud"
 pointcut="execution(* *.perform(..))" />

 <aop:after-throwing
 method="demandRefund"
 pointcut="execution(* *.perform(..))" />
 </aop:aspect>
 </aop:config>
</beans>

The first thing to notice about the Spring AOP configuration elements is that most
of them must be used within the context of the <aop:config> element. There are
a few exceptions to this rule, but none of those exceptions appear in this section.
When we encounter such an exception elsewhere in this book, I’ll be sure to
point it out.

 Within <aop:config> you may declare one or more advisors, aspects, or
pointcuts. In listing 4.6, we’ve declared a single aspect using the <aop:aspect>
element. The ref attribute references the POJO bean that will be used to sup-
ply the functionality of the aspect—in this case, Audience. The bean that is

Listing 4.6 Defining an audience aspect using Spring’s AOP configuration elements

References audience
bean as aspect

Executes before
performance

Executes after
performance

Executes after bad
performance

Declaring pure-POJO aspects 147
referenced by the ref attribute will supply the methods called by any advice in
the aspect.

 The aspect has four different bits of advice. The two <aop:before> elements
define method before advice that will call the takeSeats() and turnOffCell-
Phones() methods (declared by the method attribute) of the Audience bean
before any methods matching the pointcut are executed. The <aop:after-
returning> element defines an after-returning advice to call the applaud() method
after the pointcut. Meanwhile, the <aop:after-throwing> element defines an
after-throwing advice to call the demandRefund() method if any exceptions are
thrown. Figure 4.7 shows how the advice logic is woven into the business logic.

 In all advice elements, the pointcut attribute defines the pointcut where the
advice will be applied. The value given to the pointcut attribute is a pointcut
defined in AspectJ’s pointcut expression syntax.

 You’ll notice that the value of the pointcut attribute is the same for all of the
advice elements. That’s because all of the advice is being applied to the same
pointcut. This, however, presents a DRY (don’t repeat yourself) principle viola-
tion. If you decide later to change the pointcut, you must change it in four differ-
ent places.

performer.perform();

Audience Aspect

<aop:before
 method="takeSeats"
 pointcut-ref="performance"/>

<aop:before
 method="turnOffCellPhones"
 pointcut-ref="performance"/>

<aop:after-returning
 method="applaud"
 pointcut-ref="performance"/>

<aop:after-throwing
 method="demandRefund"
 pointcut-ref="performance"/>

audience.takeSeats();

audience.turnOffCellPhones

audience.applaud();

audience.demandRefund();

try {

} catch (Exception e) {

}

Business logic Advice logic

Figure 4.7 The Audience aspect includes four bits of advice that weave advice logic around methods
that match the aspect’s pointcut.

148 CHAPTER 4

Advising beans
 To avoid duplication of the pointcut definition, you may choose to define a
named pointcut using the <aop:pointcut> element. The XML in listing 4.7 shows
how the <aop:pointcut> element is used within the <aop:aspect> element to
define a named pointcut that can be used by all of the advice elements.

<aop:config>
 <aop:aspect ref="audience">
 <aop:pointcut
 id="performance"
 expression="execution(* *.perform(..))" />

 <aop:before
 method="takeSeats"
 pointcut-ref="performance" />

 <aop:before
 method="turnOffCellPhones"
 pointcut-ref="performance" />

 <aop:after-returning
 method="applaud"
 pointcut-ref="performance" />

 <aop:after-throwing
 method="demandRefund"
 pointcut-ref="performance" />
 </aop:aspect>
</aop:config>

Now the pointcut is defined in a single location and is referenced across multiple
advice elements. The <aop:pointcut> element defines the pointcut to have an id
of performance. Meanwhile, all of the advice elements have been changed to ref-
erence the named pointcut with the pointcut-ref attribute.

 As used in listing 4.7, the <aop:pointcut> element defines a pointcut that can
be referenced by all advices within the same <aop:aspect> element. But you can
also define pointcuts that can be used across multiple aspects by placing the
<aop:pointcut> elements within the scope of the <aop:config> element.

 It’s worth mentioning at this point that both the <aop:aspect> element and
the @AspectJ annotations are effective ways to turn a POJO into an aspect. But
<aop:aspect> has one distinct advantage over @AspectJ in that you do not need
the source code of the class that is to provide the aspect’s functionality. With
@AspectJ, you must annotate the class and methods, which requires having the
source code. But <aop:aspect> can reference any bean.

Listing 4.7 Defining a named pointcut to eliminate redundant pointcut definitions

Defines performance
pointcut

References pointcut

References pointcut

Injecting AspectJ aspects 149
 Spring AOP enables separation of cross-cutting concerns from an application’s
business logic. But as we’ve mentioned, Spring aspects are still proxy based and
are limited to advising method invocations. If you need more than just method
proxy support, you’ll want to consider using AspectJ. In the next section, you’ll
see how AspectJ aspects can be used within a Spring application.

4.5 Injecting AspectJ aspects

Although Spring AOP is sufficient for many applications of aspects, it is a weak
AOP solution when contrasted with AspectJ. AspectJ offers many types of pointcuts
that are simply not possible with Spring AOP.

 Constructor pointcuts, for example, are convenient when you need to apply
advice upon the creation of an object. Unlike constructors in some other
object-oriented languages, Java constructors are different from normal meth-
ods. This makes Spring’s proxy-based AOP woefully inadequate for advising cre-
ation of an object.

 For the most part, AspectJ aspects are independent of Spring. Although they
can certainly be woven into any Java-based application, including Spring applica-
tions, there’s little involvement on Spring’s part in applying AspectJ aspects.

 However, any well-designed and meaningful aspect will likely depend on other
classes to assist in its work. If an aspect depends on one or more classes when exe-
cuting its advice, you can instantiate those collaborating objects with the aspect
itself. Or, better yet, you can use Spring’s dependency injection to inject beans
into AspectJ aspects.

 To illustrate, let’s create a new aspect for the Spring Idol competition. A talent
competition needs a judge. So, let’s create a judge aspect in AspectJ. JudgeAspect
(listing 4.8) is such an aspect.

package com.springinaction.springidol;

public aspect JudgeAspect {
 public JudgeAspect() {}

 pointcut performance() : execution(* perform(..));

 after() returning() : performance() {
 System.out.println(criticismEngine.getCriticism());
 }

 // injected
 private CriticismEngine criticismEngine;

Listing 4.8 An AspectJ implementation of a talent competition judge

150 CHAPTER 4

Advising beans
 public void setCriticismEngine(CriticismEngine criticismEngine) {
 this.criticismEngine = criticismEngine;
 }
}

The chief responsibility for JudgeAspect is to make commentary on a performance
after the performance has completed. The performance() pointcut in listing 4.8
matches the perform() method. When it’s married with the after() returning()
advice, you get an aspect that reacts to the completion of a performance.

 What makes listing 4.8 interesting is that the judge doesn’t make simple com-
mentary on its own. Instead, JudgeAspect collaborates with a CriticismEngine
object, calling its getCriticism() method, to produce critical commentary after
a performance. To avoid unnecessary coupling between JudgeAspect and the
CriticismEngine, the JudgeAspect is given a reference to a CriticismEngine
through setter injection. This relationship is illustrated in figure 4.8.

 CriticismEngine itself is an interface that declares a simple getCriticism()
method. An implementation of CriticismEngine is found in listing 4.9.

package com.springinaction.springidol;

public class CriticismEngineImpl implements CriticismEngine {
 public CriticismEngineImpl() {}

 public String getCriticism() {
 int i = (int) (Math.random() * criticismPool.length);

 return criticismPool[i];
 }

 // injected

Listing 4.9 An implementation of the CriticismEngine used by JudgeAspect

JudgeAspectPerformer CriticismEngine

CriticismEngineImpl

advises getCriticism()

injected into

Figure 4.8 Aspects need injection, too. Spring
can inject AspectJ aspects with dependencies
just as if they were another bean.

Injecting AspectJ aspects 151
 private String[] criticismPool;
 public void setCriticismPool(String[] criticismPool) {
 this.criticismPool = criticismPool;
 }
}

CriticismEngineImpl implements the CriticismEngine interface by randomly
choosing a critical comment from a pool of injected criticisms. This class can be
declared as a Spring <bean> using the following XML:

<bean id="criticismEngine"
 class="com.springinaction.springidol.CriticismEngineImpl">
 <property name="criticisms">
 <list>
 <value>I'm not being rude, but that was appalling.</value>
 <value>You may be the least talented
 ➥person in this show.</value>
 <value>Do everyone a favor and keep your day job.</value>
 </list>
 </property>
</bean>

So far, so good. We now have a CriticismEngine implementation to give to Jud-
geAspect. All that’s left is to wire CriticismEngineImpl into JudgeAspect.

 Before we show you how to do the injection, you should know that AspectJ
aspects can be woven into your application without involving Spring at all. But
if you want to use Spring’s dependency injection to inject collaborators into an
AspectJ aspect, you’ll need to declare the aspect as a <bean> in Spring’s config-
uration. The following <bean> declaration injects the criticismEngine bean
into JudgeAspect:

<bean class="com.springinaction.springidol.JudgeAspect"
 factory-method="aspectOf">
 <property name="criticismEngine" ref="criticismEngine" />
</bean>

For the most part, this <bean> declaration isn’t much different from any other
<bean> you may find in Spring. But the big difference is the use of the factory-
method attribute. Normally Spring beans are instantiated by the Spring con-
tainer—but AspectJ aspects are created by the AspectJ runtime. By the time
Spring gets a chance to inject the CriticismEngine into JudgeAspect, Jud-
geAspect has already been instantiated.

 Since Spring isn’t responsible for the creation of JudgeAspect, it isn’t possi-
ble to simply declare JudgeAspect as a bean in Spring. Instead, we need a way

152 CHAPTER 4

Advising beans
for Spring to get a handle to the JudgeAspect instance that has already been
created by AspectJ so that we can inject it with a CriticismEngine. Conve-
niently, all AspectJ aspects provide a static aspectOf() method that returns the
singleton instance of the aspect. So to get an instance of the aspect, you must
use factory-method to invoke the aspectOf() method instead of trying to call
JudgeAspect’s constructor.

 In short, Spring doesn’t use the <bean> declaration from earlier to create an
instance of the JudgeAspect—it has already been created by the AspectJ runtime.
Instead, Spring retrieves a reference to the aspect through the aspectOf() factory
method and then performs dependency injection on it as prescribed by the
<bean> element.

4.6 Summary

AOP is a powerful complement to object-oriented programming. With aspects,
you can now group application behavior that was once spread throughout your
applications into reusable modules. You can then declaratively or programmati-
cally define exactly where and how this behavior is applied. This reduces code
duplication and lets your classes focus on their main functionality.

 Spring provides an AOP framework that lets you insert aspects around method
executions. You have learned how you can weave advice before, after, and around
a method invocation, as well as add custom behavior for handling exceptions.

 You have several choices in how you can use aspects in your Spring applica-
tions. Wiring advice and pointcuts in Spring is much easier in Spring 2.0 with the
addition of @AspectJ annotation support and a simplified configuration schema.

 Finally, there are times when Spring AOP isn’t powerful enough and you must
turn to AspectJ for more powerful aspects. For those situations, we looked at how
to use Spring to inject dependencies into AspectJ aspects.

 At this point, we’ve covered the basics of the Spring Framework. You’ve seen
how to configure the Spring container and how to apply aspects to Spring-
managed objects. These core Spring techniques will be foundational throughout
the rest of the book. In the coming chapters, we’ll begin applying what we’ve
learned as we develop enterprise capabilities into our applications. We’ll start in
the next chapter by looking at how to persist and retrieve data using Spring’s JDBC
and ORM abstractions.

Part 2

Enterprise Spring

In part 1, you learned about Spring’s core container and its support for
dependency injection (DI) and aspect-oriented programming (AOP). With
that foundation set, part 2 will show you how to apply DI and AOP to imple-
ment business layer functionality for your application.

 Most applications ultimately persist business information in a relational
database. Chapter 5, “Hitting the database,” will guide you in using Spring’s
support for data persistence. You’ll be introduced to Spring’s JDBC support,
which helps you remove much of the boilerplate code associated with JDBC.
You’ll also see how Spring integrates with several popular object-relational
mapping frameworks, such as Hibernate, JPA, and iBATIS.

 Once you are persisting your data, you’ll want to ensure that its integrity
is preserved. In chapter 6, “Managing transactions,” you’ll learn how Spring
AOP can be used to declaratively apply transactional policies to your applica-
tion objects using AOP. You’ll see that Spring affords EJB-like transaction sup-
port to POJOs.

 As security is an important aspect of many applications, chapter 7, “Secur-
ing Spring,” will show you how to use the Spring Security (formerly known as
Acegi Security) to protect the information your application contains.

 In chapter 8, “Spring and POJO-based remote services,” you’ll learn how
to expose your application objects as remote services. You’ll also learn how
to transparently access remote services as though they are any other object
in your application. Remoting technologies explored will include RMI, Hes-
sian/Burlap, web services, and Spring’s own HTTP invoker.

 Chapter 9, “Building contract-first web services in Spring,” approaches web ser-
vices from a different angle by showing how to use the Spring Web Services frame-
work to build contract-driven, document-centric web services.

 Chapter 10, “Spring messaging,” explores a different approach to application
integration by showing how Spring can be used with JMS to asynchronously send
and receive messages between applications. You’ll also see how to develop mes-
sage-driven POJOs and build asynchronous remote services using Lingo.

 Chapter 11, “Spring and Enterprise JavaBeans,” covers the connection
between Spring and EJBs. This includes how to wire EJBs in a Spring application
and how to Spring-enable EJB session beans. We’ll also take a quick look at how to
develop EJB 3-style beans in Spring.

 Chapter 12, “Accessing enterprise services,” will wrap up the discussion of
Spring in the business layer by showcasing some of Spring’s support for common
enterprise services. In this chapter, you’ll learn how to use Spring to access objects
in JNDI, send emails, and schedule tasks.

Hitting the database
This chapter covers
■ Defining Spring’s data access support
■ Configuring database resources
■ Using Spring’s JDBC framework
■ Integrating with Hibernate, JPA, and iBATIS
155

156 CHAPTER 5

Hitting the database
With the core of the Spring container now under your belt, it’s time to put it to
work in real applications. A perfect place to start is with a requirement of nearly
any enterprise application: persisting data. Every one of us has probably dealt
with database access in an application in the past. In doing so, you know that
data access has many pitfalls. We have to initialize our data access framework,
open connections, handle various exceptions, and close connections. If we get
any of this wrong, we could potentially corrupt or delete valuable company data.
In case you haven’t experienced the consequences of mishandled data access, it
is a Bad Thing.

 Since we strive for Good Things, we turn to Spring. Spring comes with a family
of data access frameworks that integrate with a variety of data access technologies.
Whether you are persisting your data via direct JDBC, iBATIS, or an object-
relational mapping (ORM) framework like Hibernate, Spring removes the tedium
of data access from your persistence code. Instead, you can lean on Spring to han-
dle the low-level data access work for you so that you can turn your attention to
managing your application’s data.

 In this chapter, we’re going to build the persistence layer of the RoadRantz
application (see figure 5.1). In this layer, we are faced with some choices. We
could use JDBC, Hibernate, the Java Persistence API (JPA), iBATIS, or any one of a
number of persistence frameworks. Fortunately for us, Spring supports all of
those persistence mechanisms.

P
er

si
st

en
ce

 L
ay

er

S
ec

ur
ity

 L
ay

er

P
re

se
nt

at
io

n
La

ye
r

B
us

in
es

s
La

ye
r

Relational
Database

eb BrowserW

Figure 5.1 Like most applications, RoadRantz persists and restores data from a relational database.
The persistence layer of the application is where all data access takes place.

Learning Spring’s data access philosophy 157
 As we build the persistence layer of the RoadRantz application, we’ll see how
Spring abstracts common data access functions, thus simplifying persistence code.
You’ll see how Spring makes working with JDBC, Hibernate, JPA, and iBATIS even
easier. And before we wrap up our discussion of data access, we’ll touch on how to
use Spring support for declarative caching to beef up the performance of your
application.

 Regardless of which persistence technology you choose, simple JDBC or sophis-
ticated JPA, there’s a lot of common ground among all of Spring’s data access
frameworks. So, before we jump into Spring’s support for data access, let’s talk
about the basics of Spring’s DAO support.

5.1 Learning Spring’s data access philosophy

From the previous chapters, you know that one of Spring’s goals is to allow you
to develop applications following the sound object-oriented (OO) principle of
coding to interfaces. Spring’s data access support is no exception.

 DAO1 stands for data access object, which perfectly describes a DAO’s role in an
application. DAOs exist to provide a means to read and write data to the database.
They should expose this functionality through an interface by which the rest of
the application will access them. Figure 5.2 shows the proper approach to design-
ing your data access tier.

 As you can see, the service objects are accessing the DAOs through interfaces.
This has a couple of advantages. First, it makes your service objects easily testable
since they are not coupled to a specific data access implementation. In fact, you

1 Many developers, including Martin Fowler, refer to the persistence objects of an application as “repos-
itories.” While I fully appreciate the thinking that leads to the “repository” moniker, I believe that the
word “repository” is already very overloaded, even without adding this additional meaning. So, please
forgive me, but I’m going to buck the popular trend—I will continue referring to these objects as DAOs.

DAO
Interface

DAO
Implementation

Service
Object

Figure 5.2
Service objects do not handle their
own data access. Instead, they
delegate data access to DAOs. The
DAO’s interface keeps it loosely
coupled to the service object.

158 CHAPTER 5

Hitting the database
could create mock implementations of these data access interfaces. That would
allow you to test your service object without ever having to connect to the data-
base, which would significantly speed up your unit tests and rule out the chance of
a test failure due to inconsistent data.

 In addition, the data access tier is accessed in a persistence technology–agnos-
tic manner. That is, the chosen persistence approach is isolated to the DAO while
only the relevant data access methods are exposed through the interface. This
makes for a flexible application design and allows the chosen persistence frame-
work to be swapped out with minimal impact to the rest of the application. If the
implementation details of the data access tier were to leak into other parts of the
application, the entire application would become coupled with the data access
tier, leading to a rigid application design.

NOTE If after reading the last couple of paragraphs, you feel that I have a strong
bias toward hiding the persistence layer behind interfaces, then I’m
happy that I was able to get that point across. The fact is, I believe that
interfaces are key to writing loosely coupled code and that they should be
used at all layers of an application, not just at the data access layer. That
said, it’s also important to note that while Spring encourages the use of
interfaces, Spring does not require them—you’re welcome to use Spring
to wire a bean (DAO or otherwise) directly into a property of another
bean without an interface between them.

One way Spring helps you insulate your data access tier from the rest of your
application is by providing you with a consistent exception hierarchy that is used
across all of its DAO frameworks.

5.1.1 Getting to know Spring’s data access exception hierarchy

If you’ve ever written JDBC code (without Spring), you’re probably keenly familiar
with the fact that you can’t do anything with JDBC without being forced to catch
java.sql.SQLException. Some common problems that might cause an SQLEx-
ception to be thrown include:

■ The application is unable to connect to the database.

■ The query being performed has errors in its syntax.

■ The tables and/or columns referred to in the query do not exist.

■ An attempt is made to insert or update values that violate a database con-
straint.

Learning Spring’s data access philosophy 159
The big question surrounding SQLException is how it should be handled when
it’s caught. As it turns out, many of the problems that trigger an SQLException
can’t be remedied within a catch block. Most SQLExceptions that are thrown
indicate a fatal condition. If the application can’t connect to the database, that
usually means that the application will be unable to continue. Likewise, if there
are errors in the query, little can be done about it at runtime.

 If there’s nothing that can be done to recover from an SQLException, why are
we forced to catch it?

 Even if you have a plan for dealing with some SQLExceptions, you’ll have to
catch the SQLException and dig around in its properties for more information on
the nature of the problem. That’s because SQLException is treated as a “one size
fits all” exception for problems related to data access. Rather than have a different
exception type for each possible problem, SQLException is the exception that’s
thrown for all data access problems.

 Some persistence frameworks offer a richer hierarchy of exceptions. Hiber-
nate, for example, offers almost two dozen different exceptions, each targeting a
specific data access problem. This makes it possible to write catch blocks for the
exceptions that you want to deal with.

 Even so, Hibernate’s exceptions are specific to Hibernate. As stated before,
we’d like to isolate the specifics of the persistence mechanism to the data access
layer. If Hibernate-specific exceptions are being thrown then the fact that we’re
dealing with Hibernate will leak into the rest of the application. Either that, or
you’ll be forced to catch persistence platform exceptions and rethrow them as
platform-agnostic exceptions.

 On one hand, JDBC’s exception hierarchy is too generic—in fact, it’s not much
of a hierarchy at all. On the other hand, Hibernate’s exception hierarchy is pro-
prietary to Hibernate. What we need is a hierarchy of data access exceptions that
are descriptive but not directly associated with a specific persistence framework.

Spring’s persistence platform agnostic exceptions
Spring JDBC provides a hierarchy of data access exceptions that solve both prob-
lems. In contrast to JDBC, Spring provides several data access exceptions, each
descriptive of the problem that they’re thrown for. Table 5.1 shows some of
Spring’s data access exceptions lined up against the exceptions offered by JDBC.

 As you can see, Spring has an exception for virtually anything that could go
wrong when reading or writing to a database. And the list of Spring’s data access
exceptions is vaster than shown in table 5.1. (I would’ve listed them all, but I
didn’t want JDBC to get an inferiority complex.)

160 CHAPTER 5

Hitting the database
Even though Spring’s exception hierarchy is far more rich than JDBC’s simple
SQLException, it isn’t associated with any particular persistence solution. This
means that you can count on Spring to throw a consistent set of exceptions,
regardless of which persistence provider you choose. This helps to keep your per-
sistence choice confined to the data access layer.

Look, Ma! No catch blocks!
What isn’t evident from table 5.1 is that all of those exceptions are rooted with
DataAccessException. What makes DataAccessException special is that it is an
unchecked exception. In other words, you don’t have to catch any of the data
access exceptions thrown from Spring (although you’re perfectly welcome to if
you’d like).

 DataAccessException is just one example of Spring’s across-the-board philos-
ophy of checked versus unchecked exceptions. Spring takes the stance that many
exceptions are the result of problems that can’t be addressed in a catch block.
Instead of forcing developers to write catch blocks (which are often left empty),

Table 5.1 JDBC’s exception hierarchy versus Spring’s data access exceptions.

JDBC’s exceptions Spring’s data access exceptions

BatchUpdateException

DataTruncation

SQLException

SQLWarning

CannotAcquireLockException

CannotSerializeTransactionException

CleanupFailureDataAccessException

ConcurrencyFailureException

DataAccessException

DataAccessResourceFailureException

DataIntegrityViolationException

DataRetrievalFailureException

DeadlockLoserDataAccessException

EmptyResultDataAccessException

IncorrectResultSizeDataAccessException

IncorrectUpdateSemanticsDataAccessException

InvalidDataAccessApiUsageException

InvalidDataAccessResourceUsageException

OptimisticLockingFailureException

PermissionDeniedDataAccessException

PessimisticLockingFailureException

TypeMismatchDataAccessException

UncategorizedDataAccessException

Learning Spring’s data access philosophy 161
Spring promotes the use of unchecked exceptions. This leaves the decision of
whether to catch an exception in the developer’s hands.

 To take advantage of Spring’s data access exceptions, you must use one of
Spring’s supported data access templates. Let’s look at how Spring templates can
greatly simplify data access.

5.1.2 Templating data access

You have probably traveled by plane before. If so, you will surely agree that one of
the most important parts of traveling is getting your luggage from point A to
point B. There are many steps to this process. When you arrive at the terminal,
your first stop will be at the counter to check your luggage. Next, security will scan
it to ensure the safety of the flight. Then it takes a ride on the “luggage train” on
its way to being placed on the plane. If you need to catch a connecting flight, your
luggage needs to be moved as well. When you arrive at your final destination, the
luggage has to be removed from the plane and placed on the carousel. Finally,
you go down to the baggage claim area and pick it up.

 Even though there are many steps to this process, you are only actively
involved in a couple of those steps. The carrier itself is responsible for driving the
process. You are only involved when you need to be; the rest is just “taken care of.”
This mirrors a powerful design pattern: the Template Method pattern.

 A template method defines the skeleton of a process. In our example, the pro-
cess is moving luggage from departure city to arrival city. The process itself is
fixed; it never changes. The overall sequence of events for handling luggage
occurs the same way every time: luggage is checked in, luggage is loaded on the
plane, and so forth. Some steps of the process are fixed as well—that is, some
steps happen the same every time. When the plane arrives at its destination, every
piece of luggage is unloaded one at a time and placed on a carousel to be taken to
baggage claim.

 At certain points, however, the process delegates its work to a subclass to fill in
some implementation-specific details. This is the variable part of the process. For
example, the handling of luggage starts with a passenger checking in the luggage
at the counter. This part of the process always has to happen at the beginning, so
its sequence in the process is fixed. Because each passenger’s luggage check-in is
different, the implementation of this part of the process is determined by the pas-
senger. In software terms, a template method delegates the implementation-
specific portions of the process to an interface. Different implementations of this
interface define specific implementations of this portion of the process.

162 CHAPTER 5

Hitting the database
 This is the same pattern that Spring applies to data access. No matter what
technology we are using, certain data access steps are required. For example, we
always need to obtain a connection to our data store and clean up resources
when we are done. These are the fixed steps in a data access process. But each
data access method we write is slightly different. We query for different objects
and update the data in different ways. These are the variable steps in the data
access process.

 Spring separates the fixed and variable parts of the data access process into two
distinct classes: templates and callbacks. Templates manage the fixed part of the
process while your custom data access code is handled in the callbacks. Figure 5.3
shows the responsibilities of both of these classes.

 As you can see in figure 5.3, Spring’s template classes handle the fixed parts of
data access—controlling transactions, managing resources, and handling excep-
tions. Meanwhile, the specifics of data access as they pertain to your application—
creating statements, binding parameters, and marshaling result sets—are handled
in the callback implementation. In practice, this makes for an elegant framework
because all you have to worry about is your data access logic.

 Spring comes with several templates to choose from, depending on your per-
sistence platform choice. If you’re using straight JDBC then you’ll want to use
JdbcTemplate. But if you favor one of the object-relational mapping frameworks
then perhaps HibernateTemplate or JpaTemplate is more suitable. Table 5.2 lists
all of Spring’s data access templates and their purpose.

 As you’ll see, using a data access template simply involves configuring it as a
bean in the Spring context and then wiring it into your application DAO. Or you

DAO CallbackDAO Template

1. Prepare Resources
2. Start Transaction

5. Commit/Rollback
Transaction
6. Close Resources
and Handle Errors

3. Execute in
Transaction

4. Return Data

Figure 5.3 Spring’s DAO template classes take responsibility for the common
data access duties. For the application-specific tasks, it calls back into a
custom DAO callback object.

Learning Spring’s data access philosophy 163
can take advantage of Spring’s DAO support classes to further simplify configura-
tion of your application DAOs. Direct wiring of the templates is fine, but Spring
also provides a set of convenient DAO base classes that can manage the template
for you. Let’s see how these template-based DAO classes work.

5.1.3 Using DAO support classes

The data access templates are not all there is to Spring’s data access framework.
Each template also provides convenience methods that simplify data access with-
out the need to create an explicit callback implementation. Furthermore, on top
of the template-callback design, Spring provides DAO support classes that are
meant to be subclassed by your own DAO classes. Figure 5.4 illustrates the relation-
ship between a template class, a DAO support class, and your own custom DAO
implementation.

 Later, as we examine Spring’s individual data access support options, we’ll see
how the DAO support classes provide convenient access to the template class that
they support. When writing your application DAO implementation, you can sub-
class a DAO support class and call a template retrieval method to have direct
access to the underlying data access template. For example, if your application

Table 5.2 Spring comes with several data access templates, each suitable for a different persistence
mechanism.

Template class (org.springframework.*) Used to template…

jca.cci.core.CciTemplate JCA CCI connections

jdbc.core.JdbcTemplate JDBC connections

jdbc.core.namedparam.NamedParameterJdbcTemplate JDBC connections with sup-
port for named parameters

jdbc.core.simple.SimpleJdbcTemplate JDBC connections, simplified
with Java 5 constructs

orm.hibernate.HibernateTemplate Hibernate 2.x sessions

orm.hibernate3.HibernateTemplate Hibernate 3.x sessions

orm.ibatis.SqlMapClientTemplate iBATIS SqlMap clients

orm.jdo.JdoTemplate Java Data Object implementa-
tions

orm.jpa.JpaTemplate Java Persistence API entity
managers

orm.toplink.TopLinkTemplate Oracle’s TopLink

164 CHAPTER 5

Hitting the database
DAO subclasses JdbcDaoSupport then you only need to call getJdbcTemplate()
to get a JdbcTemplate to work with.

 Plus, if you need access to the underlying persistence platform, each of the
DAO support classes provide access to whatever class it uses to communicate with
the database. For instance, the JdbcDaoSupport class contains a getConnection()
method for dealing directly with the JDBC connection.

 Just as Spring provides several data access template implementations, it also
provides several DAO support classes—one for each template. Table 5.3 lists the
DAO support classes that come with Spring.

Table 5.3 Spring’s DAO support classes provide convenient access to their corresponding data access
template.

DAO support class (org.springframework.*) Provides DAO support for…

jca.cci.support.CciDaoSupport JCA CCI connections

jdbc.core.support.JdbcDaoSupport JDBC connections

jdbc.core.namedparam.NamedParameterJdbcDaoSupport JDBC connections with sup-
port for named parameters

jdbc.core.simple.SimpleJdbcDaoSupport JDBC connections, simpli-
fied with Java 5 constructs

orm.hibernate.support.HibernateDaoSupport Hibernate 2.x sessions

orm.hibernate3.support.HibernateDaoSupport Hibernate 3.x sessions

orm.ibatis.support.SqlMapClientDaoSupport iBATIS SqlMap clients

orm.jdo.support.JdoDaoSupport Java Data Object implemen-
tations

orm.jpa.support.JpaDaoSupport Java Persistence API entity
managers

orm.toplink.support.TopLinkDaoSupport Oracle’s TopLink

Application
DAO

DAO
Support

Data Access
Template

Persistence
Framework

Database

Figure 5.4
The relationship between
an application DAO and
Spring’s DAO support and
template classes

Configuring a data source 165
Even though Spring provides support for several persistence frameworks, there
simply isn’t enough space to cover them all in this chapter. Therefore, I’m going
to focus on what I believe are the most beneficial persistence options and the ones
that you’ll most likely be using.

 We’ll start with basic JDBC access (section 5.3), as it is the most basic way to
read and write data from a database. Then we’ll look at Hibernate and JPA (sec-
tions 5.4 and 5.5), two of the most popular POJO-based ORM solutions. Finally, I’ll
dig into Spring’s support for iBATIS (in section 5.6), which is a persistence frame-
work that provides the mapping support of an ORM solution with the complete
query control of JDBC.

 But first things first—most of Spring’s persistence support options will
depend on a data source. So, before we can get started with creating templates
and DAOs, we need to configure Spring with a data source for the DAOs to access
the database.

5.2 Configuring a data source

Regardless of which form of Spring DAO support you use, you’ll likely need to
configure a reference to a data source. Spring offers several options for configur-
ing data source beans in your Spring application, including:

■ Data sources that are defined by a JDBC driver

■ Data sources that are looked up by JNDI

■ Data sources that pool connections

For production-ready applications, I recommend using a data source that draws
its connections from a connection pool. When possible, I prefer to retrieve the
pooled data source from an application server via JNDI. With that preference in
mind, let’s start by looking at how to configure Spring to retrieve a data source
from JNDI.

5.2.1 Using JNDI data sources

Spring applications will quite often be deployed to run within a JEE application
server such as WebSphere, JBoss, or even a web container like Tomcat. These serv-
ers allow you to configure data sources to be retrieved via JNDI. The benefit of
configuring data sources in this way is that they can be managed completely exter-
nal to the application, leaving the application to simply ask for a data source when
it’s ready to access the database. Moreover, data sources managed in an

166 CHAPTER 5

Hitting the database
application server are often pooled for greater performance and can be hot-
swapped by system administrators.

 With Spring, we can configure a reference to a data source that is kept in JNDI
and wire it into the classes that need it as if it were just another Spring bean.
Spring’s JndiObjectFactoryBean makes it possible to retrieve any object, includ-
ing data sources, from JNDI and make it available as a Spring bean.

 We’ll discuss JndiObjectFactoryBean a bit more when we get to chapter 11.
For now here’s a JndiObjectFactoryBean that retrieves a data source from JNDI:

<bean id="dataSource"
 class="org.springframework.jndi.JndiObjectFactoryBean"
 scope="singleton">
 <property name="jndiName" value="/jdbc/RantzDatasource" />
 <property name="resourceRef" value="true" />
</bean>

The jndiName attribute is used to specify the name of the resource in JNDI. If only
the jndiName property is set then the data source will be looked up as is. But if the
application is running within a Java application server then you’ll want to set the
resourceRef property to true.

 When resourceRef is true, the value of jndiName will be prepended with
java:comp/env/ to retrieve the data source as a Java resource from the applica-
tion server’s JNDI directory. Consequently, the actual name used will be
java:comp/env/jdbc/RantzDatasource.

JNDI data sources in Spring 2.0
If you’re using Spring 2.0, the XML required for retrieving a data source from
JNDI is greatly simplified using the jee namespace. You can use the configuration
elements from the jee namespace by declaring your <beans> element as follows:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 ➥ spring-beans-2.0.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/
 ➥ spring-jee-2.0.xsd">

The jee namespace offers the <jee:jndi-lookup> element for retrieving objects
from JNDI. The following XML is equivalent to the explicit declaration of JndiOb-
jectFactoryBean shown earlier:

Configuring a data source 167
<jee:jndi-lookup id="dataSource"
 jndi-name="/jdbc/RantzDatasource"
 resource-ref="true" />

The jndi-name and resource-ref attributes map directly to the jndiName and
resourceRef properties of JndiObjectFactoryBean.

5.2.2 Using a pooled data source

If you’re unable to retrieve a data source from JNDI, the next best thing is to con-
figure a pooled data source directly in Spring. Although Spring doesn’t provide a
pooled data source, there’s a suitable one available in the Jakarta Commons Data-
base Connection Pools (DBCP) project (http://jakarta.apache.org/commons/
dbcp). To add DBCP to your application, either download it and place the JAR file
in your Ant’s build classpath or add the following <dependency> to the Maven 2
Project Object Model (POM):

<dependency>
 <groupId>commons-dbcp</groupId>
 <artifactId>commons-dbcp</artifactId>
 <version>1.2.1</version>
</dependency>

DBCP includes several data sources that provide pooling, but the BasicData-
Source is one that’s often used because it’s quite simple to configure in Spring
and because it resembles Spring’s own DriverManagerDataSource (which we’ll
talk about next).

 For the RoadRantz application, we’ll configure a BasicDataSource bean as fol-
lows:

<bean id="dataSource"
 class="org.apache.commons.dbcp.BasicDataSource">
 <property name="driverClassName" value="org.hsqldb.jdbcDriver" />
 <property name="url"
 value="jdbc:hsqldb:hsql://localhost/roadrantz/roadrantz" />
 <property name="username" value="sa" />
 <property name="password" value="" />
 <property name="initialSize" value="5" />
 <property name="maxActive" value="10" />
</bean>

The first four properties are elemental to configuring a BasicDataSource. The
driverClassName property specifies the fully qualified name of the JDBC driver
class. Here we’ve configured it with the JDBC driver for the Hypersonic database.
The url property is where we set the complete JDBC URL for the database. Finally,

168 CHAPTER 5

Hitting the database
the username and password properties are used to authenticate when you’re con-
necting to the database.

 Those four basic properties define connection information for BasicData-
Source. In addition, several properties can be used to configure the data source
pool itself. Table 5.4 lists a few of the most useful pool-configuration properties of
BasicDataSource.

 For our purposes, we’ve configured the pool to start with five connections.
Should more connections be needed, BasicDataSource is allowed to create them,
up to a maximum of 10 active connections.

5.2.3 JDBC driver-based data source

The simplest data source you can configure in Spring is one that is defined
through a JDBC driver. Spring offers two such data source classes to choose from
(both in the org.springframework.jdbc.datasource package):

Table 5.4 BasicDataSource’s pool-configuration properties.

Pool-configuration property What it specifies

initialSize The number of connections created when the pool is
started.

maxActive The maximum number of connections that can be allo-
cated from the pool at the same time. If zero, there is no
limit.

maxIdle The maximum number of connections that can be idle in
the pool without extras being released. If zero, there is no
limit.

maxOpenPreparedStatements The maximum number of prepared statements that can be
allocated from the statement pool at the same time. If
zero, there is no limit.

maxWait How long the pool will wait for a connection to be returned
to the pool (when there are no available connections)
before an exception is thrown. If –1, wait indefinitely.

minEvictableIdleTimeMillis How long a connection can remain idle in the pool before
it is eligible for eviction.

minIdle The minimum number of connections that can remain idle
in the pool without new connections being created.

poolPreparedStatements Whether or not to pool prepared statements (boolean).

Configuring a data source 169
■ DriverManagerDataSource—Returns a new connection every time that a
connection is requested. Unlike DBCP’s BasicDataSource, the connections
provided by DriverManagerDataSource are not pooled.

■ SingleConnectionDataSource—Returns the same connection every time
that a connection is requested. Although SingleConnectionDataSource
isn’t exactly a pooled data source, you can think of it as a data source with a
pool of exactly one connection.

Configuring either of these data sources is similar to how we configured DBCP’s
BasicDataSource:

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.
 ➥ DriverManagerDataSource">
 <property name="driverClassName"
 value="org.hsqldb.jdbcDriver" />
 <property name="url"
 value="jdbc:hsqldb:hsql://localhost/roadrantz/roadrantz" />
 <property name="username" value="sa" />
 <property name="password" value="" />
</bean>

The only difference is that since neither DriverManagerDataSource nor Single-
ConnectionDataSource provides a connection pool, there are no pool configura-
tion properties to set.

 Although SingleConnectionDataSource and DriverManagerDataSource are
great for small applications and running in development, you should seriously
consider the implications of using either in a production application. Because
SingleConnectionDataSource has one and only one database connection to
work with, it doesn’t work well in a multithreaded application. At the same time,
even though DriverManagerDataSource is capable of supporting multiple
threads, it incurs a performance cost for creating a new connection each time a
connection is requested. Because of these limitations, I strongly recommend
using pooled data sources.

 Now that we have established a connection to the database through a data
source, we’re ready to actually access the database. The most basic way to access
a database is by using JDBC. So, let’s begin our exploration of Spring’s data
access abstractions by looking at how Spring makes working with simple JDBC
even simpler.

170 CHAPTER 5

Hitting the database
5.3 Using JDBC with Spring

There are many persistence technologies out there. Hibernate, iBATIS, and JPA
are just a few. Despite this, a wealth of applications are writing Java objects to a
database the old-fashioned way: they earn it. No, wait—that’s how people make
money. The tried-and-true method for persisting data is with good old JDBC.

 And why not? JDBC does not require mastering another framework’s query lan-
guage. It is built on top of SQL, which is the data access language. Plus, you can
more finely tune the performance of your data access when you use JDBC than
practically any other technology. And JDBC allows you to take advantage of your
database’s proprietary features where other frameworks may discourage or flat-
out prohibit this.

 What’s more, JDBC lets you work with data at a much lower level than the per-
sistence frameworks, allowing you to access and manipulate individual columns in
a database. This fine-grained approach to data access comes in handy in applica-
tions, such as reporting applications, where it doesn’t make sense to organize the
data into objects, just to then unwind it back into raw data.

 But all is not sunny in the world of JDBC. With its power, flexibility, and other
niceties also comes well, some not-so-niceties.

5.3.1 Tackling runaway JDBC code

While JDBC gives you an API that works closely with your database, you are respon-
sible for handling everything related to accessing the database. This includes man-
aging database resources and handling exceptions.

 If you have ever written JDBC that inserts data into the database, the code in
listing 5.1 shouldn’t be all too alien to you.

private static final String MOTORIST_INSERT =
 "insert into motorist (id, email, password, " +
 "firstName, lastName) " +
 "values (null, ?,?,?,?)";

public void saveMotorist(Motorist motorist) {
 Connection conn = null;
 PreparedStatement stmt = null;
 try {
 conn = dataSource.getConnection();
 stmt = conn.prepareStatement(MOTORIST_INSERT);

 stmt.setString(1, motorist.getEmail());
 stmt.setString(2, motorist.getPassword());

Listing 5.1 Using JDBC to insert a row into a database

Opens connection
Creates statement

Binds
parameters

Using JDBC with Spring 171
 stmt.setString(3, motorist.getFirstName());
 stmt.setString(4, motorist.getLastName());

 stmt.execute();
 } catch (SQLException e) {
 …
 } finally {
 try {
 if(stmt != null) { stmt.close(); }
 if(conn != null) { conn.close(); }
 } catch (SQLException e) {}
 }
}

Holy runaway code, Batman! That’s over 20 lines of code to insert a simple object
into a database. As far as JDBC operations go, this is about as simple as it gets. So
why does it take this many lines to do something so simple? Actually, it doesn’t.
Only a handful of lines actually do the insert. But JDBC requires that you properly
manage connections and statements and somehow handle the SQLException that
may be thrown.

 Now have a look at listing 5.2, where we use traditional JDBC to update a row in
the motorist table in the database.

private static final String MOTORIST_UPDATE =
 "update motorist " +
 "set email=?, password=?, firstName=?, lastName=? " +
 "where id=?";

public void updateMotorist(Motorist motorist) {
 Connection conn = null;
 PreparedStatement stmt = null;
 try {
 conn = dataSource.getConnection();
 stmt = conn.prepareStatement(MOTORIST_UPDATE);

 stmt.setString(1, motorist.getEmail());
 stmt.setString(2, motorist.getPassword());
 stmt.setString(3, motorist.getFirstName());
 stmt.setString(4, motorist.getLastName());
 stmt.setInt(5, motorist.getId());

 stmt.execute();
 } catch (SQLException e) {
 …
 } finally {
 try {

Listing 5.2 Using JDBC to update a row in a database

Binds
parameters

Executes statement

Handles exceptions—
somehow

Cleans up
resources

Opens connection

Creates statement

Binds
parameters

Binds
parameters

Executes statement

Handles exceptions—
somehow

172 CHAPTER 5

Hitting the database
 if(stmt != null) { stmt.close(); }
 if(conn != null) { conn.close(); }
 } catch (SQLException e) {}
 }
}

At first glance, listing 5.2 may appear to be identical to listing 5.1. In fact, disre-
garding the SQL String and the line where the statement is created, they are iden-
tical. Again, that’s a lot of code to do something as simple as update a single row in
a database. What’s more, that’s a lot of repeated code. Ideally, we’d only have to
write the lines that are specific to the task at hand. After all, those are the only
lines that distinguish listing 5.2 from listing 5.1. The rest is just boilerplate code.

 To round out our tour of traditional JDBC, let’s see how we might retrieve data
out of the database. As you can see in listing 5.3, that’s not too pretty, either.

private static final String MOTORIST_QUERY =
 "select id, email, password, firstName, lastName " +
 " from motorist where id=?";

public Motorist getMotoristById(Integer id) {
 Connection conn = null;
 PreparedStatement stmt = null;
 ResultSet rs = null;

 try {
 conn = dataSource.getConnection();
 stmt = conn.prepareStatement(MOTORIST_QUERY);

 stmt.setInt(1, id);

 rs = stmt.executeQuery();

 Motorist motorist = null;
 if(rs.next()) {
 motorist = new Motorist();
 motorist.setId(rs.getInt("id"));
 motorist.setEmail(rs.getString("email"));
 motorist.setPassword(rs.getString("password"));
 motorist.setFirstName(rs.getString("firstName"));
 motorist.setLastName(rs.getString("lastName"));
 }

 return motorist;
 } catch (SQLException e) {
 …
 } finally {
 try {

Listing 5.3 Using JDBC to query a row from a database

Cleans up
resources

Opens connection

Creates statement

Binds parameters

Executes query

Processes
results

Handles exceptions—
somehow

Using JDBC with Spring 173
 if(rs != null) { rs.close(); }
 if(stmt != null) { stmt.close(); }
 if(conn != null) { conn.close(); }
 } catch (SQLException e) {}
 }

 return null;
}

That’s just about as verbose as the insert and update examples—maybe more. It’s
like the Pareto principle2 flipped on its head; 20 percent of the code is needed to
actually query a row while 80 percent is just boilerplate code.

 By now you should see that much of JDBC code is boilerplate code for creat-
ing connections and statements and exception handling. With our point made,
we will end the torture here and not make you look at any more of this nasty,
nasty code.

 But the fact is that this boilerplate code is important. Cleaning up resources
and handling errors is what makes data access robust. Without it, errors would go
undetected and resources would be left open, leading to unpredictable code and
resource leaks. So not only do we need this code, we also need to make sure that it
is correct. This is all the more reason to let a framework deal with the boilerplate
code so that we know that it written once and written right.

5.3.2 Working with JDBC templates

Spring’s JDBC framework will clean up your JDBC code by shouldering the burden
of resource management and exception handling. This leaves you free to write
only the code necessary to move data to and from the database.

 As we explained in section 5.1.1, Spring abstracts away the boilerplate data
access code behind template classes. For JDBC, Spring comes with three template
classes to choose from:

■ JdbcTemplate—The most basic of Spring’s JDBC templates, this class pro-
vides simple access to a database through JDBC and simple indexed-parame-
ter queries.

■ NamedParameterJdbcTemplate—This JDBC template class enables you to
perform queries where values are bound to named parameters in SQL,
rather than indexed parameters.

2 http://en.wikipedia.org/wiki/Pareto%27s_principle

Cleans up
resources

174 CHAPTER 5

Hitting the database
■ SimpleJdbcTemplate—This version of the JDBC template takes advantage
of Java 5 features such as autoboxing, generics, and variable parameter lists
to simplify how a JDBC template is used.

Which one of these templates you choose is largely a matter of preference. That
said, if you’re targeting an older Java runtime environment, SimpleJdbcTemplate
won’t be available, as it depends on Java 5 features.

 To help you decide which of these JDBC templates will be best for you, let’s
look at them one by one, starting with JdbcTemplate.

Accessing data using JdbcTemplate
All a JdbcTemplate needs to do its work is a DataSource. This makes it easy
enough to configure a JdbcTemplate bean in Spring with the following XML:

<bean id="jdbcTemplate"
 class="org.springframework.jdbc.core.JdbcTemplate">
 <property name="dataSource" ref="dataSource" />
</bean>

The actual DataSource being referred to by the dataSource property can be any
implementation of javax.sql.DataSource, including those we created in
section 5.2.

 Now we can wire the JdbcTemplate into our DAO and use it to access the data-
base. For example, suppose that the RoadRantz DAO is based on JdbcTemplate:

public class JdbcRantDao implements RantDao {
…
 private JdbcTemplate jdbcTemplate;
 public void setJdbcTemplate(JdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }
}

We would then wire the jdbcTemplate property of JdbcRantDao as follows:

<bean id="rantDao"
 class="com.roadrantz.dao.jdbc.JdbcRantDao">
 <property name="jdbcTemplate" ref="jdbcTemplate" />
</bean>

With a JdbcTemplate at our DAO’s disposal, we can greatly simplify the saveMo-
torist() method from listing 5.1. The new JdbcTemplate-based saveMotorist()
method is shown in listing 5.4.

Using JDBC with Spring 175

private static final String MOTORIST_INSERT =
 "insert into motorist (id, email, password, " +
 "firstName, lastName) " +
 "values (null, ?,?,?,?)";

public void saveMotorist(Motorist motorist) {
 jdbcTemplate.update(MOTORIST_INSERT,
 new Object[] { motorist.getEmail(),motorist.getPassword(),
 motorist.getFirstName(), motorist.getLastName() });
}

We think you’ll agree that this version of saveMotorist() is significantly simpler.
There’s no more connection or statement creation code—and no more excep-
tion-handling code. There’s nothing but pure data insertion code.

 Actually, all of the boilerplate code is there. Just because you don’t see it, that
doesn’t mean it’s not there. It’s cleverly hidden inside the JdbcTemplate. When
the update() method is called, JdbcTemplate will get a connection, create a state-
ment, and execute the insert SQL.

 What you also don’t see is how the SQLException is handled. Internally,
JdbcTemplate will catch any SQLExceptions that are thrown. It will then translate
the generic SQLException into one of the more specific data access exceptions
from table 5.1 and rethrow it. Because Spring’s data access exceptions are all run-
time exceptions, we didn’t have to catch it in the saveMotorist() method.

 Reading data is also simplified with JdbcTemplate. Listing 5.5 shows a new ver-
sion of getMotoristById() that uses JdbcTemplate callbacks to map a result set
to domain objects.

private static final String MOTORIST_SELECT =
 "select id, email, password, firstName, lastName from motorist";
private static final String MOTORIST_BY_ID_SELECT =
 MOTORIST_SELECT + " where id=?";

public Motorist getMotoristById(long id) {
 List matches = jdbcTemplate.query(MOTORIST_BY_ID_SELECT,
 new Object[] { Long.valueOf(id) },
 new RowMapper() {
 public Object mapRow(ResultSet rs, int rowNum)
 throws SQLException, DataAccessException {

Listing 5.4 A JdbcTemplate-based saveMotorist() method

Listing 5.5 Querying for a motorist using JdbcTemplate

Inserts
motorist
data

Queries for
 motorist

Binds query
parameter

176 CHAPTER 5

Hitting the database
 Motorist motorist = new Motorist();

 motorist.setId(rs.getInt(1));
 motorist.setEmail(rs.getString(2));
 motorist.setPassword(rs.getString(3));
 motorist.setFirstName(rs.getString(4));
 motorist.setLastName(rs.getString(5));
 return motorist;
 }
 });

 return matches.size() > 0 ? (Motorist) matches.get(0) : null;
}

This getMotoristById() method uses JdbcTemplate’s query() method to query
a Motorist from the database. The query() method takes three parameters:

■ A String containing the SQL to be used to select the data from the database

■ An array of Object that contains values to be bound to indexed parameters
of the query

■ A RowMapper object that extracts values from a ResultSet and constructs a
domain object (in this case a Motorist)

The real magic happens in the RowMapper object. For every row that results from
the query, JdbcTemplate will call the mapRow() method of the RowMapper. Within
RowMapper, we’ve written the code that creates a Motorist object and populates it
with values from the ResultSet.

 getMotoristById() is a bit lengthier than the saveMotorist() method. Even
so, it’s still focused on retrieving a Motorist object from the database. Unlike tra-
ditional JDBC, there’s no resource management or exception-handling code.

Using named parameters
The saveMotorist() method in listing 5.4 used indexed parameters. This meant
that we had to take notice of the order that the parameters in the query and list
the values in the correct order when passing them to the update() method. If we
were to ever change the SQL in such a way that the order of the parameters would
change, we’d also need to change the order of the values.

 Optionally, we could use named parameters. Named parameters let us give
each parameter in the SQL an explicit name and to refer to the parameter by that
name when binding values to the statement. For example, suppose that the
MOTORIST_INSERT query were defined as follows:

Maps query
results to
Motorist
object

Using JDBC with Spring 177
private static final String MOTORIST_INSERT =
 "insert into motorist (id, email, password, " +
 "firstName, lastName) " +
 "values (null, :email, :password, :firstName, :lastName)";

With named parameter queries, the order of the bound values isn’t important. We
can bind each value by name. If the query changes and the order of the parame-
ters is no longer the same, we won’t have to change the binding code.

 Unfortunately, JdbcTemplate doesn’t support named parameters. Instead,
we’ll need to use a special JDBC template called NamedParameterJdbcTemplate. It
is configured in the Spring configuration XML similarly to JdbcTemplate:

<bean id="jdbcTemplate"
 class="org.springframework.jdbc.core.
 ➥ namedparam.NamedParameterJdbcTemplate">
 <property name="dataSource" ref="dataSource" />
</bean>

Because NamedParameterJdbcTemplate is a special JDBC template and because it
isn’t a subclass of JdbcTemplate, we’ll need to change the jdbcTemplate property
in our DAO to match the new template class:

public class JdbcRantDao implements RantDao {
…
 private NamedParameterJdbcTemplate jdbcTemplate;
 public void setJdbcTemplate(
 NamedParameterJdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }
}

Now we’re ready to update our saveMotorist() method to use named parame-
ters. Listing 5.6 shows the new named-parameter version of saveMotorist().

public void saveMotorist(Motorist motorist) {
 Map parameters = new HashMap();
 parameters.put("email", motorist.getEmail());
 parameters.put("password", motorist.getPassword());
 parameters.put("firstName", motorist.getFirstName());
 parameters.put("lastName", motorist.getLastName());

 jdbcTemplate.update(MOTORIST_INSERT, parameters);
}

The first thing you’ll notice is that this version of saveMotorist() is a bit longer
than the previous version. That’s because named parameters are bound through a

Listing 5.6 Using named parameters with Spring JDBC templates

Binds
parameter
values

Performs
insert

178 CHAPTER 5

Hitting the database
java.util.Map. Nevertheless, every line is focused on the goal of inserting a
Motorist object into the database. There’s still no resource management or
exception-handling code cluttering up the chief purpose of the method.

Simplifying JDBC in Java 5
Spring provides one more specialized JDBC template that you may want to con-
sider using. If you take another look at listing 5.4, you’ll see that the parameters
passed to update() were passed in as an Object array. That’s a typical strategy
used to pass variable-length parameter lists to a method. With Java 5’s new lan-
guage constructs (known as varargs), it is possible to pass variable-length parame-
ter lists without having to construct an array of Object.

 Taking advantage of Java 5 varargs means that the saveMotorist() method
can be further simplified as follows:

public void saveMotorist(Motorist motorist) {
 jdbcTemplate.update(MOTORIST_INSERT,
 motorist.getEmail(), motorist.getPassword(),
 motorist.getFirstName(), motorist.getLastName());
}

The jdbcTemplate in this new saveMotorist() method isn’t a standard JdbcTem-
plate object. Instead, it’s a special JDBC template, SimpleJdbcTemplate, that
takes advantage of some of Java 5’s syntax features. We configure the SimpleJd-
bcTemplate bean in Spring much like the regular JdbcTemplate bean:

<bean id="jdbcTemplate"
 class="org.springframework.jdbc.core.simple.SimpleJdbcTemplate">
 <property name="dataSource" ref="dataSource" />
</bean>

In addition, we’ll need to change the type of the jdbcTemplate property to be a
SimpleJdbcTemplate instead of JdbcTemplate:

public class JdbcRantDao implements RantDao {
…
 private SimpleJdbcTemplate jdbcTemplate;
 public void setJdbcTemplate(SimpleJdbcTemplate jdbcTemplate) {
 this.jdbcTemplate = jdbcTemplate;
 }
}

Because SimpleJdbcTemplate’s power comes from its use of Java 5 features, it will
only work when deployed to a Java 5 runtime.

Using JDBC with Spring 179
 SimpleJdbcTemplate does more than provide varargs support for binding
parameter values. It also takes advantage of Java 5’s support for autoboxing when
mapping result sets.

 Take another look at the getMotoristById() method in listing 5.5. Two things
you should take note of are:

■ The id parameter had to be converted to a wrapped type
(java.lang.Long) to be passed in the array of Object.

■ The return type of the RowMapper’s mapRow() method is java.lang.Object.
That’s because the RowMapper is meant to be generic enough to support any
type of object. The consequence is that the result must be returned as the
most generic type of all: Object.

Now consider the new version of getMotoristById() in listing 5.7 that uses Sim-
pleJdbcTemplate to do its work.

public Motorist getMotoristById(long id) {
 List<Motorist> matches = getSimpleJdbcTemplate().query(
 MOTORIST_BY_ID_SELECT,
 new ParameterizedRowMapper<Motorist>() {

 public Motorist mapRow(ResultSet rs, int rowNum)
 throws SQLException {
 Motorist motorist = new Motorist();

 motorist.setId(rs.getInt(1));
 motorist.setEmail(rs.getString(2));
 motorist.setPassword(rs.getString(3));
 motorist.setFirstName(rs.getString(4));
 motorist.setLastName(rs.getString(5));
 return motorist;
 }
 },
 id
);

 return matches.size() > 0 ? matches.get(0) : null;
}

The differences between listing 5.5 and listing 5.7 are subtle. The first difference
to note is that we’re using ParameterizedRowMapper to map the results to an
object. ParameterizedRowMapper takes advantage of Java 5 covariant return types

Listing 5.7 Using SimpleJdbcTemplate to retrieve a Motorist from the database

Returns
Motorist

Shows id isn’t wrapped

180 CHAPTER 5

Hitting the database
to specify a specific return type for the mapRow() method. In other words, this row
mapper knows that it’s dealing with a Motorist and not just an Object.

 The other difference is that the id parameter no longer needs to be wrapped
in a Long object and then wrapped again in an array of Object. That’s because
SimpleJdbcTemplate takes advantage of Java 5 autoboxing and varargs to auto-
matically convert the id parameter to a boxed Long.

 One more slight difference is that the order of the parameters passed to the
query() method are different for SimpleJdbcTemplate than they are for
JdbcTemplate. Because query() can take query parameters as varargs, the query
parameters had to be moved to the end of the parameter list to avoid confusion.
Otherwise, it’d be tricky for the query() method to know when the list of varargs
ends and the row mapper argument begins.

 As you’ve seen thus far, writing a JDBC-based DAO involves configuring a JDBC
template bean, wiring it into your DAO class, and then using the template to
access the database. This process involves configuring at least three beans in the
Spring configuration file: a data source, a template, and a DAO. Let’s see how to
cut out one of those beans from the configuration XML by using Spring’s JDBC
DAO support.

5.3.3 Using Spring’s DAO support classes for JDBC

For all of an application’s JDBC-backed DAO classes, we’ll need to be sure to add a
JdbcTemplate property and setter method. And we’ll need to be sure to wire the
JdbcTemplate bean into the JdbcTemplate property of each DAO. That’s not a big
deal if the application only has one DAO, but if you have multiple DAOs, that’s a
lot of repeated code.

 One solution would be for you to create a common parent class for all your
DAO objects where the JdbcTemplate property resides. Then all of your DAO
classes would extend that class and use the parent class’s JdbcTemplate for its data
access. Figure 5.5 shows the proposed relationship between an application DAO
and the base DAO class.

jdbcTemplate:JdbcTemplate
JdbcDaoSupport

RantDaoJdbc

Figure 5.5
Spring’s JdbcDaoSupport defines a placeholder for the
JdbcTemplate object so that subclasses won’t have to manage
their own JdbcTemplate.

Using JDBC with Spring 181
The idea of creating a base DAO class that holds the JdbcTemplate is such a good
idea that Spring comes with just such a base class out of the box. Spring’s Jdb-
cDaoSupport is a base class for writing JDBC-backed DAO classes. To use JdbcDao-
Support, simply write your DAO class to extend it. For example, the JDBC-based
DAO for the RoadRantz application might be written like this:

public class JdbcRantDao extends JdbcDaoSupport
 implements RantDao {
…
}

The JdbcDaoSupport provides convenient access to the JdbcTemplate through
the getJdbcTemplate() method. For example, the saveMotorist() method may
be written like this:

public void saveMotorist(Motorist motorist) {
 getJdbcTemplate().update(MOTORIST_INSERT,
 new Object[] { motorist.getEmail(), motorist.getPassword(),
 motorist.getFirstName(), motorist.getLastName() });
}

When configuring your DAO class in Spring, you could directly wire a JdbcTem-
plate bean into its jdbcTemplate property as follows:

<bean id="rantDao" class="com.roadrantz.dao.jdbc.JdbcRantDao">
 <property name="jdbcTemplate" ref="jdbcTemplate" />
</bean>

This will work, but it isn’t much different from how we configured the DAO that
didn’t extend JdbcDaoSupport. Alternatively, we can skip the middleman (or mid-
dle bean, as the case may be) and wire a data source directly into the dataSource
property that JdbcRantDao inherits from JdbcDaoSupport:

<bean id="rantDao" class="com.roadrantz.dao.jdbc.JdbcRantDao">
 <property name="dataSource" ref="dataSource" />
</bean>

When JdbcRantDao has its dataSource property configured, it will internally cre-
ate a JdbcTemplate instance for you. This eliminates the need to explicitly declare
a JdbcTemplate bean in Spring.

DAO support for named parameters
In section 5.2.2 we showed you some variations on the JdbcTemplate concept.
One variation, NamedParameterJdbcTemplate, offers the option to use named
parameter in queries instead of indexed parameters. If you’d like to use named

182 CHAPTER 5

Hitting the database
parameters with your queries, you can use Spring’s NamedParameterJdbcDaoSup-
port as the parent class for your DAOs.

 For example, if we want to use named parameter queries in the RoadRantz
application, we could write JdbcRantDao to extend NamedParameterJdbcDaoSup-
port as follows:

public class JdbcRantDao extends NamedParameterJdbcDaoSupport
 implements RantDao {
…
}

Just as with JdbcDaoSupport, NamedParameterJdbcDaoSupport provides conve-
nient access to the template. However, instead of calling getJdbcTemplate(),
we’ll need to call getNamedParameterJdbcTemplate() to retrieve the JDBC tem-
plate. Here’s how the saveMotorist() method might look if written to use
named-parameter queries:

public void saveMotorist(Motorist motorist) {
 Map parameters = new HashMap();
 parameters.put("email", motorist.getEmail());
 parameters.put("password", motorist.getPassword());
 parameters.put("firstName", motorist.getFirstName());
 parameters.put("lastName", motorist.getLastName());
 getNamedParameterJdbcTemplate().update(
 MOTORIST_INSERT, parameters);
}

getNamedParameterJdbcTemplate() returns a NamedParameterJdbcDaoSupport
object that we use to perform the update. Just as when we used NamedParameter-
JdbcDaoSupport, the parameters are mapped into the query in a java.util.Map.

Simplified Java 5 DAOs
In section 5.2.2, we also showed you how to use a Java 5–savvy JDBC template
called SimpleJdbcTemplate. If you’d like to exploit the advantages of Java 5’s
varargs and autoboxing in your DAOs then you may want to write your DAO class
to extend SimpleJdbcDaoSupport:

public class JdbcRantDao extends SimpleJdbcDaoSupport
 implements RantDao {
…
}

To get access to the SimpleJdbcTemplate that is contained within SimpleJdb-
cDaoSupport, simply call the getSimpleJdbcTemplate() method. Here’s the
saveMotorist() method, updated to use SimpleJdbcTemplate:

Integrating Hibernate with Spring 183
public void saveMotorist(Motorist motorist) {
 getSimpleJdbcTemplate().update(MOTORIST_INSERT,
 motorist.getEmail(), motorist.getPassword(),
 motorist.getFirstName(), motorist.getLastName());
}

JDBC is the most basic way to access data in a relational database. Spring’s JDBC
templates save you the hassle of dealing with the boilerplate code that handles
connection resources and exception handling, leaving you to focus on the actual
work of querying and updating data.

 Even though Spring takes much of the pain out of working with JDBC, it can
still become somewhat cumbersome as applications grow larger and more com-
plex. To help manage the persistence challenges of large applications, you may
want to graduate to a persistence framework such as Hibernate.

5.4 Integrating Hibernate with Spring

When we were kids, riding a bike was fun, wasn’t it? We would ride to school in the
mornings. When school let out, we would cruise to our best friend’s house. When
it got late and our parents were yelling at us for staying out past dark, we would
peddle home for the night. Gee, those days were fun.

 Then we grew up and we needed more than a bike. Sometimes we have to
travel quite a distance to work. Groceries have to be hauled, and ours kids need to
get to soccer practice. And if you live in Texas, air-conditioning is a must! Our
needs have simply outgrown our bike.

 JDBC is the bike of the persistence world. It is great for what it does, and for
some jobs it works just fine. But as our applications become more complex, so do
our persistence requirements. We need to be able to map object properties to
database columns and have our statements and queries created for us, freeing us
from typing an endless string of question marks. We also need features that are
more sophisticated:

■ Lazy loading—As our object graphs become more complex, we sometimes
don’t want to fetch entire relationships immediately. To use a typical exam-
ple, suppose we are selecting a collection of PurchaseOrder objects, and
each of these objects contains a collection of LineItem objects. If we are
only interested in PurchaseOrder attributes, it makes no sense to grab the
LineItem data. This could be quite expensive. Lazy loading allows us to
grab data only as it is needed.

■ Eager fetching—This is the opposite of lazy loading. Eager fetching allows
you to grab an entire object graph in one query. In the cases where we know

184 CHAPTER 5

Hitting the database
that we need a PurchaseOrder object and its associated LineItems, eager
fetching lets us get this from the database in one operation, saving us from
costly round-trips.

■ Cascading—Sometimes changes to a database table should result in changes
to other tables as well. Going back to our purchase order example, when an
Order object is deleted, we also want to delete the associated LineItems
from the database.

Several frameworks are available that provide these services. The general name
for these services is object-relational mapping (ORM). Using an ORM tool for your
persistence layer can save you literally thousands of lines of code and hours of
development time. This lets you switch your focus from writing error-prone SQL
code to addressing your application requirements.

 Spring provides support for several ORM frameworks, including Hibernate,
iBATIS, Apache OJB, Java Data Objects (JDO), Oracle’s TopLink, and the Java Per-
sistence API (JPA).

 As with Spring’s JDBC support, Spring’s support for ORM frameworks provides
integration points to the frameworks as well as some additional services:

■ Integrated support for Spring declarative transactions

■ Transparent exception handling

■ Thread-safe, lightweight template classes

■ DAO support classes

■ Resource management

We simply do not have enough space in this chapter to cover all of the ORM
frameworks that are supported by Spring. That’s okay, because Spring’s support
for one ORM solution is quite similar to the next. Once you get the hang of using
one ORM framework with Spring, you’ll find it easy to switch to another one.

 Let’s get started by looking at how Spring integrates with what is perhaps the
most popular ORM framework in use—Hibernate. Later in this chapter, we’ll also
look at how Spring integrates with JPA (in section 5.5) and iBATIS (section 5.6).

 Hibernate is an open source persistence framework that has gained significant
popularity in the developer community. It provides not only basic object-rela-
tional mapping but also all the other sophisticated features you would expect
from a full-featured ORM tool, such as caching, lazy loading, eager fetching, and
distributed caching.

Integrating Hibernate with Spring 185
 In this section, we will focus on how Spring integrates with Hibernate, without
dwelling too much on the intricate details of using Hibernate. If you need to learn
more about working with Hibernate, we recommend either Java Persistence with
Hibernate (Manning, 2006) or the Hibernate website at http://www.hibernate.org.

5.4.1 Choosing a version of Hibernate

At the time of this writing, Hibernate 3.2 is the latest version available. But it
wasn’t that long ago that Hibernate 2.x was the latest version available, and you
may still encounter some applications that haven’t moved up to Hibernate 3 yet.
The choice between Hibernate 2 and Hibernate 3 is significant because the
Hibernate API is quite different between the two versions.

 While many functional improvements and features were introduced between
Hibernate 2 and 3, one subtle change complicated Spring integration. You see, in
version 2 the Hibernate API was packaged under the net.sf.hibernate package
structure, but was repackaged under org.hibernate in version 3.

 For the Spring development team, this change presented a dilemma.
Because the Spring-Hibernate integration classes needed to import classes from
either net.sf.hibernate or org.hibernate, they were presented with the
choice of either:

■ Dropping support for Hibernate 2, supporting only Hibernate 3 going
forward

or:

■ Splitting the Spring-Hibernate support code into two strains—one for
Hibernate 2 and one for Hibernate 3

Recognizing the value of backward compatibility, the Spring team decided to split
its Spring-Hibernate support into two. The Hibernate 2 support is found within
the Spring distribution under the org.springframework.orm.hibernate pack-
age. Meanwhile, you can find the Hibernate 3 support under the org.spring-
framework.orm.hibernate3 package.

 For the most part, the classes in the Hibernate 3 package mirror those in the
Hibernate 2 package. For Hibernate 3, Spring also includes support for annota-
tion-based mapping.

 When possible, I recommend the choice of Hibernate 3 over Hibernate 2. The
examples in this chapter will reflect that choice. But if your circumstance doesn’t
afford you the luxury of Hibernate 3, you’ll find that Spring’s Hibernate 2 integra-

186 CHAPTER 5

Hitting the database
tion doesn’t differ from its support for Hibernate 3 much more than a package
name (and that Hibernate 2 doesn’t offer annotation-based mapping).

 Regardless of which Hibernate version you choose, the first thing you’ll need
to do is to configure a Hibernate session factory bean in Spring.

5.4.2 Using Hibernate templates

The main interface for interacting with Hibernate is org.hibernate.Session.
The Session interface provides basic data access functionality such as the ability to
save, update, delete, and load objects from the database. It is through the Hiber-
nate Session that an application’s DAO will perform all of its persistence needs.

 The standard way to get a reference to a Hibernate Session object is through
an implementation of Hibernate’s SessionFactory interface. Among other
things, SessionFactory is responsible for opening, closing, and managing Hiber-
nate Sessions.

 Much as Spring’s JdbcTemplate abstracted away the tedium of working with
JDBC, Spring’s HibernateTemplate provides an abstract layer over a Hibernate
Session. HibernateTemplate’s main responsibility is to simplify the work of open-
ing and closing Hibernate Sessions and to convert Hibernate-specific exceptions
to one of the Spring ORM exceptions listed in table 5.1. (In the case of Hibernate
2, this means converting a checked HibernateException to an unchecked Spring
exception.)

 The following XML shows how to configure a HibernateTemplate in Spring:

<bean id="hibernateTemplate"
 class="org.springframework.orm.hibernate3.HibernateTemplate">
 <property name="sessionFactory" ref="sessionFactory" />
</bean>

The sessionFactory property takes a reference to an implementation of
org.hibernate.SessionFactory. Here you have a few options, depending on
how you use Hibernate to map your objects to database tables.

Using classic Hibernate mapping files
If you are using Hibernate’s classic XML mapping files, you’ll want to use Spring’s
LocalSessionFactoryBean. As shown in figure 5.6, LocalSessionFactoryBean is
a Spring factory bean that produces a local Hibernate SessionFactory instance3

that draws its mapping metadata from one or more XML mapping files.

3 When you think about it, this class may be more appropriately named LocalSessionFactory-
FactoryBean. But to avoid stuttering, the ancillary Factory was dropped.

Integrating Hibernate with Spring 187
The following chunk of XML shows how to configure a LocalSessionFactory-
Bean that loads the mapping files for the RoadRantz domain objects:

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.
 ➥ LocalSessionFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="mappingResources">
 <list>
 <value>com/roadrantz/domain/Rant.hbm.xml</value>
 <value>com/roadrantz/domain/Motorist.hbm.xml</value>
 <value>com/roadrantz/domain/Vehicle.hbm.xml</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">${hibernate.dialect}</prop>
 </props>
 </property>
</bean>

The dataSource property refers to any implementation of javax.sql.Data-
Source, including any of those declared in section 5.2. The mappingResources
property takes a list of one or more paths to mapping files as resources in the
classpath. Here we’ve specified three mapping files that describe the persistence
of the RoadRantz application. Finally, the hibernateProperties property lets us
provide any additional configuration pertinent to the Hibernate session. At mini-
mum, we must specify the Hibernate dialect (that is, how Hibernate constructs its
SQL for a particular database). Here we’ve left the dialect decision as a place-
holder variable that will be replaced by PropertyPlaceholderConfigurer (see
section 3.5.3).

Working with annotated domain objects
When targeting a Java 5 runtime, you may choose to use annotations to tag
domain objects with persistence metadata. Hibernate 3 supports both JPA

Local
Session

FactoryBean

Hibernate
Mapping

XML

Hibernate
SessionFactory

Figure 5.6 Spring’s LocalSessionFactoryBean is a factory bean that
loads one or more Hibernate mapping XML files to produce a Hibernate
SessionFactory.

188 CHAPTER 5

Hitting the database
annotations and Hibernate-specific annotations for describing how objects should
be persisted. For annotation-based Hibernate, Spring’s AnnotationSessionFac-
toryBean works much like LocalSessionFactoryBean, except that it creates a
SessionFactory based on annotations in one or more domain classes (as shown
in figure 5.7).

 The XML required to configure an AnnotationSessionFactoryBean in Spring
is similar to the XML for LocalSessionFactoryBean:

<bean id="sessionFactory"
 class="org.springframework.orm.hibernate3.
 ➥ annotation.AnnotationSessionFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="annotatedClasses">
 <list>
 <value>com.roadrantz.domain.Rant</value>
 <value>com.roadrantz.domain.Motorist</value>
 <value>com.roadrantz.domain.Vehicle</value>
 </list>
 </property>
 <property name="hibernateProperties">
 <props>
 <prop key="hibernate.dialect">${hibernate.dialect}</prop>
 </props>
 </property>
</bean>

The dataSource and hibernateProperties properties serve the same purpose
with AnnotationSessionFactoryBean as with LocalSessionFactoryBean. How-
ever, instead of configuring one or more mapping files, we must configure Anno-
tationSessionFactoryBean with one or more classes that are annotated for
persistence with Hibernate. Here we’ve listed the domain objects in the
RoadRantz application.

Accessing data through the Hibernate template
With the HibernateTemplate bean declared and wired with a session factory,
we’re ready to start using it to persist and retrieve objects from the database.

Annotation
Session

FactoryBean

Annotated
Domain
Classes

Hibernate
SessionFactory

Figure 5.7 Spring’s AnnotationSessionFactoryBean produces a Hibernate
SessionFactory by reading annotations on one or more domain classes.

Integrating Hibernate with Spring 189
Listing 5.8 shows a portion of HibernateRantDao that is injected with a Hiber-
nateTemplate.

public class HibernateRantDao implements RantDao {
 public HibernateRantDao() {}

…

 private HibernateTemplate hibernateTemplate;
 public void setHibernateTemplate(HibernateTemplate template) {
 this.hibernateTemplate = template;
 }
}

HibernateRantDao accepts a HibernateTemplate reference via setter injection, so
we’ll need to configure it in Spring as follows:

<bean id="rantDao" class="com.roadrantz.dao.hibernate.HibernateRantDao">
 <property name="hibernateTemplate" ref="hibernateTemplate" />
</bean>

As we flesh out the methods in HibernateRantDao, we can use the injected Hiber-
nateTemplate to access objects stored in the database. For example, here’s the
saveVehicle() method that is used to persist a Vehicle object to the database:

public void saveVehicle(Vehicle vehicle) {
 hibernateTemplate.saveOrUpdate(vehicle);
}

Here we’re using the saveOrUpdate() method of HibernateTemplate to save a
Vehicle. The saveOrUpdate() method inspects the object to see if its ID field is
null. If it is, it must be a new object and thus it is inserted into the database. If it’s
not null, it is assumed that it is an existing object and its data is updated.

 Here’s the findVehiclesByPlate() method that uses HibernateTemplate’s
find() method to retrieve a Vehicle by querying by the state and license plate
number:

public Vehicle findVehicleByPlate(String state,
 String plateNumber) {
 List results = hibernateTemplate.find("from " + VEHICLE +
 " where state = ? and plateNumber = ?",
 new Object[] {state, plateNumber});

 return results.size() > 0 ? (Vehicle) results.get(0) : null;
}

Listing 5.8 Creating a HibernateTemplate-based DAO

Injects HibernateTemplate

190 CHAPTER 5

Hitting the database
And here’s how you might use HibernateTemplate’s load() method to load a
specific instance of a Motorist by the motorist’s ID field:

public Motorist getMotoristById(Integer id) {
 return (Motorist) hibernateTemplate.load(Motorist.class, id);
}

These are just examples of three ways that you can use HibernateTemplate.
HibernateTemplate offers several dozen methods that help you query and persist
objects through Hibernate. If you’re already familiar with the persistence meth-
ods available through Hibernate’s Session interface, you’ll be pleased to find
most of those methods available with HibernateTemplate.

 In listing 5.8 we explicitly injected a HibernateTemplate into Hibernate-
RantDao. That’s fine for some cases, but Spring also offers a DAO support class
for Hibernate that provides a HibernateTemplate for you without explicitly wir-
ing it. Let’s rework HibernateRantDao to take advantage of Spring’s DAO sup-
port for Hibernate.

5.4.3 Building Hibernate-backed DAOs

So far, the configuration of HibernateRantDao involves four beans. The data
source is wired into the session factory bean (either LocalSessionFactoryBean or
AnnotationSessionFactoryBean). The session factory bean is wired into the
HibernateTemplate. Finally, the HibernateTemplate is wired into Hibernate-
RantDao, where it is used to access the database.

 To simplify things slightly, Spring offers HibernateDaoSupport, a convenience
DAO support class, that enables you to wire a session factory bean directly into the
DAO class. Under the covers, HibernateDaoSupport creates a HibernateTemplate
that the DAO can use, as the UML in figure 5.8 illustrates.

 Let’s rework HibernateRantDao to use HibernateDaoSupport. The first step is
to change HibernateRantDao to extend HibernateDaoSupport:

 public class HibernateRantDao extends HibernateDaoSupport
 implements RantDao {
…
}

HibernateRantDao no longer needs a HibernateTemplate property as it did in
listing 5.8. Instead, you can use the getHibernateTemplate() method to get a
HibernateTemplate that HibernateDaoSupport creates for you. So, the next step
is to change all the data access methods in HibernateRantDao to use getHiber-
nateTemplate(). For example, here’s the saveMotorist() method updated for
the new HibernateDaoSupport-based HibernateRantDao:

Integrating Hibernate with Spring 191
public void saveMotorist(Motorist motorist) {
 getHibernateTemplate().saveOrUpdate(motorist);
}

The last thing that’s left to do is rewire the HibernateRantDao in the Spring
configuration. Since HibernateRantDao no longer needs a HibernateTemplate
reference, we’ll remove the hibernateTemplate bean. Instead of a Hibernate-
Template, HibernateRantDao’s new parent, HibernateDaoSupport, does need a
Hibernate SessionFactory so that it can produce a HibernateTemplate inter-
nally. So, we’ll wire the sessionFactory bean into the sessionFactory prop-
erty of HibernateRantDao:

<bean id="rantDao" class="com.roadrantz.dao.hibernate.HibernateRantDao">
 <property name="sessionFactory" ref="sessionFactory" />
</bean>

At this point, we have created a Hibernate-based DAO for the RoadRantz applica-
tion and have wired it up in Spring. Aside from transaction handling (which we’ll
cover in the next chapter), you know almost everything there is to know about
using Hibernate within Spring.

 But notice that HibernateRantDao extends a Spring-specific class. This may
not be a problem for you, but there are some people who would think of this as an
intrusion of Spring into their application code. For that reason, let’s look at a way
to take advantage of Hibernate 3’s support for contextual sessions to remove
Spring-specific dependencies from your DAOs.

sessionFactory : SessionFactory
template : HibernateTemplate

HibernateDaoSupport

HibernateRantDao

(Local|Annotation)
SessionFactoryBean

SessionFactory

produces

injected into

wired into

Figure 5.8 HibernateDaoSupport is a convenient superclass for a Hibernate-
based DAO that provides a HibernateTemplate created from an injected
SessionFactory.

192 CHAPTER 5

Hitting the database
5.4.4 Using Hibernate 3 contextual sessions

One of the responsibilities of HibernateTemplate is to manage Hibernate Ses-
sions. This involves opening and closing sessions as well as ensuring one session
per transaction. Without HibernateTemplate, you’d have no choice but to clutter
your DAOs with boilerplate session management code.

 The downside of HibernateTemplate is that it is somewhat intrusive. When we
use Spring’s HibernateTemplate in our DAO (whether directly or through Hiber-
nateDaoSupport), the HibernateRantDao class is coupled to the Spring API.
Although this may not be of much concern to some developers, others may find
Spring’s intrusion into their DAO code undesirable.

 There is another option, however. Contextual sessions, introduced in Hiber-
nate 3, are a way in which Hibernate itself manages one Session per transaction.
There’s no need for HibernateTemplate to ensure this behavior. So, instead of
wiring a HibernateTemplate into your DAO, you can wire a Hibernate Session-
Factory instead, as shown in figure 5.9.

 To illustrate, consider this new Spring-free version of HibernateRantDao:

public class HibernateRantDao implements RantDao {
…
 private SessionFactory sessionFactory;
 public void setSessionFactory(SessionFactory sessionFactory) {
 this.sessionFactory = sessionFactory;
 }
}

In this new HibernateRantDao, a SessionFactory reference is injected into the
sessionFactory property. Since SessionFactory comes from the Hibernate API,
HibernateRantDao no longer depends on the Spring Framework. Instead of using
HibernateTemplate to perform persistence operations, you now ask the Session-
Factory for the current session.

sessionFactory : SessionFactory
HibernateRantDao

(Local|Annotation)
SessionFactoryBean

SessionFactory

produces

injected into

wired into

Figure 5.9 Taking advantage of Hibernate 3 contextual sessions, we can wire a
SessionFactory (produced by a session factory bean) directly into a DAO, thus
decoupling the DAO class from the Spring API.

Integrating Hibernate with Spring 193
 For example, here’s the saveRant() method updated to use Hibernate 3’s con-
textual sessions:

public void saveRant(Rant rant) {
 sessionFactory.getCurrentSession().saveOrUpdate(rant);
}

When it comes to configuring the HibernateRantDao in Spring, it’s no different
than how we configured it for the HibernateDaoSupport-based version of Hiber-
nateRantDao. Both HibernateDaoSupport and our new pure-Hibernate version of
HibernateRantDao require a Hibernate SessionFactory to be wired into their
sessionFactory property. In either case, the sessionFactory bean (which is a
SessionFactory-producing LocalSessionFactoryBean or AnnotationSession-
FactoryBean) is suitable:

<bean id="rantDao" class="com.roadrantz.dao.hibernate.HibernateRantDao">
 <property name="sessionFactory" ref="sessionFactory" />
</bean>

Now we have two options for creating Hibernate-based DAOs in our Spring appli-
cations: HibernateTemplate and contextual sessions. How do we choose? Here
are some things to consider when making that choice:

■ Certainly, if you’re using Hibernate 2 then you have no other option than to
use HibernateTemplate.

■ The main benefit of Hibernate contextual sessions is that they decouple
your DAO implementations from Spring.

■ The primary drawback of contextual sessions is that they throw Hibernate-
specific exceptions. Although HibernateException is a runtime exception,
the exception hierarchy is specific to Hibernate and not as ORM-agnostic as
Spring’s persistence exception hierarchy. This may hinder migration to a
different ORM solution.

Despite several attempts to come up with a standard persistence framework,
including EJB entity beans and Java Data Objects (JDO), Hibernate has taken the
position of the de facto persistence standard in the Java community. Even with
Hibernate’s unparalleled popularity, history may show that it ultimately sets the
stage for a true persistence standard: the Java Persistence API (JPA).

 The good news is that Spring’s ORM abstraction APIs aren’t limited to Hiber-
nate. Spring also provides an abstraction API for JPA that mirrors that for Hiber-
nate. Our survey of Spring’s integration with persistence frameworks continues

194 CHAPTER 5

Hitting the database
in the next section with a discussion of how to use Spring with the Java Persis-
tence API.

5.5 Spring and the Java Persistence API

From its beginning, the EJB specification has included the concept of entity
beans. In EJB, entity beans are a type of EJB that describes business objects that are
persisted in a relational database. Entity beans have undergone several tweaks
over the years, including bean-managed persistence (BMP) entity beans and con-
tainer-managed persistence (CMP) entity beans.

 Entity beans both enjoyed the rise and suffered the fall of EJB’s popularity. In
recent years, developers have traded in their heavyweight EJBs for simpler POJO-
based development. This presented a challenge to the Java Community Process to
shape the new EJB specification around POJOs. The result is JSR-220—also known
as EJB 3.

 The portion of the EJB 3 specification that replaces entity beans is known as
the Java Persistence API (JPA). JPA is a POJO-based persistence mechanism that
draws ideas from both Hibernate and Java Data Objects (JDO) and mixes Java 5
annotations in for good measure.

 With the Spring 2.0 release came the premiere of Spring integration with JPA.
The irony is that many blame (or credit) Spring with the demise of EJB. But now
that Spring provides support for JPA, many developers are recommending JPA for
persistence in Spring-based applications. In fact, some say that Spring-JPA is the
dream team for POJO development.

 Spring’s JPA support mirrors the template-based support Spring provides for
the other persistence frameworks. Therefore, let’s get started with Spring and JPA
by looking at Spring’s JpaTemplate.

5.5.1 Using JPA templates

Keeping consistent with Spring’s support for other persistence solutions, the cen-
tral element of Spring-JPA integration is a template class. JpaTemplate, specifi-
cally, is a template class that wraps a JPA EntityManager. The following XML
configures a JPA template in Spring:

<bean id="jpaTemplate"
 class="org.springframework.orm.jpa.JpaTemplate">
 <property name="entityManagerFactory"
 ref="entityManagerFactory" />
</bean>

Spring and the Java Persistence API 195
The entityManagerFactory property of JpaTemplate must be wired with an
implementation of JPA’s javax.persistence.EntityManagerFactory interface,
as shown in figure 5.10. JpaTemplate will use the EntityManagerFactory to pro-
duce EntityManagers as needed. I’ll show you where the entityManagerFactory
bean comes from in section 5.5.2.

 Similar to Spring’s other persistence templates, JpaTemplate exposes many of
the same data access methods provided by a native JPA EntityManager. But unlike
a plain JPA, JpaTemplate ensures that EntityManagers are opened and closed as
necessary, involves the EntityManagers in transactions, and handles exceptions.

 To write a JpaTemplate-based DAO, add a JpaTemplate property to the DAO
and provide a setter for injection. Here’s an excerpt from JpaRantDao showing
the JpaTemplate property:

public class JpaRantDao implements RantDao {
 public JpaRantDao() {}

…

 // injected
 private JpaTemplate jpaTemplate;
 public void setJpaTemplate(JpaTemplate jpaTemplate) {
 this.jpaTemplate = jpaTemplate;
 }
}

Local(Container)
EntityManager
FactoryBean

EntityManagerFactory

EntityManager

produces
produces

entityManagerFactory : EntityManagerFactory
entityManager : EntityManager

JpaTemplateinjected into

wired into

used by

Figure 5.10 Spring’s JpaTemplate templates JPA data access, ensuring that
EntityManagers are opened and closed as necessary, handling exceptions, and
involving EntityManagers in Spring transactions.

196 CHAPTER 5

Hitting the database
When configuring JpaRantDao in Spring, we simply wire the JpaTemplate into
the jpaTemplate property:

<bean id="rantDao"
 class="com.roadrantz.dao.jpa.JpaRantDao">
 <property name="jpaTemplate" ref="jpaTemplate" />
</bean>

With the JpaTemplate injected into the DAO, we’re now ready to use the template
to access persisted objects.

Accessing data through the JPA template
As we mentioned, JpaTemplate provides many of the same persistence methods
that are provided by JPA’s EntityManager. This should make working with
JpaTemplate second nature if you’re already familiar with JPA. For example, the
following implementation of the saveMotorist() method uses JpaTemplate’s
persist() method to save a Motorist object to the database:

public void saveMotorist(Motorist motorist) {
 jpaTemplate.persist(motorist);
}

In addition to the standard set of methods provided by EntityManager, JpaTem-
plate also provides some convenience methods for data access. For example,
consider the following getRantsForDay() method that uses a native JPA Entity-
Manager to find all of the Rant objects that were entered on a given day:

public List<Rant> getRantsForDay(Date day) {
 Query query = entityManager.createQuery(
 "select r from Rant r where r.date=?1");
 query.setParameter(1, day);
 return query.getResultList();
}

The first thing getRantsForDay() has to do is create a Query object. Then it sets
the query parameters. In this case, there’s only one query parameter, but you can
imagine that a much more interesting example would involve one call to setPa-
rameter() for each parameter. Finally, the query is executed to retrieve the
results.

 Contrast that method with the following implementation of getRantsFor-
Day():

public List<Rant> getRantsForDay(Date day) {
 return jpaTemplate.find(
 "select r from Rant r where r.date=?1", day);
}

Spring and the Java Persistence API 197
In this version, getRantsForDay() takes advantage of a convenient find()
method offered by JpaTemplate. EntityManager doesn’t have such a simple
find() method that takes a query and one or more parameters. Under the covers,
JpaTemplate’s find() method creates and executes the Query for you, saving you
a couple of lines of code.

 The one unanswered question is where we get the entityManagerFactory bean
that we wired into the JpaTemplate. Before we see what else Spring has to offer
with regard to JPA integration, let’s configure the entityManagerFactory bean.

5.5.2 Configuring an entity manager factory

In a nutshell, JPA-based applications use an implementation of EntityManager-
Factory to get an instance of an EntityManager. The JPA specification defines two
kinds of entity managers:

■ Application-managed—entity managers are created when an application
directly requests an entity manager from an entity manager factory. With
application-managed entity managers, the application is responsible for
opening or closing entity managers and involving the entity manager in
transactions. This type of entity manager is most appropriate for use in
stand-alone applications that do not run within a Java EE container.

■ Container-managed—entity managers are created and managed by a Java EE
container. The application does not interact with the entity manager factory
at all. Instead, entity managers are obtained directly through injection or
from JNDI. The container is responsible for configuring the entity manager
factories. This type of entity manager is most appropriate for use by a Java
EE container that wants to maintain some control over JPA configuration
beyond what is specified in persistence.xml.

Both kinds of entity manager implement the same EntityManager interface. The
key difference is not in the EntityManager itself, but rather in how the Entity-
Manager is created and managed. Application-managed EntityManagers are
created by an EntityManagerFactory obtained by calling the createEntityMan-
agerFactory() method of the PersistenceProvider. Meanwhile, container-man-
aged EntityManagerFactorys are obtained through PeristenceProvider’s
createContainerEntityManagerFactory() method.

 So what does this all mean for Spring developers wanting to use JPA? Actually,
not much. Regardless of which variety of EntityManagerFactory you want to use,
Spring will take responsibility for managing EntityManagers for you. If using an

198 CHAPTER 5

Hitting the database
application-managed entity manager, Spring plays the role of an application and
transparently deals with the EntityManager on your behalf. In the container-man-
aged scenario, Spring plays the role of the container.

 Each flavor of entity manager factory is produced by a corresponding Spring
factory bean:

■ LocalEntityManagerFactoryBean produces an application-managed Enti-
tyManagerFactory.

■ LocalContainerEntityManagerFactoryBean produces a container-man-
aged EntityManagerFactory.

It’s important to point out that the choice made between an application-managed
EntityManagerFactory and a container-managed EntityManagerFactory is com-
pletely transparent to a Spring-based application. Spring’s JpaTemplate hides the
intricate details of dealing with either form of EntityManagerFactory, leaving
your data access code to focus on its true purpose: data access.

 The only real difference between application-managed and container-man-
aged entity manager factories, as far as Spring is concerned, is how each is config-
ured within the Spring application context. Let’s start by looking at how to
configure the application-managed LocalEntityManagerFactoryBean in Spring.
Then we’ll see how to configure a container-managed LocalContainerEntity-
ManagerFactoryBean.

Configuring application-managed JPA
Application-managed entity manager factories derive most of their configuration
information from a configuration file called persistence.xml. This file must
appear in the META-INF directory within the classpath.

 The purpose of the persistence.xml file is to define one or more persistence
units. A persistence unit is a grouping of one or more persistent classes that corre-
spond to a single data source. In simple terms, persistence.xml enumerates one or
more persistent classes along with any additional configuration such as data
sources and XML-based mapping files. Here’s a typical example of a persis-
tence.xml file as it pertains to the RoadRantz application:

<persistence xmlns="http://java.sun.com/xml/ns/persistence"
 version="1.0">
 <persistence-unit name="rantzPU">
 <class>com.roadrantz.domain.Motorist</class>
 <class>com.roadrantz.domain.Rant</class>
 <class>com.roadrantz.domain.Vehicle</class>
 <properties>

Spring and the Java Persistence API 199
 <property name="toplink.jdbc.driver"
 value="org.hsqldb.jdbcDriver" />
 <property name="toplink.jdbc.url" value=
 "jdbc:hsqldb:hsql://localhost/roadrantz/roadrantz" />
 <property name="toplink.jdbc.user"
 value="sa" />
 <property name="toplink.jdbc.password"
 value="" />
 </properties>
 </persistence-unit>
</persistence>

Because so much configuration goes into a persistence.xml file, there’s very little
configuration that’s required (or even possible) in Spring. The <bean> in listing 5.9
declares a LocalEntityManagerFactoryBean in Spring.

<bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.
 ➥ LocalEntityManagerFactoryBean">
 <property name="persistenceUnitName" value="rantzPU" />
</bean>

The value given to the persistenceUnitName property refers to the persistence
unit name as it appears in persistence.xml.

 The reason why much of what goes into creating an application-managed
EntityManagerFactory is contained in persistence.xml has everything to do with
what it means to be application managed. In the application-managed scenario
(not involving Spring), an application is entirely responsible for obtaining an
EntityManagerFactory through the JPA implementation’s PersistencePro-
vider. The application code would become incredibly bloated if it had to define
the persistence unit every time it requested an EntityManagerFactory. By
specifying it in persistence.xml, JPA can look in this well-known location for per-
sistence unit definitions.

 But with Spring’s support for JPA, the JpaTemplate will be the one that inter-
acts with the PersistenceProvider—not our application code. Therefore, it
seems a bit silly to extract configuration information into persistence.xml. In fact,
it prevents us from configuring the EntityManagerFactory in Spring (so that, for
example, we can provide a Spring-configured data source).

 For that reason, we should turn our attention to container-managed JPA.

Listing 5.9 Configuring an application-managed EntityManagerFactory
factory bean

Selects
persistence
unit

200 CHAPTER 5

Hitting the database
Configuring container-managed JPA
Container-managed JPA takes a slightly different approach. When running within
a container, an EntityManagerFactory can be produced using information pro-
vided by the container. This form of JPA is intended for use in JEE application serv-
ers (such as WebLogic or JBoss) where data source information will be configured
through the application server’s configuration.

 Nevertheless, container-managed JPA is also possible with Spring. Instead of
configuring data source details in persistence.xml, you can configure this infor-
mation in the Spring application context. For example, listing 5.10 shows how to
configure container-managed JPA in Spring using LocalContainerEntityMan-
agerFactoryBean.

<bean id="entityManagerFactory"
 class="org.springframework.orm.jpa.
 ➥ LocalContainerEntityManagerFactoryBean">

 <property name="dataSource" ref="dataSource" />

 <property name="jpaVendorAdapter">
 <bean class=
 "org.springframework.orm.jpa.vendor.
 ➥ TopLinkJpaVendorAdapter">
 <property name="showSql" value="true"/>
 <property name="generateDdl" value="true"/>
 <property name="database" value="HSQL"/>
 </bean>
 </property>

 <property name="loadTimeWeaver">
 <bean class="org.springframework.instrument.classloading.
 ➥ SimpleLoadTimeWeaver" />
 </property>
 </bean>

Here we’ve configured the dataSource property with a Spring-configured data
source. Any implementation of javax.sql.DataSource is appropriate, such as
those that we configured in section 5.2. Although a data source may still be con-
figured in persistence.xml, the data source specified through this property takes
precedence.

Listing 5.10 Configuring a container-managed EntityManagerFactory
factory bean

OpenConfigures data
sources connection

Configures JPA
vendor-specifics

Specifies load-time weaver

Spring and the Java Persistence API 201
 The jpaVendorAdapter property can be used to provide specifics about the
particular JPA implementation to use. In this case, we’re using TopLink Essentials,
so we’ve configured it with a TopLinkJpaVendorAdapter. Several properties are
set on the vendor adapter, but the most important one is the database property,
where we’ve specified the Hypersonic database as the database we’ll be using.
Other values supported for this property include those listed in table 5.5.

 Certain dynamic persistence features require that the class of persistent objects
be modified with instrumentation to support the feature. Objects whose proper-
ties are lazily loaded (that is, they will not be retrieved from the database until
they are actually accessed) must have their class instrumented with code that
knows to retrieve unloaded data upon access. Some frameworks use dynamic
proxies to implement lazy loading. Others, such as JDO, perform class instrumen-
tation at compile time.

 JPA allows for load-time instrumentation of persistent classes so that a class is mod-
ified with dynamic persistence features as the class is loaded. The loadTimeWeaver
property of LocalContainerEntityManagerFactoryBean lets us specify how the
dynamic persistence features are woven into the persistent class. In this case, we’ve
chosen Spring’s SimpleLoadTimeWeaver.

 Which entity manager factory bean you choose will depend primarily on how
you will use it. For simple applications, LocalEntityManagerFactoryBean may be

Table 5.5 The TopLink vendor adapter supports several
databases. You can specify which database to use by setting
its database property.

Database platform Value for database property

IBM DB2 DB2

Hypersonic HSQL

Informix INFORMIX

MySQL MYSQL

Oracle ORACLE

PostgresQL POSTGRESQL

Microsoft SQL Server SQLSERVER

Sybase SYBASE

202 CHAPTER 5

Hitting the database
sufficient. But because LocalContainerEntityManagerFactoryBean enables us to
configure more of JPA in Spring, it is an attractive choice and likely the one that
you’ll choose for production use.

5.5.3 Building a JPA-backed DAO

Previously, we wired a reference to an entity manager factory bean into a JpaTem-
plate and then wired the JpaTemplate into our DAO. But Spring’s JpaDaoSup-
port simplifies things a bit further by making it possible to wire the entity
manager factory bean directly into our DAO class.

 JpaDaoSupport provides the same convenience for JPA-backed DAOs as Jdb-
cDaoSupport and HibernateDaoSupport provided for JDBC-backed and Hiber-
nate-backed DAOs, respectively. As shown in figure 5.11, a JPA-backed DAO class
extends JpaDaoSupport and is injected with an EntityManagerFactory (which
may be produced by an EntityManagerFactoryBean). Under the covers, JpaDao-
Support creates a JpaTemplate and makes it available to the DAO for data access.
To take advantage of Spring’s JPA DAO support, we will write JpaRantDao to sub-
class JpaDaoSupport:

public class JpaRantDao extends JpaDaoSupport
 implements RantDao {
…
}

Local(Container)
EntityManager
FactoryBean

EntityManagerFactory

EntityManager

produces
produces

entityManagerFactory : EntityManagerFactory
jpaTemplate : JpaTemplate

JpaDaoSupportinjected into

wired into

used by

JpaRantDao

Figure 5.11 JpaDaoSupport is a convenient superclass for JPA-backed DAO classes. It is
wired with an EntityManagerFactory (produced by an EntityManager factory bean) and
make a JpaTemplate available for data access.

Spring and iBATIS 203
Now, instead of wiring JpaRantDao with a JpaTemplate reference, we’ll wire it
directly with the entityManagerFactory bean:

<bean id="rantDao" class="com.roadrantz.dao.jpa.JpaRantDao">
 <property name="entityManagerFactory"
 ref="entityManagerFactory" />
</bean>

Internally, JpaDaoSupport will use the entity manager factory wired into the enti-
tyManagerFactory property to create a JpaTemplate. As we flesh out the imple-
mentation of JpaRantDao, we can use the JpaTemplate by calling
getJpaTemplate(). For example, the following reimplementation of saveMotor-
ist() uses JpaDaoSupport’s getJpaTemplate() method to access the JpaTem-
plate and to persist a Motorist object:

public void saveMotorist(Motorist motorist) {
 getJpaTemplate().persist(motorist);
}

Both Hibernate and JPA are great solutions for object-relational mapping.
Through ORM, the gory details of data access—SQL statements, database connec-
tions, and result sets—are hidden and we can deal with data persistence at the
object level. However, although ORM hides data access specifics, it also hinders
(or even prevents) fine-grained control of how persistence is handled.

 At the other end of the spectrum is JDBC. With JDBC, you have complete con-
trol over data access. But with this control comes complete responsibility for the
tedium of connection management and mapping result sets to objects.

 Next up, let’s have a look at how Spring integrates with iBATIS, a persistence
framework that strikes a balance between the absolute control of JDBC and the
transparent mapping of ORM.

5.6 Spring and iBATIS

Somewhere in between pure JDBC and ORM is where iBATIS resides. iBATIS is
often classified among ORM solutions such as Hibernate and JPA, but I prefer to
refer to it as an object-query mapping (OQM) solution. Although the iBATIS fea-
ture set overlaps that of ORM in many ways, iBATIS puts you in full control of the
actual SQL being performed. iBATIS will still take responsibility for mapping
query results to domain objects, but you are free to author the queries in any man-
ner that suits you best.

 Spring offers integration with iBATIS that mirrors that of its integration with
JDBC and ORM frameworks. As with the other persistence frameworks described

204 CHAPTER 5

Hitting the database
in this chapter, we’re going to keep our focus on how Spring integrates with
iBATIS. If you’d like to learn more about iBATIS, I recommend you check out iBA-
TIS in Action (Manning, 2007).

5.6.1 Configuring an iBATIS client template

At the center of the iBATIS API is the com.ibatis.sqlmap.client.SqlMapCli-
ent interface. SqlMapClient is roughly equivalent to Hibernate’s Session or
JPA’s EntityManager. It is through this interface that all data access operations
are performed.

 Unfortunately, iBATIS shares many of the same problems as JDBC, Hibernate
(pre-3.0), and JPA. Specifically, applications that use iBATIS for persistence are
required to manage sessions. This session management code is typically nothing
more than boilerplate code and distracts from the real goal of persisting objects
to a database.

 Furthermore, the persistence methods of SqlMapClient are written to throw
java.sql.SQLException if there are any problems. As we’ve already discussed,
SQLException is both a checked exception and too generic to react to in any use-
ful way.

 SqlMapClientTemplate is Spring’s answer to the iBATIS session management
and exception-handling problems. Much like the other templates that we’ve cov-
ered in this chapter, SqlMapClientTemplate wraps an SqlMapClient to transpar-
ently open and close sessions. It also will catch any SQLExceptions that are
thrown and rethrow them as one of Spring’s unchecked persistence exceptions
in table 5.1.

Configuring an SqlMapClientTemplate
SqlMapClientTemplate can be configured in the Spring application context as
follows:

<bean id="sqlMapClientTemplate"
 class="org.springframework.orm.ibatis.SqlMapClientTemplate">
 <property name="sqlMapClient" ref="sqlMapClient" />
</bean>

The sqlMapClient property must be wired with a reference to an iBATIS SqlMap-
Client. In Spring, the best way to get an SqlMapClient is through SqlMapClient-
FactoryBean:

<bean id="sqlMapClient"
 class="org.springframework.orm.ibatis.SqlMapClientFactoryBean">
 <property name="dataSource" ref="dataSource" />
 <property name="configLocation" value="sql-map-config.xml" />
</bean>

Spring and iBATIS 205
SqlMapClientFactoryBean is a Spring factory bean that produces an SqlMapCli-
ent. The dataSource property is wired with a reference to a javax.sql.Data-
Source. Any of the data sources described in section 5.2 will do.

Defining iBATIS SQL maps
As for the configLocation property, it should be configured with the path to an
XML file that enumerates the locations of the iBATIS SQL maps. For the
RoadRantz application, we’ve defined one SQL map file per domain object.
Therefore, the sql-map-config.xml file will look like this:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sqlMapConfig PUBLIC "-//iBATIS.com//
 ➥ DTD SQL Map Config 2.0//EN"
 "http://www.ibatis.com/dtd/sql-map-config-2.dtd">

<sqlMapConfig>
 <sqlMap resource="com/roadrantz/domain/rant-sql.xml" />
 <sqlMap resource="com/roadrantz/domain/motorist-sql.xml" />
 <sqlMap resource="com/roadrantz/domain/vehicle-sql.xml" />
</sqlMapConfig>

The three SQL map files are loaded as resources from the classpath under the
same package as the domain objects themselves. As an example of iBATIS SQL
mapping, listing 5.11 shows an excerpt from rant-sql.xml.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE sqlMap PUBLIC "-//iBATIS.com//DTD SQL Map 2.0//EN"
 "http://www.ibatis.com/dtd/sql-map-config-2.dtd">

<sqlMap> namespace="Rant"
…
 <resultMap id="rantResult"
 class="com.roadrantz.domain.Rant">
 <result property="id" column="id" />
 <result property="rantText" column="rant_text" />
 <result property="postedDate" column="posted_date" />
 <result property="vehicle" column="vehicle_id"
 select="getVehicleById" />
 </resultMap>

…

 <select id="getRantsForDay"
 resultMap="rantResult"
 parameterClass="int">
 <![CDATA[
 select id, posted_date, rant_text, vehicle_id
 from rant

Listing 5.11 An example of mapping SQL queries to Rant objects

Defines
result
mapping

Declares
getRantsForDay
query

206 CHAPTER 5

Hitting the database
 where posted_date = #VALUE#
]]>
 </select>

…
</sqlMap>

In listing 5.11, we’ve defined a query that loads a list of Rant objects based on data
passed in as a parameter when the getRantsForDay query is performed. The
query is associated with a <resultMap> entry that tells iBATIS to convert each row
returned from the query into a Rant object. By the time our DAO sees the results,
they will be in the form of a List of Rant objects.

Using the template in a DAO
Before we can use the SqlMapClientTemplate to perform data access operations,
we must wire it into our DAO. The following excerpt from IBatisRantDao shows
an implementation of RantDao that is injected with an SqlMapClientTemplate:

public class IBatisRantDao implements RantDao {
…
 // injected
 private SqlMapClientTemplate sqlMapClientTemplate;
 public void setSqlMapClientTemplate(
 SqlMapClientTemplate sqlMapClientTemplate) {
 this.sqlMapClientTemplate = sqlMapClientTemplate;
 }
}

Since IBatisRantDao depends on an SqlMapClientTemplate, we’ll need to con-
figure it as follows in the Spring configuration:

<bean id="rantDao"
 class="com.roadrantz.dao.ibatis.IBatisRantDao">
 <property name="sqlMapClientTemplate"
 ref="sqlMapClientTemplate" />
</bean>

With the SqlMapClientTemplate injected into IBatisRantDao, we can now start
fleshing out the persistence methods needed by the RoadRantz application.
Here’s what the getRantsForDay() method looks like when written to use the
injected SqlMapClientTemplate:

public List<Rant> getRantsForDay(Date day) {
 return sqlMapClientTemplate.queryForList(
 "getRantsForDay", day);
}

Declares
getRantsForDay
query

Spring and iBATIS 207
As with the other persistence mechanisms, Spring also provides DAO support for
iBATIS. Before we end our exploration of Spring-iBATIS integration, let’s see how
we can build the RoadRantz data access layer using iBATIS DAO support.

5.6.2 Building an iBATIS-backed DAO

The SqlMapClientDaoSupport class is a DAO support class for iBATIS. Much like
the other DAO support classes offered by Spring, SqlMapClientDaoSupport is
intended to be subclassed by a DAO implementation. As depicted in figure 5.12,
SqlMapClientDaoSupport is a convenient superclass for iBATIS-backed DAOs
that exposes an SqlMapClientTemplate object that can be used to execute
iBATIS queries.

 Rewriting the IBatisRantDAO class to use SqlMapClientDaoSupport, we have
the following class definition.

public class IBatisRantDAO extends SqlMapClientDaoSupport
 implements RantDao {
…
}

SqlMapClientDaoSupport provides an SqlMapClientTemplate for your DAO to
use through its getSqlMapClientTemplate() method. As an example of how to
use getSqlMapClientTemplate(), here’s the new getRantsForDay() method:

SqlMapClient
FactoryBean

SqlMapClient

produces

sqlMapClient : SqlMapClient
sqlMapClientTemplate : SqlMapClientTemplate

SqlMapClientDaoSupportinjected into

wired into

IBatisRantDao

Figure 5.12 SqlMapClientDaoSupport is a convenient way to create iBATIS-
backed DAO classes. SqlMapClientDaoSupport is injected with an
SqlMapClient that it wraps with an SqlMapClientTemplate to hide iBATIS
boilerplate code.

208 CHAPTER 5

Hitting the database
public List<Rant> getRantsForDay(Date day) {
 return getSqlMapClientTemplate().queryForList(
 "getRantsForDay", day);
}

The big difference between wiring an SqlMapClientTemplate directly into a DAO
and subclassing SqlMapClientDaoSupport is that you can eliminate one of the
beans in the Spring configuration. When a DAO subclasses SqlMapClientDaoSup-
port, you can bypass the SqlMapClientTemplate bean and wire an SqlMapClient
(or an SqlMapClientFactoryBean that produces an SqlMapClient) directly into
the DAO:

<bean id="rantDao" class="com.roadrantz.dao.ibatis.IBatisRantDao">
 <property name="sqlMapClient" ref="sqlMapClient" />
</bean>

As with the other persistence frameworks that integrate with Spring, the decision
to either use a DAO support class or wire a template directly into your DAO is
mostly a matter of taste. Although SqlMapClientDaoSupport does slightly simplify
configuration of an iBATIS-backed DAO, you may prefer to inject an SqlMapCli-
entTemplate into an application’s DAO—especially if your DAO class already sub-
classes another base class.

 Thus far, you’ve seen several ways of reading and writing data to a database,
and we’ve built the persistence layer of the RoadRantz application. Now that you
know how to read data from a database, let’s see how to avoid unnecessary data-
base reads using Spring’s support for data caching.

5.7 Caching

In many applications, data is read more frequently than it is written. In the
RoadRantz application, for instance, more people will visit the site to view the
rants for a particular day or vehicle than those who post rants. Although the list of
rants will grow over time, it will not grow as often as it is viewed.

 Moreover, the data presented by the RoadRantz application is not considered
time sensitive. If a user were to browse the site and see a slightly outdated list of
rants, it probably would not have any negative impact on them. Eventually, they
could return to the site to see a newer list of rants and no harm would be done.

 Nevertheless, every time that a list of rants is requested, the DAO will go back to
the database and ask for the latest data (which, more often than not, is the same
data as the last time it asked).

Caching 209
 Database operations are often the number-one performance bottleneck in an
application. Even the simplest queries against highly optimized data stores can
add up to performance problems in a high-use application.

 When you consider the infrequency of data changes along with the perfor-
mance costs of querying a database, it seems silly to always query the database for
the latest data. Instead, it seems to make sense to cache frequently accessed (but
not frequently updated) data.

 On the surface, caching sounds quite simple: after retrieving some informa-
tion, store it away in a local (and more easily accessible) location so that it’s handy
the next time you need it. But implementing a caching solution by hand can be
tricky. For example, have a look at HibernateRantDao’s getRantsForDay()
method:

public List<Rant> getRantsForDay(Date day) {
 return getHibernateTemplate().find("from " + RANT +
 " where postedDate = ?", day);
}

The getRantsForDay() method is a perfect candidate for caching. There’s no way
to go back in time and add a rant for a day in the past. Unless the day being que-
ried for is today, the list of rants returned for any given day will never change.
Therefore, there’s no point in always going back to the database for the list of
rants that were posted last Tuesday. The database only needs to be queried once,
and then we can remember it in case we’re ever asked for it again.

 Now let’s modify getRantsForDay() to use some form of homegrown cache:

public List<Rant> getRantsForDay(Date day) {
 List<Rant> cachedResult =
 rantCache.lookup("getRantsForDay", day);
 if(cachedResult != null) {
 return cachedResult;
 }

 cachedResult = getHibernateTemplate().find("from " + RANT +
 " where postedDate = ?", day);

 rantCache.store("getRantsForDay", day, cachedResult);

 return cachedResult
}

This version of getRantsForDay() is much more awkward. The real purpose of
getRantsForDay() is to look up the rants for a given day. But the bulk of the
method is dealing with caching. Furthermore, it doesn’t directly deal with some of
the complexities of caching, such as cache expiration, flushing, or overflow.

210 CHAPTER 5

Hitting the database
Fortunately, a more elegant caching solution is available for Spring applications.
The Spring Modules project (http://springmodules.dev.java.net) provides cach-
ing via aspects. Rather than explicitly instrument methods to be cached, Spring
Modules caching aspects apply advice to bean methods to transparently cache
their results.

 As illustrated in figure 5.13, Spring Modules support for caching involves a
proxy that intercepts calls to one or more methods of Spring-managed beans.
When a proxied method is called, Spring Modules Cache first consults a cache to
see whether the method has already been called previously with the same argu-
ments. If so, it will return the value in the cache and the actual method will not be
invoked. Otherwise, the method is called and its return value is stored in the
cache for the next time that the method is called.

 In this section, we’re going to cache-enable the DAO layer of the RoadRantz
application using Spring Modules Cache. This will make the application perform
better and give our hard-working database a well-earned break.

5.7.1 Configuring a caching solution

Although Spring Modules provides a proxy for intercepting methods and storing
the results in a cache, it does not provide an actual caching solution. Instead, it
relies on a third-party cache solution. Several caching solutions are supported,
including:

■ EHCache

■ GigaSpaces

Relational
Database

DAO
Slow Database

Access

Data
Cache

Cache
Proxy

Quick Cache
Access

Data Request

Figure 5.13 The Spring Modules caching module intercepts calls to a bean’s
methods, looking up data from a cache for quick data access and thus
avoiding unnecessary slow queries to the database.

Caching 211
■ JBoss Cache

■ JCS

■ OpenSymphony’s OSCache

■ Tangosol’s Coherence

For our RoadRantz application, I’ve chosen EHCache. This decision was based
primarily on my previous experience with EHCache and the fact that it is readily
available in the Maven repository at www.ibiblio.org. However, regardless of which
caching solution you choose, the configuration for Spring Modules Cache is quite
similar for all caching solutions.

 The first thing we’ll need to do is create a new Spring configuration file to
declare caching in. While we could have worked the Spring Modules Cache con-
figuration into any of the Spring context configuration files loaded in the
RoadRantz application, it’s better to keep thing separate. So we’ll create
roadrantz-cache.xml to hold our caching configuration.

 As with any Spring context configuration file, roadrantz-cache.xml is rooted
with the <beans> element. However, to take advantage of Spring Modules’ sup-
port for EHCache, we’ll need to declare the <beans> element to recognize the
ehcache namespace:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ehcache="http://www.springmodules.org/schema/ehcache"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
 http://www.springmodules.org/schema/ehcache
 http://www.springmodules.org/schema/cache/
 ➥ springmodules-ehcache.xsd">
…
</beans>

We’re using EHCache for the RoadRantz application, but if you’d like to use one
of the other supported caching providers, you’ll need to swap out the namespace
and schema declaration with the Spring Modules namespace and schema declara-
tion appropriate for your choice. Table 5.6 lists each namespace along with its URI
and schema URI.

 Regardless of which caching provider you choose, you’ll be given several
Spring configuration elements for configuring declarative caching in Spring.
Table 5.7 catalogs these elements.

212 CHAPTER 5

Hitting the database

Table 5.6 The namespaces and schemas for the various caching providers supported by
Spring Modules.

Namespace Namespace URI Schema URI

ehcache http://www.springmodules.org/
schema/ehcache

http://www.springmodules.org/
schema/cache/springmodules-
ehcache.xsd

gigaspaces http://www.springmodules.org/
schema/gigaspaces

http://www.springmodules.org/
schema/cache/springmodules-
gigaspaces.xsd /

jboss http://www.springmodules.org/
schema/jboss

http://www.springmodules.org/
schema/cache/springmodules-
jboss.xsd

jcs http://www.springmodules.org/
schema/jcs

http://www.springmodules.org/
schema/cache/springmodules-jcs.xsd

oscache http://www.springmodules.org/
schema/oscache

http://www.springmodules.org/
schema/cache/springmodules-
oscache.xsd

tangosol http://www.springmodules.org/
schema/tangosol

http://www.springmodules.org/
schema/cache/springmodules-
tangosol.xsd

Table 5.7 Spring Modules’ configuration elements.

Configuration element What it’s for

<namespace:annotations> Declaring cached methods by tagging them with Java
5 annotations

<namespace:commons-attributes> Declaring cached methods by tagging them with
Jakarta Commons Attributes metadata

<namespace:config> Configuring the EHCache cache provider in Spring XML

<namespace:proxy> Declaring cached methods by declaring a proxy in
Spring XML

Caching 213
Since we’re using EHCache as the caching provider, we’ll need to tell Spring
where to find the EHCache configuration file.4 That’s what the <ehcache:con-
fig> element is for:

<ehcache:config
 configLocation="classpath:ehcache.xml" />

Here we’re setting the configLocation attribute to tell Spring to load EHCache’s
configuration from the root of the application’s classpath.

Configuring EHCache
As for the ehcache.xml file itself, we’ve configured it as shown in listing 5.12.

<ehcache>
 <defaultCache
 maxElementsInMemory="500"
 eternal="true"
 overflowToDisk="false"
 memoryStoreEvictionPolicy="LFU" />

 <cache name="rantzCache"
 maxElementsInMemory="500"
 eternal="true"
 overflowToDisk="false"
 memoryStoreEvictionPolicy="LFU" />
</ehcache>

To summarize the code, we’ve configured two caches for EHCache to manage.
The <defaultCache> element is mandatory and describes the cache that will be
used if no other suitable cache is found. The <cache> element defines other
caches and may appear zero or more times in ehcache.xml (once for each cache
it defines). Here we’ve defined rantzCache as the only nondefault cache.

 The attributes specified on <defaultCache> and <cache> describe the behav-
ior of the cache. Table 5.8 lists the attributes available when configuring a cache
in EHCache.

4 At the time of this writing, the EHCache configuration (and the specific configuration for the other
caching providers) is still specified in a provider-specific file external to Spring. But future versions may
expose provider-specific configuration through the <namespace:config> element so that the external
file is no longer necessary.

Listing 5.12 Configuring EHCache in ehcache.xml

Configures
default cache

Configures
rantzCache

214 CHAPTER 5

Hitting the database
For the RoadRantz application, we’ve configured one default cache (because
EHCache says that we have to) and another cache called rantzCache that will be
the primary cache. We’ve configured both caches to allow for up to 500 elements
to be kept in cache (with no expiration) and the least frequently used elements
will be evicted. In addition, no disk overflow will be allowed.5

 With EHCache configured in the Spring application context, we are now ready
to declare which beans and methods should have their results cached. Let’s start

Table 5.8 Cache configuration attributes for EHCache.

Attribute Used to specify…

diskExpiryThreadIntervalSeconds How often (in seconds) the disk expiry thread is run—
that is, how often the disk-persisted cache is
cleansed of expired items. (Default: 120 seconds.)

diskPersistent Whether or not the disk store persists between
restarts of the VM. (Default: false.)

eternal Whether or not elements are eternal. If they are eter-
nal, the element never expires. (Required.)

maxElementsInMemory The maximum number of elements that will be cached
in memory. (Required.)

memoryStoreEvictionPolicy How eviction will be enforced when
maxElementsInMemory is reached. By default,
the least recently used (LRU) policy is applied. Other
options are first-in/first-out (FIFO) and less frequently
used (LFU). (Default: LRU.)

name The name of the cache. (Required for <cache>.)

overflowToDisk Whether or not the cache is allowed to overflow to
disk when the in-memory cache has reached the
maxElementsInMemory limit. (Required.)

timeToIdleSeconds The time (in seconds) between accesses before an
element expires. A value of 0 indicates that the ele-
ment can be idle forever. (Default: 0.)

timeToLiveSeconds The time (in seconds) that an element is allowed to
live in cache before it expires. A value of 0 indicates
that the element can live in cache forever without
expiring. (Default: 0.)

5 These choices were made somewhat arbitrarily, but they are a good start. Naturally, the application’s
usage patterns should be measured and the cache settings adjusted accordingly.

Caching 215
by declaring a proxy that will cache the values returned from the methods of the
RoadRantz DAO layer.

5.7.2 Proxying beans for caching

We’ve already identified the getRantsForDay() method of HibernateRantDao as
a candidate for caching. Back in the Spring context definition, we’ll use the
<ehcache:proxy> element to wrap the HibernateRantDao with a proxy that will
cache everything returned from getRantsForDay():

<ehcache:proxy id="rantDao"
 refId="rantDaoTarget">
 <ehcache:caching
 methodName="getRantsForDay"
 cacheName="rantzCache" />
</ehcache:proxy>

The <ehcache:caching> element declares which method(s) will be intercepted
and which cache their return values will be cached in. For our purposes, method-
Name has been set to intercept the getRantsForDay() method and to use the
rantzCache cache.

 You may declare as many <ehcache:caching> elements within
<ehcache:proxy> as you need to describe caching for a bean’s methods. You
could use one <ehcache:caching> element for each cached method. Or you can
also use wildcards to specify multiple methods with only one <ehcache:caching>
element. The following <ehcache:caching> element, for example, will proxy all
methods whose name starts with get to be cached:

<ehcache:caching
 methodName="get*"
 cacheName="rantzCache" />

Putting items into a cache is only half of the problem. After a while the cache will
become littered with lots of data, some of which may no longer be relevant. Even-
tually, it may be desirable to clear out the cache (call it “Spring cleaning”) and
start over. Let’s see how to flush the cache upon a method call.

Flushing the cache
Where the <ehcache:caching> element declares methods that populate the
cache, <ehcache:flushing> declares methods that empty the cache. For exam-
ple, let’s suppose that you’d like to clear out the rantzCache cache whenever the
saveRant() method is called. The following <ehcache:flushing> element will
handle that for you:

216 CHAPTER 5

Hitting the database
<ehcache:flushing
 methodName="saveRant"
 cacheName="rantzCache" />

By default, the cache specified in the cacheName attribute will be flushed after the
method specified with methodName is invoked. But you can change the timing of
the flush by using the when attribute:

<ehcache:flushing
 methodName="saveRant"
 cacheName="rantzCache"
 when="before" />

By setting when to before we are asking for the cache to be flushed before the
saveRant() method is invoked.

Declaring a proxied inner bean
Take note of <ehcache:proxy>’s id and refId attributes. The proxy produced by
<ehcache:proxy> will be given an id of rantDao. However, that’s the id of the
real HibernateRantDao bean. Therefore, we’ll need to rename the real bean to
rantDaoTarget, which is referred to by the refId attribute. (This is consistent
with how classic Spring AOP proxies and their targets are named. See section 4.2.3
for a reminder of how that works.)

 If the id/refId arrangement seems awkward, then you also have the option of
declaring the target bean as an inner bean of <ehcache:proxy>. For example,
here’s <ehcache:proxy> reconfigured with HibernateRantDao as an inner bean:

<ehcache:proxy id="rantDao">

 <bean class="com.roadrantz.dao.HibernateRantDao">
 <property name="sessionFactory"
 ref="sessionFactory" />
 </bean>

 <ehcache:caching
 methodName="getRantsForDay"
 cacheName="rantzCache" />
</ehcache:proxy>

Even using inner beans, you’ll still need to declare one <ehcache:proxy> element
for each bean to be proxied and one or more <ehcache:caching> element for
the methods. For simple applications, this may be okay. But as the number of
cache-proxied beans and methods goes up, it will mean more and more XML in
your Spring configuration.

 If the inner-bean approach still seems clumsy or if you will be proxying several
beans to be cached, you may want to consider using Spring Modules’ support for

Caching 217
declarative caching by annotation. Let’s kiss <ehcache:proxy> goodbye and see
how Spring Modules supports annotation-driven caching.

5.7.3 Annotation-driven caching

In addition to the XML-based caching configuration described in the previous sec-
tion, Spring Modules supports declarative caching using code-level metadata.
This support comes in two varieties:

■ Java 5 annotations—This is the ideal solution if you’re targeting the Java 5
platform.

■ Jakarta Commons Attributes—If you’re targeting pre–Java 5, you may choose
Jakarta Commons Attributes.

For RoadRantz, we’re targeting Java 5. Therefore, we’ll be using Java 5 annota-
tions to declare caching in the DAO layer. Spring Modules provides two annota-
tions with regard to caching:

■ @Cacheable—Declares that a method’s return value should be cached

■ @CacheFlush—Declares a method to be a trigger for flushing a cache

Using the @Cacheable annotation, we can declare the getRantsForDay() method
to be cached like so:

@Cacheable(modelId="rantzCacheModel")
public List<Rant> getRantsForDay(Date day) {
 return getHibernateTemplate().find("from " + RANT +
 " where postedDate = ?", day);
}

The modelId attribute specifies a caching model that will be used to cache the val-
ues returned from getRantsForDay(). We’ll talk more about how the caching
model is defined in a moment. But first, let’s use @CacheFlush to specify a flush
action when the saveRant() method is called:

@CacheFlush(modelId="rantzFlushModel")
public void saveRant(Rant rant) {
 getHibernateTemplate().saveOrUpdate(rant);
}

The modelId attribute refers to the flushing model that will be cleared when the
saveRant() method is invoked.

 Speaking of caching and flushing models, you probably would like to know
where those come from. The <ehcache:annotations> element is used to enable

218 CHAPTER 5

Hitting the database
Spring Modules’ support for annotations. We’ll configure it in roadrantz-
cache.xml as follows:

<ehcache:annotations>
 <ehcache:caching id="rantzCacheModel"
 cacheName="rantzCache" />
</ehcache:annotations>

Within the <ehcache:annotations> element, we must configure at least one
<ehcache:caching> element. <ehcache:caching> defines a caching model. In
simple terms, a caching model is little more than a reference to a named cache
configured in ehcache.xml. Here we’ve associated the name rantzCacheModel
with a cache named rantzCache. Consequently, any @Cacheable whose modelId is
rantzCacheModel will target the cache named rantzCache.

 A flushing model is quite similar to a caching model, except that it refers to the
cache that will be flushed. We’ll configure a flushing model called rantzFlush-
Model alongside the rantzCacheModel using the <ehcache:flushing> element:

<ehcache:annotations>
 <ehcache:caching id="rantzCacheModel"
 cacheName="rantzCache" />
 <ehcache:flushing id="rantzFlushModel"
 cacheName="rantzCache" />
</ehcache:annotations>

The one thing that sets cache models apart from flushing models is that a flushing
model not only decides which cache to flush, but also when to flush it. By default,
the cache is flushed after @CacheFlush-annotated methods are called. But you can
change that by specifying a value for the when attribute of <ehcache:flushing>:

<ehcache:annotations>
 <ehcache:caching id="rantzCacheModel"
 cacheName="rantzCache" />
 <ehcache:flushing id="rantzFlushModel"
 cacheName="rantzCache"
 when="before" />
</ehcache:annotations>

By setting the when attribute to before, the cache will be flushed before a @Cache-
Flush-annotated method is invoked.

5.8 Summary

Data is the lifeblood of an application. Some of the data-centric among us may
even contend that data is the application. With such significance being placed on

Summary 219
data, it’s important that we develop the data access portion of our applications in
a way that is robust, simple, and clear,

 Spring’s support for JDBC and ORM frameworks takes the drudgery out of data
access by handling common boilerplate code that exists in all persistence mecha-
nisms, leaving you to focus on the specifics of data access as they pertain to your
application.

 One way that Spring simplifies data access is by managing the lifecycle of data-
base connections and ORM framework sessions, ensuring that they are opened
and closed as necessary. In this way, management of persistence mechanisms is vir-
tually transparent to your application code.

 Also, Spring is able to catch framework-specific exceptions (some of which are
checked exceptions) and convert them to one of a hierarchy of unchecked excep-
tions that are consistent among all persistence frameworks supported by Spring.
This includes converting nebulous SQLExceptions thrown by JDBC and iBATIS
into meaningful exceptions that describe the actual problem that led to the
exception being thrown.

 We’ve also seen how an add-on module from the Spring Modules project can
provide declarative caching support for your data access layer, increasing perfor-
mance when often-requested, but scarcely updated, data is retrieved from a
database.

 Transaction management is another aspect of data access that Spring can
make simple and transparent. In the next chapter, we’ll explore how to use Spring
AOP for declarative transaction management.

Managing transactions
This chapter covers
■ Integrating with transaction managers
■ Managing transactions programmatically
■ Using declarative transactions
■ Describing transactions using annotations
220

221
Take a moment to recall your younger days. If you were like many children, you
spent more than a few carefree moments on the playground swinging on the
swings, traversing the monkey bars, getting dizzy while spinning on the merry-go-
round, and going up and down on the teeter-totter.

 The problem with the teeter-totter is that it is practically impossible to enjoy on
your own. You see, to truly enjoy a teeter-totter, you need another person. You and
a friend both have to agree to play on the teeter-totter. This agreement is an all-or-
nothing proposition. Both of you will either teeter-totter or you will not. If either
of you fails to take your respective seat on each end of the teeter-totter then there
will be no teeter-tottering—there’ll just be a sad little kid sitting motionless on the
end of a slanted board.1

 In software, all-or-nothing operations are called transactions. Transactions
allow you to group several operations into a single unit of work that either fully
happens or fully doesn’t happen. If everything goes well then the transaction is a
success. But if anything goes wrong, the slate is wiped clean and it’s as if nothing
ever happened.

 Probably the most common example of a real-world transaction is a money
transfer. Imagine that you were to transfer $100 from your savings account to your
checking account. The transfer involves two operations: $100 is deducted from
the savings account and $100 is added to the checking account. The money trans-
fer must be performed completely or not at all. If the deduction from the savings
account works but the deposit into the checking account fails, you’ll be out $100
(good for the bank, bad for you). On the other hand, if the deduction fails but
the deposit succeeds, you’ll be ahead $100 (good for you, bad for the bank). It’s
best for both parties involved if the entire transfer is rolled back if either opera-
tion fails.

 In chapter 5, we examined Spring’s data access support and saw several ways to
read from and write data to the database. When writing to a database, we must
ensure that the integrity of the data is maintained by performing the updates
within a transaction. Spring has rich support for transaction management, both
programmatic and declarative. In this chapter, we’ll see how to apply transactions
to your application code so that when things go right they are made permanent.
And when things go wrong… well, nobody needs to know. (Actually, almost
nobody. You may still want to log the problem for the sake of auditing.)

1 Since the first edition of this book, we have confirmed that this definitely qualifies as the most uses of
the word “teeter-totter” in a technical book. That’s just a bit of trivia to challenge your friends with.

222 CHAPTER 6

Managing transactions
6.1 Understanding transactions

To illustrate transactions, consider the purchase of a movie ticket. Purchasing a
ticket typically involves the following actions:

■ The number of available seats will be examined to verify that there are
enough seats available for your purchase.

■ The number of available seats is decremented by one for each ticket pur-
chased.

■ You provide payment for the ticket.

■ The ticket is issued to you.

If everything goes well, you’ll be enjoying a blockbuster movie and the theater will
be a few dollars richer. But what if something goes wrong? For instance, what if
you paid with a credit card that had reached its limit? Certainly, you would not
receive a ticket and the theater wouldn’t receive payment. But if the number of
seats isn’t reset to its value before the purchase, the movie may artificially run out
of seats (and thus lose sales). Or consider what would happen if everything else
works fine but the ticket issue fails. You’d be short a few dollars and be stuck at
home watching reruns on cable TV.

 To ensure that neither you nor the theater loses out, these actions should be
wrapped in a transaction. As a transaction, they’re all treated as a single action,
guaranteeing that they’ll either all fully succeed or they’ll all be rolled back as if
these steps never happened. Figure 6.1 illustrates how this transaction plays out.

1. Verify Seats
2. Reserve Seat
3. Receive Payment
4. Issue Ticket

Purchase Ticket

Everything Goes W
ell

Something Goes Wrong

Transaction Committed

Transaction Rolled Back

Figure 6.1 The steps involved when purchasing a movie ticket should be all or
nothing. If every step is successful then the entire transaction is successful.
Otherwise, the steps should be rolled back—as if they never happened.

Understanding transactions 223
 Transactions play an important role in software, ensuring that data and
resources are never left in an inconsistent state. Without them, there is potential
for data to be corrupted or inconsistent with the business rules of the application.

 Before we get too carried away with Spring’s transaction support, it’s important
to understand the key ingredients of a transaction. Let’s take a quick look at the
four factors that guide transactions and how they work.

6.1.1 Explaining transactions in only four words

In the grand tradition of software development, an acronym has been created to
describe transactions: ACID. In short, ACID stands for:

■ Atomic—Transactions are made up of one or more activities bundled
together as a single unit of work. Atomicity ensures that all the operations
in the transaction happen or that none of them happen. If all the activities
succeed, the transaction is a success. If any of the activities fail, the entire
transaction fails and is rolled back.

■ Consistent—Once a transaction ends (whether successful or not), the system
is left in a state that is consistent with the business that it models. The data
should not be corrupted with respect to reality.

■ Isolated—Transactions should allow multiple users to work with the same
data, without each user’s work getting tangled up with the others. There-
fore, transactions should be isolated from each other, preventing concur-
rent reads and writes to the same data from occurring. (Note that isolation
typically involves locking rows and/or tables in a database.)

■ Durable—Once the transaction has completed, the results of the transaction
should be made permanent so that they will survive any sort of system crash.
This typically involves storing the results in a database or some other form
of persistent storage.

In the movie ticket example, a transaction could ensure atomicity by undoing the
result of all the steps if any step fails. Atomicity supports consistency by ensuring
that the system’s data is never left in an inconsistent, partially done state. Isola-
tion also supports consistency by preventing another concurrent transaction
from stealing seats out from under you while you are still in the process of pur-
chasing them.

 Finally, the effects are durable because they will have been committed to some
persistent storage. In the event of a system crash or other catastrophic event, you
shouldn’t have to worry about results of the transaction being lost.

224 CHAPTER 6

Managing transactions
 For a more detailed explanation of transactions, we suggest that you read Mar-
tin Fowler’s Patterns of Enterprise Application Architecture (Addison-Wesley Profes-
sional, 2002). Specifically, chapter 5 discusses concurrency and transactions.

 Now that you know the makings of a transaction, let’s see the transaction capa-
bilities available to a Spring application.

6.1.2 Understanding Spring’s transaction management support

Spring, like EJB, provides support for both programmatic and declarative transac-
tion management support. But Spring’s transaction management capabilities
exceed those of EJB.

 Spring’s support for programmatic transaction management differs greatly
from that of EJB. Unlike EJB, which is coupled with a Java Transaction API (JTA)
implementation, Spring employs a callback mechanism that abstracts away the
actual transaction implementation from the transactional code. In fact, Spring’s
transaction management support doesn’t even require a JTA implementation. If
your application uses only a single persistent resource, Spring can use the transac-
tional support offered by the persistence mechanism. This includes JDBC, Hiber-
nate, Java Data Objects (JDO), and Apache’s Object Relational Bridge (OJB).
However, if your application has transaction requirements that span multiple
resources, Spring can support distributed (XA) transactions using a third-party
JTA implementation. We’ll discuss Spring’s support for programmatic transactions
in section 6.3.

 While programmatic transaction management affords you flexibility in pre-
cisely defining transaction boundaries in your code, declarative transactions help
you decouple an operation from its transaction rules. Spring’s support for declar-
ative transactions is reminiscent of EJB’s container-managed transactions (CMTs).
Both allow you to define transaction boundaries declaratively. But Spring’s declar-
ative transactions go beyond CMTs by allowing you to declare additional attributes
such as isolation level and timeouts. We’ll begin working with Spring’s declarative
transaction support in section 6.4.

 Choosing between programmatic and declarative transaction management is
largely a decision of fine-grained control versus convenience. When you program
transactions into your code, you gain precise control over transaction boundaries,
beginning and ending them precisely where you want. Typically, you will not
require the fine-grained control offered by programmatic transactions and will
choose to declare your transactions in the context definition file.

 Regardless of whether you choose to program transactions into your beans or
to declare them as aspects, you’ll be using a Spring transaction manager to

Choosing a transaction manager 225
interface with a platform-specific transaction implementation. Let’s see how
Spring’s transaction managers free you from dealing directly with platform-
specific transaction implementations.

6.2 Choosing a transaction manager

Spring does not directly manage transactions. Instead, it comes with a selection of
transaction managers that delegate responsibility for transaction management to
a platform-specific transaction implementation provided by either JTA or the per-
sistence mechanism. Spring’s transaction managers are listed in table 6.1.

Table 6.1 Spring has transaction managers for every occasion.

Transaction manager (org.springframework.*) Use it when…

jca.cci.connection.
CciLocalTransactionManager

Using Spring’s support for J2EE Connector
Architecture (JCA) and the Common Client
Interface (CCI).

jdbc.datasource.
DataSourceTransactionManager

Working with Spring’s JDBC abstraction sup-
port. Also useful when using iBATIS for per-
sistence.

jms.connection.JmsTransactionManager Using JMS 1.1+.

jms.connection.
JmsTransactionManager102

Using JMS 1.0.2.

orm.hibernate.
HibernateTransactionManager

Using Hibernate 2 for persistence.

orm.hibernate3.
HibernateTransactionManager

Using Hibernate 3 for persistence.

orm.jdo.JdoTransactionManager Using JDO for persistence.

orm.jpa.JpaTransactionManager Using the Java Persistence API (JPA) for per-
sistence.

orm.toplink.TopLinkTransactionManager Using Oracle’s TopLink for persistence.

transaction.jta.JtaTransactionManager You need distributed transactions or when
no other transaction manager fits the need.

transaction.jta.
OC4JJtaTransactionManager

Using Oracle's OC4J JEE container.

transaction.jta.
WebLogicJtaTransactionManager

You need distributed transactions and your
application is running within WebLogic.

226 CHAPTER 6

Managing transactions
Each of these transaction managers acts as a façade to a platform-specific transac-
tion implementation. (Figure 6.2 illustrates the relationship between transaction
managers and the underlying platform implementations for a few of the transac-
tion managers.) This makes it possible for you to work with a transaction in
Spring with little regard to what the actual transaction implementation is.

 To use a transaction manager, you’ll need to declare it in your application con-
text. In this section, you’ll learn how to configure a few of Spring’s most com-
monly used transaction managers, starting with DataSourceTransactionManager,
which provides transaction support for plain JDBC and iBATIS.

6.2.1 JDBC transactions

If you’re using straight JDBC for your application’s persistence, DataSourceTrans-
actionManager will handle transactional boundaries for you. To use DataSource-
TransactionManager, wire it into your application’s context definition using the
following XML:

<bean id="transactionManager" class="org.springframework.jdbc.
 ➥ datasource.DataSourceTransactionManager">
 <property name="dataSource" ref="dataSource"/>
</bean>

Platform
Transaction

Manager

JDBC Hibernate JDO JTAJPA

DataSource
Transaction

Manager

Hibernate
Transaction

Manager

Jdo
Transaction

Manager

Jta
Transaction

Manager

Jpa
Transaction

Manager

Spring's Transaction Managers

Platform-Specific Transaction Implementations

Figure 6.2 Spring’s transaction managers delegate transaction-management responsibility
to platform-specific transaction implementations.

Choosing a transaction manager 227
Notice that the dataSource property is set with a reference to a bean named
dataSource. Presumably, the dataSource bean is a javax.sql.DataSource bean
defined elsewhere in your context definition file.

 Behind the scenes, DataSourceTransactionManager manages transactions by
making calls on the java.sql.Connection object retrieved from the DataSource.
For instance, a successful transaction is committed by calling the commit()
method on the connection. Likewise, a failed transaction is rolled back by calling
the rollback() method.

6.2.2 Hibernate transactions

If your application’s persistence is handled by Hibernate then you’ll want to use
HibernateTransactionManager. For Hibernate 2.x, it is a bean declared with the
following XML:

<bean id="transactionManager" class="org.springframework.
 ➥ orm.hibernate.HibernateTransactionManager">
 <property name="sessionFactory" ref="sessionFactory"/>
</bean>

On the other hand, if you’re using Hibernate 3.x, you’ll need to declare this ver-
sion of the HibernateTransactionManager bean (pay careful attention to the
package name):

<bean id="transactionManager" class="org.springframework.
 ➥ orm.hibernate3.HibernateTransactionManager">
 <property name="sessionFactory" ref="sessionFactory"/>
</bean>

The sessionFactory property should be wired with a Hibernate SessionFactory,
here cleverly named sessionFactory. See chapter 5 for details on setting up a
Hibernate session factory.

 HibernateTransactionManager delegates responsibility for transaction man-
agement to an org.hibernate.Transaction object that it retrieves from the
Hibernate session. When a transaction successfully completes, HibernateTrans-
actionManager will call the commit() method on the Transaction object. Simi-
larly, when a transaction fails, the rollback() method will be called on the
Transaction object.

6.2.3 Java Persistence API transactions

Hibernate has been Java’s de facto persistence standard for a few years, but now
the Java Persistence API (JPA) has entered the scene as the true standard for Java
persistence. If you’re ready to move up to JPA then you’ll want to use Spring’s

228 CHAPTER 6

Managing transactions
JpaTransactionManager to coordinate transactions. Here’s how you might con-
figure JpaTransactionManager in Spring:

<bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager">
 <property name="entityManagerFactory"
 ref="entityManagerFactory" />
</bean>

JpaTransactionManager only needs to be wired with a JPA entity manager factory
(any implementation of javax.persistence.EntityManagerFactory). JpaTran-
sactionManager will collaborate with the JPA EntityManager produced by the fac-
tory to conduct transactions.

 In addition to applying transactions to JPA operations, JpaTransactionMan-
ager also supports transactions on simple JDBC operations on the same Data-
Source used by EntityManagerFactory. For this to work, JpaTransactionManager
must also be wired with an implementation of JpaDialect. For example, suppose
that you’ve configured TopLinkJpaDialect as follows:

<bean id="jpaDialect"
 class="org.springframework.orm.jpa.vendor.TopLinkJpaDialect" />

Then you must wire the jpaDialect bean into the JpaTransactionManager like
this:

<bean id="transactionManager"
 class="org.springframework.orm.jpa.JpaTransactionManager">
 <property name="entityManagerFactory"
 ref="entityManagerFactory" />
 <property name="jpaDialect"
 ref="jpaDialect" />
</bean>

It’s important to note that the JpaDialect implementation must support mixed
JPA/JDBC access for this to work. All of Spring’s vendor-specific implementations of
JpaDialect (HibernateJpaDialect, OpenJpaDialect, and TopLinkJpaDialect)
provide support for mixing JPA with JDBC. DefaultJpaDialect, however, does not.

6.2.4 Java Data Objects transactions

Perhaps JDBC and Hibernate aren’t your style and you’re not quite ready to move
up to JPA. Suppose that instead you’ve decided to implement your application’s
persistence layer using Java Data Objects (JDOs). In that case, the transaction
manager of choice will be JdoTransactionManager. It can be declared into your
application’s context like this:

Programming transactions in Spring 229
<bean id="transactionManager"
 class="org.springframework.orm.jdo.JdoTransactionManager">
 <property name="persistenceManagerFactory"

ref="persistenceManagerFactory"/>
</bean>

With JdoTransactionManager, you need to wire in a javax.jdo.Persistence-
ManagerFactory instance to the persistenceManagerFactory property.

 Under the covers, JdoTransactionManager works with the transaction object
retrieved from the JDO persistence manager, calling commit() at the end of a suc-
cessful transaction and rollback() if the transaction fails.

6.2.5 Java Transaction API transactions

If none of the aforementioned transaction managers meet your needs or if your
transactions span multiple transaction sources (e.g., two or more different data-
bases), you’ll need to use JtaTransactionManager:

<bean id="transactionManager" class="org.springframework.
 ➥ transaction.jta.JtaTransactionManager">
 <property name="transactionManagerName"
 value="java:/TransactionManager" />
</bean>

JtaTransactionManager delegates transaction management responsibility to a
JTA implementation. JTA specifies a standard API to coordinate transactions
between an application and one or more data sources. The transactionManager-
Name property specifies a JTA transaction manager to be looked up via JNDI.

 JtaTransactionManager works with javax.transaction.UserTransaction
and javax.transaction.TransactionManager objects, delegating responsibility
for transaction management to those objects. A successful transaction will be com-
mitted with a call to the UserTransaction.commit() method. Likewise, if the
transaction fails, the UserTransaction’s rollback() method will be called.

 By now, I hope you’ve found a Spring transaction manager suitable for your
application’s needs and have wired it into your Spring configuration file. Now it’s
time to put that transaction manager to work. We’ll start by employing the trans-
action manager to program transactions manually.

6.3 Programming transactions in Spring

There are two kinds of people: those who are control freaks and those who aren’t.
Control freaks like complete control over everything that happens and don’t take
anything for granted. If you’re a developer and a control freak, you’re probably

230 CHAPTER 6

Managing transactions
the kind of person who prefers the command line and would rather write your
own getter and setter methods than to delegate that work to an IDE.

 Control freaks also like to know exactly what is going on in their code. When it
comes to transactions, they want full control over where a transaction starts, where
it commits, and where it ends. Declarative transactions aren’t precise enough for
them.

 This isn’t a bad thing, though. The control freaks are at least partially right. As
you’ll see later in this chapter, you are limited to declaring transactions at the
method level. If you need more fine-grained control over transactional bound-
aries, programmatic transactions are the only way to go.

 We don’t have to look hard to find a need for transactions in the RoadRantz
application. Consider the addRant() method of RantServiceImpl (listing 6.1) as
an example of a transactional method.

public void addRant(Rant rant) {
 rant.setPostedDate(new Date());

 Vehicle rantVehicle = rant.getVehicle();
 Vehicle existingVehicle =
 rantDao.findVehicleByPlate(rantVehicle.getState(),
 rantVehicle.getPlateNumber());

 if(existingVehicle != null) {
 rant.setVehicle(existingVehicle);
 } else {
 rantDao.saveVehicle(rantVehicle);
 }

 rantDao.saveRant(rant);
}

There’s a lot more going on in addRant() than just simply saving a Rant object:

■ First, it’s possible that the rant’s vehicle already exists and, if so, the rant
should be associated with the existing vehicle.

■ If the rant’s vehicle doesn’t already exist, the vehicle needs to be saved.

■ Finally, the rant itself must be saved.

If any of these actions go sour, all actions should be rolled back as if nothing hap-
pened. Otherwise, the database will be left in an inconsistent state. A vehicle

Listing 6.1 addRant(), which adds a Rant and associates the Rant with a Vehicle

Checks for
existing
vehicle

Associates
vehicle to rant

Saves new vehicle

Saves rant

Programming transactions in Spring 231
could be added to the database without any associated rants. In other words,
addRant() should be transactional.

 One approach to adding transactions is to programmatically add transactional
boundaries directly within the addRant() method using Spring’s Transaction-
Template. Like other template classes in Spring (such as JdbcTemplate, discussed
in chapter 5), TransactionTemplate utilizes a callback mechanism. I’ve updated
the addRant() method in listing 6.2 to show how to add a transactional context
using a TransactionTemplate.

public void addRant(Rant rant) {
 transactionTemplate.execute(
 new TransactionCallback() {
 public Object doInTransaction(TransactionStatus ts) {
 try {
 rant.setPostedDate(new Date());

 Vehicle rantVehicle = rant.getVehicle();
 Vehicle existingVehicle =
 rantDao.findVehicleByPlate(rantVehicle.getState(),
 rantVehicle.getPlateNumber());

 if(existingVehicle != null) {
 rant.setVehicle(existingVehicle);
 } else {
 rantDao.saveVehicle(rantVehicle);
 }

 rantDao.saveRant(rant);
 } catch (Exception e) {
 ts.setRollbackOnly();
 }
 return null;
 }
 }
}

To use the TransactionTemplate, you start by implementing the Transaction-
Callback interface. Because TransactionCallback has only one method to
implement, it is often easiest to implement it as an anonymous inner class, as
shown in listing 6.2. As for the code that needs to be transactional, place it within
the doInTransaction() method.

 Calling the execute() method on the TransactionTemplate instance will exe-
cute the code contained within the TransactionCallback instance. If your code
encounters a problem, calling setRollbackOnly() on the TransactionStatus

Listing 6.2 Programmatically adding transactions to addRant()

Performs
within
transaction

Rolls back on
exceptions

232 CHAPTER 6

Managing transactions
object will roll back the transaction. Otherwise, if the doInTransaction()
method returns successfully, the transaction will be committed.

 Where does the TransactionTemplate instance come from? Good question. It
should be injected into RantServiceImpl, as follows:

<bean id="rantService"
 class="com.roadrantz.service.RantServiceImpl">
 …
 <property name="transactionTemplate ">
 <bean class="org.springframework.transaction.support.
 ➥ TransactionTemplate">
 <property name="transactionManager"
 ref="transactionManager" />
 </bean>
 </property>
</bean>

Notice that the TransactionTemplate is injected with a transactionManager.
Under the hood, TransactionTemplate uses an implementation of Plat-
formTransactionManager to handle the platform-specific details of transaction
management. Here we’ve wired in a reference to a bean named transactionMan-
ager, which could be any of the transaction managers listed in table 6.1.

 Programmatic transactions are good when you want complete control over
transactional boundaries. But, as you can see from the code in listing 6.2, they are
a bit intrusive. You had to alter the implementation of addRant()—using Spring-
specific classes—to employ Spring’s programmatic transaction support.

 Usually your transactional needs won’t require such precise control over trans-
actional boundaries. That’s why you’ll typically choose to declare your transactions
outside your application code (in the Spring configuration file, for instance). The
rest of this chapter will cover Spring’s declarative transaction management.

6.4 Declaring transactions

At one time not too long ago, declarative transaction management was a capabil-
ity only available in EJB containers. But now Spring offers support for declarative
transactions to POJOs. This is a significant feature of Spring because you now have
an alternative to EJB for declaring atomic operations.

 Spring’s support for declarative transaction management is implemented
through Spring’s AOP framework. This is a natural fit because transactions are a
system-level service above an application’s primary functionality. You can think
of a Spring transaction as an aspect that “wraps” a method with transactional
boundaries.

Declaring transactions 233
 Spring provides three ways to declare transactional boundaries in the Spring
configuration. Historically, Spring has always supported declarative transactions
by proxying beans using Spring AOP. But Spring 2.0 adds two new flavors of
declarative transactions: simple XML-declared transactions and annotation-driven
transactions.

 We’ll look at all of these approaches to declaring transactions later in this sec-
tion, but first let’s examine the attributes that define transactions.

6.4.1 Defining transaction attributes

In Spring, declarative transactions are defined with
transaction attributes. A transaction attribute is a
description of how transaction policies should be
applied to a method. There are five facets of a transac-
tion attribute, as illustrated in figure 6.3.

 Although Spring provides several mechanisms for
declaring transactions, all of them rely on these five
parameters to govern how transactions policies are
administered. Therefore, it’s essential to understand
these parameters in order to declare transaction poli-
cies in Spring.

 Regardless of which declarative transaction mecha-
nism you use, you’ll have the opportunity to define
these attributes. Let’s examine each attribute to under-
stand how it shapes a transaction.

Propagation behavior
The first facet of a transaction is propagation behavior. Propagation behavior
defines the boundaries of the transaction with respect to the client and to the
method being called. Spring defines seven distinct propagation behaviors, as
described in table 6.2.

NOTE The propagation behaviors described in table 6.2 are defined as
constants in the org.springframework.transaction.TransactionDef-
inition interface.

Propagatio
n Isolation

R
ead-O

nly?

Timeout

R
ol

lb
ac

k
R

ul
esDeclarative

Transaction

Figure 6.3 Declarative
transactions are defined in
terms of propagation behavior,
isolation level, read-only hints,
timeout, and rollback rules.

234 CHAPTER 6

Managing transactions

The propagation behaviors in table 6.2 may look familiar. That’s because they mir-
ror the propagation rules available in EJB’s container-managed transactions
(CMTs). For instance, Spring’s PROPAGATION_REQUIRES_NEW is equivalent to CMT’s
RequiresNew. Spring adds an additional propagation behavior not available in
CMT, PROPAGATION_NESTED, to support nested transactions.

Table 6.2 Propagation rules define when a transaction is created or when an existing transaction can
be used. Spring provides several propagation rules to choose from.

Propagation behavior What it means

PROPAGATION_MANDATORY Indicates that the method must run within a transaction. If
no existing transaction is in progress, an exception will be
thrown.

PROPAGATION_NESTED Indicates that the method should be run within a nested
transaction if an existing transaction is in progress. The
nested transaction can be committed and rolled back indi-
vidually from the enclosing transaction. If no enclosing
transaction exists, behaves like PROPAGATION_
REQUIRED. Vendor support for this propagation behavior is
spotty at best. Consult the documentation for your resource
manager to determine if nested transactions are supported.

PROPAGATION_NEVER Indicates that the current method should not run within a
transactional context. If there is an existing transaction in
progress, an exception will be thrown.

PROPAGATION_NOT_SUPPORTED Indicates that the method should not run within a transac-
tion. If an existing transaction is in progress, it will be sus-
pended for the duration of the method. If using
JTATransactionManager, access to
TransactionManager is required.

PROPAGATION_REQUIRED Indicates that the current method must run within a transac-
tion. If an existing transaction is in progress, the method will
run within that transaction. Otherwise, a new transaction will
be started.

PROPAGATION_REQUIRES_NEW Indicates that the current method must run within its own
transaction. A new transaction is started and if an existing
transaction is in progress, it will be suspended for the dura-
tion of the method. If using JTATransactionManager,
access to TransactionManager is required.

PROPAGATION_SUPPORTS Indicates that the current method does not require a trans-
actional context, but may run within a transaction if one is
already in progress.

Declaring transactions 235
 Propagation rules answer the question of whether a new transaction should be
started or suspended, or if a method should even be executed within a transac-
tional context at all.

 For example, if a method is declared to be transactional with PROPAGATION_
REQUIRES_NEW behavior, it means that the transactional boundaries are the same
as the method’s own boundaries: a new transaction is started when the method
begins and the transaction ends with the method returns or throws an exception.
If the method has PROPAGATION_REQUIRED behavior, the transactional boundaries
depend on whether a transaction is already under way.

Isolation levels
The second dimension of a declared transaction is the isolation level. An isolation
level defines how much a transaction may be impacted by the activities of other
concurrent transactions. Another way to look at a transaction’s isolation level is to
think of it as how selfish the transaction is with the transactional data.

 In a typical application, multiple transactions run concurrently, often working
with the same data to get their job done. Concurrency, while necessary, can lead
to the following problems:

■ Dirty read—Dirty reads occur when one transaction reads data that has been
written but not yet committed by another transaction. If the changes are
later rolled back, the data obtained by the first transaction will be invalid.

■ Nonrepeatable read—Nonrepeatable reads happen when a transaction per-
forms the same query two or more times and each time the data is different.
This is usually due to another concurrent transaction updating the data
between the queries.

■ Phantom reads—Phantom reads are similar to nonrepeatable reads. These
occur when a transaction (T1) reads several rows, and then a concurrent
transaction (T2) inserts rows. Upon subsequent queries, the first transaction
(T1) finds additional rows that were not there before.

In an ideal situation, transactions would be completely isolated from each other,
thus avoiding these problems. However, perfect isolation can affect performance
because it often involves locking rows (and sometimes complete tables) in the
data store. Aggressive locking can hinder concurrency, requiring transactions to
wait on each other to do their work.

 Realizing that perfect isolation can impact performance and because not all
applications will require perfect isolation, sometimes it is desirable to be flexible

236 CHAPTER 6

Managing transactions
with regard to transaction isolation. Therefore, several levels of isolation are possi-
ble, as described in table 6.3.

NOTE The isolation levels described in table 6.3 are defined as constants in the
org.springframework.transaction.TransactionDefinition interface.

ISOLATION_READ_UNCOMMITTED is the most efficient isolation level, but isolates the
transaction the least, leaving the transaction open to dirty, nonrepeatable, and
phantom reads. At the other extreme, ISOLATION_SERIALIZABLE prevents all
forms of isolation problems but is the least efficient.

 Be aware that not all data sources support all the isolation levels listed in
table 6.3. Consult the documentation for your resource manager to determine
what isolation levels are available.

Read-only
The third characteristic of a declared transaction is whether it is a read-only trans-
action. If a transaction performs only read operations against the underlying data
store, the data store may be able to apply certain optimizations that take

Table 6.3 Isolation levels determine to what degree a transaction may be impacted by other
transactions being performed in parallel.

Isolation level What it means

ISOLATION_DEFAULT Use the default isolation level of the underlying data
store.

ISOLATION_READ_UNCOMMITTED Allows you to read changes that have not yet been com-
mitted. May result in dirty reads, phantom reads, and
nonrepeatable reads.

ISOLATION_READ_COMMITTED Allows reads from concurrent transactions that have
been committed. Dirty reads are prevented, but phantom
and nonrepeatable reads may still occur.

ISOLATION_REPEATABLE_READ Multiple reads of the same field will yield the same
results, unless changed by the transaction itself. Dirty
reads and nonrepeatable reads are prevented, but phan-
tom reads may still occur.

ISOLATION_SERIALIZABLE This fully ACID-compliant isolation level ensures that dirty
reads, nonrepeatable reads, and phantom reads are all
prevented. This is the slowest of all isolation levels
because it is typically accomplished by doing full table
locks on the tables involved in the transaction.

Declaring transactions 237
advantage of the read-only nature of the transaction. By declaring a transaction as
read-only, you give the underlying data store the opportunity to apply those opti-
mizations as it sees fit.

 Because read-only optimizations are applied by the underlying data store when
a transaction begins, it only makes sense to declare a transaction as read-only on
methods with propagation behaviors that may start a new transaction (PROPA-
GATION_REQUIRED, PROPAGATION_REQUIRES_NEW, and PROPAGATION_ NESTED).

 Furthermore, if you are using Hibernate as your persistence mechanism, declar-
ing a transaction as read-only will result in Hibernate’s flush mode being set to
FLUSH_NEVER. This tells Hibernate to avoid unnecessary synchronization of objects
with the database, thus delaying all updates until the end of the transaction.

Transaction timeout
For an application to perform well, its transactions can’t carry on for a long time.
Therefore, the next trait of a declared transaction is its timeout.

 Suppose that your transaction becomes unexpectedly long-running. Because
transactions may involve locks on the underlying data store, long-running transac-
tions can tie up database resources unnecessarily. Instead of waiting it out, you can
declare a transaction to automatically roll back after a certain number of seconds.

 Because the timeout clock begins ticking when a transaction starts, it only
makes sense to declare a transaction timeout on methods with propagation behav-
iors that may start a new transaction (PROPAGATION_REQUIRED, PROPAGATION_
REQUIRES_NEW, and PROPAGATION_NESTED).

Rollback rules
The final facet of the transaction pentagon is a set of rules that define what excep-
tions prompt a rollback and which ones do not. By default, transactions are rolled
back only on runtime exceptions and not on checked exceptions. (This behavior
is consistent with rollback behavior in EJBs.)

 However, you can declare that a transaction be rolled back on specific checked
exceptions as well as runtime exceptions. Likewise, you can declare that a
transaction not roll back on specified exceptions, even if those exceptions are
runtime exceptions.

 Now that you’ve got an overview of how transaction attributes shape the behav-
ior of a transaction, let’s see how to use these attributes when declaring transac-
tions in Spring.

238 CHAPTER 6

Managing transactions
6.4.2 Proxying transactions

In pre-2.0 versions of Spring, declarative transaction management was accom-
plished by proxying your POJOs with Spring’s TransactionProxyFactoryBean.
TransactionProxyFactoryBean is a specialization of ProxyFactoryBean that
knows how to proxy a POJO’s methods by wrapping them with transactional
boundaries. Listing 6.3 shows how you can declare a TransactionProxyFactory-
Bean that wraps the RantServiceImpl class.

<bean id="rantService"
 class="org.springframework.transaction.interceptor.
 ➥ TransactionProxyFactoryBean">

 <property name="target"
 ref="rantServiceTarget" />

 <property name="proxyInterfaces"
 value="com.roadrantz.service.RantService" />

 <property name="transactionManager"
 ref="transactionManager" />

 <property name="transactionAttributes">
 <props>
 <prop key="add*">PROPAGATION_REQUIRED</prop>
 <prop key="*">PROPAGATION_SUPPORTS,readOnly</prop>
 </props>
 </property>
</bean>

Notice that the bean’s id is rantService. But wait—doesn’t that conflict with the
RantServiceImpl bean that we’ve already declared? As a matter of fact, it does,
and here’s why: the rant service has no idea that its methods are being called
within the context of a transaction. If any object makes calls directly to the rant
service, those calls will not be transactional. Instead, collaborating objects should
invoke methods on the proxy that is produced by TransactionProxyFactoryBean
(as shown in figure 6.4). The proxy will ensure that transactional rules are applied
and then proxy the call to the real rant service. Therefore, rather than inject the
rant service directly into those objects that use it, we’ll inject the rant service
proxy into those objects.

 This means that the proxy produced by TransactionProxyFactoryBean must
pretend to be a rant service. That’s the purpose of the proxyInterfaces property.

Listing 6.3 Proxying the rant service for transactions

Wires transaction target

Specifies proxy interface

Wires in transaction
manager

Configures
transaction
rules,
boundaries

Declaring transactions 239
Here we’re telling TransactionProxyFactoryBean to produce a proxy that imple-
ments the RantService interface.

 So what becomes of the original rantService bean that we declared? Quite
simply, it is renamed to rantServiceTarget and injected into the Transaction-
ProxyFactoryBean to be proxied.

 The transactionManager property supplies the appropriate transaction man-
ager bean. This can be any of the transaction managers discussed in section 6.2.
TransactionProxyFactoryBean will use the transaction manager to start, suspect,
commit, and roll back transactions based on the transaction attributes defined in
the transactionAttributes property of TransactionProxyFactoryBean.

 Speaking of the transactionAttributes property, this property declares
which methods are to be run within a transaction and what the transaction
attributes are to be. This property is given a <props> collection where the key of
each <prop> is a method name pattern and the value defines the transaction
attributes for the method(s) selected.

 The value of each <prop> given to the transactionAttributes property is a
comma-separated value that takes the form shown in figure 6.5.

 In the case of the rant service, we’re declaring that all methods whose name
starts with add (including addRant()) should be run within a transaction. All
other methods support transactions (but do not necessarily require a transaction)
and are read-only.

Transaction
Proxy

(produced by
Transaction

Proxy
FactoryBean)

RantServiceImplClient
addRant()

R
an

tS
er

vi
ce

addRant()

Platform
Transaction

Manager

Transaction
Attributes

Figure 6.4
TransactionProxyFactoryBean produces
a transaction-aware proxy that receives calls on
behalf of the transaction target, wrapping the
calls in a transaction.

240 CHAPTER 6

Managing transactions
Creating a transaction proxy template
It’s one thing to proxy a single service bean using TransactionProxyFactory-
Bean. But what if you have multiple service beans in your application and they all
must be transactional? The XML required to proxy a single service bean is ver-
bose enough, but it gets really messy if you have to repeat it for more than one
service bean.

 Fortunately, you don’t have to. Using Spring’s ability to create abstract beans
and then “sub-bean,” you can define your transaction policies in one place and
then apply them repeatedly to all of your service beans.

 First, you must create an abstract declaration of TransactionProxyFactory-
Bean. The following declaration of txProxyTemplate does the trick:

<bean id="txProxyTemplate"
 class="org.springframework.transaction.interceptor.
 ➥ TransactionProxyFactoryBean"
 abstract="true">
 <property name="transactionManager"
 ref="transactionManager" />
 <property name="transactionAttributes">
 <props>
 <prop key="add*">PROPAGATION_REQUIRED</prop>
 <prop key="*">PROPAGATION_SUPPORTS,readOnly</prop>
 </props>
 </property>
</bean>

You’ll notice that this abstract declaration is virtually identical to the concrete dec-
laration in listing 6.2. Missing, however, are the specifics of the bean that will be
proxied. From this single abstract TransactionProxyFactoryBean declaration, we
can now make any number of beans transactional by using txProxyTemplate as

PROPAGATION, ISOLATION, readOnly, -Exception, +Exception

Propagation Behavior

Isolation Level
(optional)

Is the transaction
read only?
(optional)

Rollback Rules
(optional)

Figure 6.5 A transaction attribute definition is made up of a propagation
behavior, an isolation level, a read-only flag, and rollback rules. The propagation
behavior is the only required element.

Declaring transactions 241
the parent declaration of the bean. For example, the following XML extends
txProxyTemplate for the rant service:

<bean id="rantService" parent="txProxyTemplate">
 <property name="target" ref="rantServiceTarget" />
 <property name="proxyInterfaces"
 value="com.roadrantz.service.RantService" />
</bean>

This XML is much simpler and only specifies the target bean that is to be proxied
with transactions and its interface. Proxying another bean with the same transac-
tional policies involves creating another bean declaration whose parent is
txProxyTemplate and targets the other bean.

 Although TransactionProxyFactoryBean has been the workhorse of Spring’s
declarative transaction support since the very beginning, it is somewhat cumber-
some to use. Recognizing that awkwardness of TransactionProxyFactoryBean,
Spring 2.0 adds simplified support for declarative transaction. Let’s switch gears
and see what Spring 2.0 has to offer with regard to declarative transactions.

6.4.3 Declaring transactions in Spring 2.0

The problem with TransactionProxyFactoryBean is that using it results in
extremely verbose Spring configuration files (transaction proxy templates not-
withstanding). What’s more, the practice of naming the target bean with a target
suffix is somewhat peculiar and can be confusing.

 The good news is that Spring 2.0 provides some new configuration elements
especially for declaring transactions. These elements are in the tx namespace and
can be used by adding the spring-tx-2.0.xsd schema to your Spring configuration
XML file:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 ➥ spring-beans-2.0.xsd
 http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.0.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-2.0.xsd">

Note that the aop namespace should also be included. This is important, because
the new declarative transaction configuration elements rely on a few of Spring’s
new AOP configuration elements (as discussed in chapter 4).

242 CHAPTER 6

Managing transactions
 The tx namespace provides a handful of new XML configuration elements,
most notably the <tx:advice> element. The following XML snippet shows how
<tx:advice> can be used to declare transactional policies similar to those we
defined for the rant service in listing 6.3:

<tx:advice id="txAdvice">
 <tx:attributes>
 <tx:method name="add*" propagation="REQUIRED" />
 <tx:method name="*" propagation="SUPPORTS"
 read-only="true"/>
 </tx:attributes>
</tx:advice>

With <tx:advice>, the transaction attributes are defined in a <tx:attributes>
element, which contains one or more <tx:method> elements. The <tx:method>
element defines the transaction attributes for a given method (or methods) as
defined by the name attribute (using wildcards).

 <tx:method> has several attributes that help define the transaction policies for
the method(s), as defined in table 6.4.

 As defined in the txAdvice transaction advice, the transactional methods con-
figured are divided into two categories: Those whose names begin with add and
everything else. The addRant() method falls into the first category and is declared
to require a transaction. The other methods are declared with propagation
="supports"—they’ll run in a transaction if one already exists, but they don’t
need to run within a transaction.

Table 6.4 The six facets of the transaction pentagon (see figure 6.3) are specified in the attributes of
the <tx:method> element.

Attribute Purpose

isolation Specifies the transaction isolation level

no-rollback-for Specifies exceptions for which the transaction should continue and not be
rolled back

propagation Defines the transaction’s propagation rule

read-only Specifies that a transaction be read-only

rollback-for Specifies checked exceptions for which a transaction should be rolled back
and not committed

timeout Defines a timeout for a long-running transaction

Declaring transactions 243
 When declaring a transaction using <tx:advice>, you’ll still need a transac-
tion manager just like you did when using TransactionProxyFactoryBean.
Choosing convention over configuration, <tx:advice> assumes that the transac-
tion manager will be declared as a bean whose id is transactionManager. If you
happen to give your transaction manager a different id (txManager, for instance),
you’ll need to specify the id of the transaction manager in the transaction-
manager attribute:

<tx:advice id="txAdvice"
 transaction-manager="txManager">
…
</tx:advice>

On its own, <tx:advice> only defines an AOP advice for advising methods with
transaction boundaries. But this is only transaction advice, not a complete transac-
tional aspect. Nowhere in <tx:advice> did we indicate which beans should be
advised—we need a pointcut for that. To completely define the transaction
aspect, we must define an advisor. This is where the aop namespace gets involved.
The following XML defines an advisor that uses the txAdvice advice to advise any
beans that implement the RantService interface:

<aop:config>
 <aop:advisor
 pointcut="execution(* *..RantService.*(..))"
 advice-ref="txAdvice"/>
</aop:config>

The pointcut attribute uses an AspectJ pointcut expression to indicate that this
advisor should advise all methods of the RantService interface. Which methods
are actually run within a transaction and what the transactional attributes are for
those methods is defined by the transaction advice, which is referenced with the
advice-ref attribute to be the advice named txAdvice.

 Although the <tx:advice> element goes a long way toward making declarative
transactions more palatable for Spring developers, there’s one more new feature
of Spring 2.0 that makes it even nicer for those working in a Java 5 environment.
Let’s have a look at how Spring transactions can be annotation driven.

6.4.4 Defining annotation-driven transactions

The <tx:advice> configuration element greatly simplifies the XML required for
declarative transactions in Spring. What if I told you that it could be simplified
even further? What if I told you that, in fact, you only need to add a single line of
XML to your Spring context in order to declare transactions?

244 CHAPTER 6

Managing transactions
 In addition to the <tx:advice> element, the tx namespace provides the
<tx:annotation-driven> element. Using <tx:annotation-driven> is often as
simple as the following line of XML:

<tx:annotation-driven />

That’s it! If you were expecting more, I apologize. I could make it slightly more
interesting by specifying a specific transaction manager bean with the transac-
tion-manager attribute (which defaults to transactionManager):

<tx:annotation-driven transaction-manager="txManager" />

Otherwise, there’s not much more to it than that. That single line of XML packs a
powerful punch that lets you define transaction rules where they make the most
sense: on the methods that are to be transactional.

 Annotations are one of the biggest and most debated new features of Java 5.
Annotations let you define metadata directly in your code rather than in external
configuration files. Although there’s much discussion on the proper use of anno-
tations, I think that annotations are a perfect fit for declaring transactions.

 The <tx:annotation-driven> configuration element tells Spring to examine
all beans in the application context and to look for beans that are annotated with
@Transactional, either at the class level or at the method level. For every bean
that is @Transactional, <tx:annotation-driven> will automatically advise it with
transaction advice. The transaction attributes of the advice will be defined by
parameters of the @Transactional annotation.

 For example, listing 6.4 shows RantServiceImpl, updated to include the
@Transactional annotations.

@Transactional(propagation=Propagation.SUPPORTS, readOnly=true)
public class RantServiceImpl implements RantService {
…
 @Transactional(propagation=Propagation.REQUIRED, readOnly=false)
 public void addRant(Rant rant) {
…
 }
…
}

Listing 6.4 Annotating the rant service to be transactional

Summary 245
At the class level, RantServiceImpl has been annotated with a @Transactional
annotation that says that all methods will support transaction and be read-only. At
the method level, the addRant() method has been annotated to indicate that this
method requires a transactional context.

 It may be interesting to note that the @Transactional annotation may also be
applied to an interface. For example, listing 6.5 shows the RantService interface
annotated with @Transactional.

@Transactional(propagation=Propagation.SUPPORTS, readOnly=true)
public interface RantService {
…
 @Transactional(propagation=Propagation.REQUIRED, readOnly=false)
 void addRant(Rant rant);
…
}

By annotating RantService instead of RantServiceImpl, we’re indicating that all
implementations of RantService should be transactional.

6.5 Summary

Transactions are an important part of enterprise application development that
leads to more robust software. They ensure an all-or-nothing behavior, preventing
data from being inconsistent should the unexpected occur. They also support
concurrency by preventing concurrent application threads from getting in each
other’s way as they work with the same data.

 Spring supports both programmatic and declarative transaction management.
In either case, Spring shields you from having to work directly with a specific
transaction management implementation by abstracting the transaction manage-
ment platform behind a common API.

 Spring employs its own AOP framework to support declarative transaction
management. Spring’s declarative transaction support rivals that of EJB’s CMT,
enabling you to declare more than just propagation behavior on POJOs, including
isolation levels, read-only optimizations, and rollback rules for specific exceptions.

Listing 6.5 Annotating the rant service to be transactional at the interface level

246 CHAPTER 6

Managing transactions
 This chapter showed you how to bring declarative transactions into the Java 5
programming model using annotations. With the introduction of Java 5 annota-
tions, making a method transactional is simply a matter of tagging it with the
appropriate transaction annotation.

 As you’ve seen, Spring bestows the power of declarative transactions to POJOs.
This is an exciting development—declarative transactions were previously only
available to EJBs. But declarative transactions are only the beginning of what
Spring has to offer to POJOs. In the next chapter, you’ll see how Spring extends
declarative security to POJOs.

Securing Spring
This chapter covers
■ Introducing Spring Security
■ Securing web applications using servlet filters
■ Authentication against databases and LDAP
■ Transparently securing method invocations
247

248 CHAPTER 7

Securing Spring
Have you ever noticed that most people in television sitcoms don’t lock their
doors? It happens all the time. On Seinfeld, Kramer frequently let himself into
Jerry’s apartment to help himself to the goodies in Jerry’s refrigerator. On Friends,
the various characters often entered one another’s apartments without warning or
hesitation. Even once, while in London, Ross burst into Chandler’s hotel room,
narrowly missing Chandler in a compromising situation with Ross’s sister.

 In the days of Leave it to Beaver, it wasn’t so unusual for people to leave their
doors unlocked. But it seems crazy that in a day when we’re concerned with pri-
vacy and security we see television characters enabling unhindered access to their
apartments and homes.

 It’s a sad reality that there are villainous individuals roaming around seeking to
steal our money, riches, cars, and other valuables. And it should be no surprise
that as information is probably the most valuable item we have, crooks are looking
for ways to steal our data and identity by sneaking into unsecured applications.

 As software developers, we must take steps to protect the information that
resides in our applications. Whether it’s an email account protected with a user-
name/password pair or a brokerage account protected with a trading PIN, secu-
rity is a crucial aspect of most applications.

 It is no accident that I chose to describe application security with the word
“aspect.” Security is a concern that transcends an application’s functionality. For
the most part, an application should play no part in securing itself. Although
you could write security functionality directly into your application’s code (and
that’s not uncommon), it is better to keep security concerns separate from
application concerns.

 If you’re thinking that it is starting to sound as if security is accomplished using
aspect-oriented techniques, you’re right. In this chapter we’re going to explore
ways to secure your applications with aspects. But we won’t have to develop those
aspects ourselves—we’re going to look at Spring Security, a security framework
based on Spring AOP and servlet filters.1

7.1 Introducing Spring Security

Spring Security is a security framework that provides declarative security for your
Spring-based applications. Spring Security provides a comprehensive security

1 I’m probably going to get a lot of emails about this, but I have to say it anyway: servlet filters are a prim-
itive form of AOP, with URL patterns as a kind of pointcut expression language. There… I’ve said it…
I feel better now.

Introducing Spring Security 249
solution, handling authentication and authorization, at both the web request
level and at the method invocation level. Based on the Spring Framework,
Spring Security takes full advantage of dependency injection (DI) and aspect-
oriented techniques.

What’s in a name?
Historically, Spring Security is also known as Acegi Security (or simply Acegi).
Acegi has long been a subproject of Spring. But as I write this, plans are afoot to
bring Acegi even closer under the Spring umbrella of projects. Part of that
move involves dropping the Acegi name in favor of “Spring Security.” This
change is scheduled to take place in the 1.1.0 version of Acegi/Spring Security.
Knowing that the change is imminent, I’ve decided to go ahead and start refer-
ring to it as Spring Security, although you’ll still see the Acegi name thrown
about a bit in this chapter.

 When securing web applications, Spring Security uses servlet filters that inter-
cept servlet requests to perform authentication and enforce security. And, as
you’ll find in section 7.4.1, Spring Security employs a unique mechanism for
declaring servlet filters that enables you to inject them with their dependencies
using Spring DI.

 Spring Security can also enforce security at a lower level by securing method
invocations. When securing methods, Spring Security uses Spring AOP to proxy
objects, applying aspects that ensure that the user has proper authority to invoke
the secured methods.

 In any case, whether you only need security at the web request level or if you
require lower-level method security, Spring Security employs five core compo-
nents to enforce security, as shown in figure 7.1.

 Before we get into the nitty-gritty of Spring Security, let’s take a high-level view
of Spring Security and the part that each of these components plays in securing
applications.

Security
Interceptor

Authentication
Manager

Access Decision
Manager

Run-As
Manager

After-Invocation
Manager

Figure 7.1 The fundamental elements of Spring Security.

250 CHAPTER 7

Securing Spring
Security interceptors
When you arrive home after a long day at work, you’ll need to unlock the door to
your home. To open the door, you must insert a key into the lock that trips the
tumblers properly and releases the latch. If the cut of the key is incorrect, the
tumblers won’t be tripped and the latch won’t be released. But if you have the
right key, all of the tumblers will accept the key and the latch will be released,
allowing you to open the door.

 In Spring Security, the security interceptor can be thought of as a latch that
prevents you from accessing a secured resource in your application. To flip the
latch and get past the security interceptor, you must enter your “key” (typically a
username and password) into the system. The key will then try to trip the security
interceptor’s “tumblers” in an attempt to grant you access to the secured resource.

 The actual implementation of a security interceptor will depend on what
resource is being secured. If you’re securing a URL in a web application, the secu-
rity interceptor will be implemented as a servlet filter. But if you’re securing a
method invocation, aspects will be used to enforce security. You’ll see both forms
of security interceptor later in this chapter.

 A security interceptor does little more than intercept access to resources to
enforce security. It does not actually apply security rules. Instead, it delegates that
responsibility to the various managers that are pictured at the bottom of
figure 7.1. Let’s have a look at each of these managers, starting with the authenti-
cation manager.

Authentication managers
The first of the security interceptor’s tumblers to be tripped is the authentication
manager. The authentication manager is responsible for determining who you are.
It does this by considering your principal (typically a username) and your creden-
tials (typically a password).

 Your principal defines who you are and your credentials are evidence that cor-
roborates your identity. If your credentials are good enough to convince the
authentication manager that your principal identifies you then Spring Security
will know whom it is dealing with.

 As with the rest of Spring Security (and Spring itself), the authentication man-
ager is a pluggable interface-based component. This makes it possible to use
Spring Security with virtually any authentication mechanism you can imagine. As
you’ll see later in this chapter, Spring Security comes with a handful of flexible
authentication managers that cover the most common authentication strategies.

Introducing Spring Security 251
Access decisions managers
Once Spring Security has determined who you are, it must decide whether you
are authorized to access the secured resource. An access decision manager is the sec-
ond tumbler of the Spring Security lock to be tripped. The access decision man-
ager performs authorization, deciding whether to let you in by considering your
authentication information and the security attributes that have been associated
with the secured resource.

 For example, the security rules may dictate that only supervisors should be
allowed access to a secured resource. If you have been granted supervisor privi-
leges then the second and final tumbler, the access decision manager, will have
been tripped and the security interceptor will move out of your way and let you
gain access to the secured resource.

 Just as with the authentication manager, the access decision manager is plugga-
ble. Later in this chapter, we’ll take a closer look at the access decision managers
that come with Spring Security.

Run-as managers
If you’ve gotten past the authentication manager and the access decision manager
then the security interceptor will be unlocked and the door is ready to open. But
before you twist the knob and go in, there’s one more thing that the security inter-
ceptor might do.

 Even though you’ve passed authentication and been granted access to a
resource, there may be more security restrictions behind the door. For example,
you may be granted the rights to view a web page, but the objects that are used to
create that page may have different security requirements than the web page. A
run-as manager can be used to replace your authentication with an authentication
that allows you access to the secured objects that are deeper in your application.

 Note that not all applications have a need for identity substitution. Therefore,
run-as managers are an optional security component and are not necessary in
many applications secured by Spring Security.

After-invocation managers
Spring Security’s after-invocation manager is a little different from the other
security manager components. Whereas the other security manager components
perform some form of security enforcement before a secured resource is
accessed, the after-invocation manager enforces security after the secured
resource is accessed.

252 CHAPTER 7

Securing Spring
 After-invocation managers are kind of like the person who waits to examine a
receipt at the exit of some discount and home electronics stores. They check to
ensure that you have proper authority to remove the valuable items from the
store. Instead of making sure that you are allowed to remove a big-screen televi-
sion from a store, however, after-invocation managers make sure that you’re
allowed to view the data that is being returned from a secured resource.

 If an after-invocation manager advises a service layer bean, it will be given
the opportunity to review the value returned from the advised method. It can
then make a decision as to whether the user is allowed to view the returned
object. The after-invocation manager also has the option of altering the
returned value to ensure that the user is only able to access certain properties of
the returned object.

 Like run-as managers, not all applications call for an after-invocation manager.
You’ll only need an after-invocation manager if your application’s security scheme
requires that access be restricted at the domain level on a per-instance basis.

 Now that you’ve seen the big picture of Spring Security, we’re ready to config-
ure Spring Security for the RoadRantz application. For our purposes, we won’t
need a run-as manager or an after-invocation manager, so we’ll defer those as
advanced Spring Security topics. Meanwhile, let’s get started by configuring an
authentication manager.

7.2 Authenticating users

When applying security to an application, the first thing you need to do, before
deciding whether to allow access, is figure out who the user is. In most applica-
tions, this means presenting a login screen to the user and asking them for the
username and password.

 How the user is prompted for their username and password will vary from
application to application. For now, we’ll assume that the user’s login details have
already been provided and we need Spring Security to authenticate the user. We’ll
look at different ways to prompt the user for their username and password a little
later in this chapter.

 In Spring Security, the authentication manager assumes the job of establishing
a user’s identity. An authentication manager is defined by the org.acegisecu-
rity.AuthenticationManager interface:

public interface AuthenticationManager {
 public Authentication authenticate(Authentication authentication)
 throws AuthenticationException;
}

Authenticating users 253
The authenticate() method will attempt to authenticate the user using the
org.acegisecurity.Authentication object (which carries the principal and cre-
dentials). If successful, the authenticate() method returns a complete Authen-
tication object, including information about the user’s granted authorities
(which will be considered by the authorization manager). If authentication fails,
an AuthenticationException will be thrown.

 As you can see, the AuthenticationManager interface is quite simple and you
could easily implement your own AuthenticationManager. But Spring Security
comes with ProviderManager, an implementation of AuthenticationManager
that is suitable for most situations. So instead of rolling our own authentication
manager, let’s take a look at how to use ProviderManager.

7.2.1 Configuring a provider manager

ProviderManager is an authentication manager implementation that delegates
responsibility for authentication to one or more authentication providers, as
shown in figure 7.2.

 The purpose of ProviderManager is to enable you to authenticate users against
multiple identity management sources. Rather than relying on itself to perform
authentication, ProviderManager steps one by one through a collection of
authentication providers, until one of them successfully authenticates the user (or
until it runs out of providers). This makes it possible for Spring Security to sup-
port multiple authentication mechanisms for a single application.

 The following chunk of XML shows a typical configuration of ProviderMan-
ager in the Spring configuration file:

Third time’s a charm
A-ha! There’s the word “acegi” in the package name for AuthenticationManager.
As mentioned earlier in this chapter, Spring Security has historically been known
as Acegi Security. When Acegi is formally renamed to Spring Security, the pack-
aging of its classes will also change. Actually, this will be the third base package
name that Acegi/Spring Security has had. Acegi was originally packaged under
net.sf.acegisecurity… then it was changed to org.acegisecurity. When version
1.1.0 is released, it will likely be repackaged under org.springframework.securi-
ty. Nevertheless, as those changes haven’t happened yet, the examples in this
chapter show the org.acegisecurity packaging.

254 CHAPTER 7

Securing Spring
<bean id="authenticationManager"
 class="org.acegisecurity.providers.ProviderManager">
 <property name="providers">
 <list>
 <ref bean="daoAuthenticationProvider"/>
 <ref bean="ldapAuthenticationProvider"/>
 </list>
 </property>
</bean>

ProviderManager is given its list of authentication providers through its provid-
ers property. Typically, you’ll only need one authentication provider, but in some
cases, it may be useful to supply a list of several providers so that if authentication
fails against one provider, another provider will be tried. Spring comes with sev-
eral authentication providers, as listed in table 7.1.

Table 7.1 Spring Security comes with authentication providers for every occasion.

Authentication provider (org.acegisecurity.*) Purpose

adapters.AuthByAdapterProvider Authentication using container adapters. This
makes it possible to authenticate against users
created within the web container (e.g., Tomcat,
JBoss, Jetty, Resin, etc.).

Provider
Manager

Dao
Authentication

Provider

Jaas
Authentication

Provider

Ldap
Authentication

Provider

Cas
Authentication

Provider

Remote
Authentication

Provider

Authentication
Manager

Figure 7.2 A ProviderManager delegates authentication responsibility to one or
more authentication providers.

Authenticating users 255
As you can see in table 7.1, Spring Security provides an authentication provider to
meet almost any need. But if you can’t find an authentication provider that suits
your application’s security needs, you can always create your own authentication
provider by implementing the org.acegisecurity.providers.Authentication-
Provider interface:

public interface AuthenticationProvider {
 Authentication authenticate(Authentication authentication)
 throws AuthenticationException;
 boolean supports(Class authentication);
}

providers.anonymous.
AnonymousAuthenticationProvider

Authenticates a user as an anonymous user.
Useful when a user token is needed, even when
the user hasn’t logged in yet.

providers.cas.CasAuthentication-
Provider

Authentication against the JA-SIG Central Authen-
tication Service (CAS). Useful when you need sin-
gle sign-on capabilities.

providers.dao.DaoAuthentication-
Provider

Retrieving user information, including username
and password from a database.

providers.dao.
LdapAuthenticationProvider

Authentication against a Lightweight Directory
Access Protocol (LDAP) server.

providers.jaas.
JaasAuthenticationProvider

Retrieving user information from a JAAS login
configuration.

providers.rememberme.
RememberMeAuthenticationProvider

Authenticates a user that was previously authen-
ticated and remembered. Makes it possible to
automatically log in a user without prompting for
username and password.

providers.rcp.
RemoteAuthenticationProvider

Authentication against a remote service.

providers.TestingAuthentication-
Provider

Unit testing. Automatically considers a
TestingAuthenticationToken as valid.
Not for production use.

providers.x509.
X509AuthenticationProvider

Authentication using an X.509 certificate. Useful
for authenticating users that are, in fact, other
applications (such as a web-service client).

runas.RunAsImplAuthentication-
Provider

Authenticating a user who has had their identity
substituted by a run-as manager.

Table 7.1 Spring Security comes with authentication providers for every occasion. (continued)

Authentication provider (org.acegisecurity.*) Purpose

256 CHAPTER 7

Securing Spring
You may have noticed that the AuthenticationProvider interface isn’t much dif-
ferent from the AuthenticationManager interface shown a few pages back. They
both share an authenticate() method that handles the authentication. In fact,
you can think of authentication providers as subordinate authentication managers.

 Space constraints do not allow me to go into the details of all 11 of Spring
Security’s authentication providers. However, I will focus on a couple of the most
commonly used authentication providers, starting with DaoAuthenticationPro-
vider, which supports simple database-oriented authentication.

7.2.2 Authenticating against a database

Many applications store user information, including the username and password,
in a relational database. If that’s how your application keeps user information,
Spring Security’s DaoAuthenticationProvider may be a good choice for your
application.

 A DaoAuthenticationProvider is a simple authentication provider that uses a
Data Access Object (DAO) to retrieve user information (including the user’s pass-
word) from a relational database.

 With the username and password in hand, DaoAuthenticationProvider per-
forms authentication by comparing the username and password retrieved from
the database with the principal and credentials passed in an Authentication
object from the authentication manager (see figure 7.3). If the username and
password match up with the principal and credentials, the user will be authenti-
cated and a fully populated Authentication object will be returned to the
authentication manager. Otherwise, an AuthenticationException will be thrown
and authentication will have failed.

Authentication
Manager

(ProviderManager)

Dao
Authentication

Provider

User Details
Service

authenticate()

loadUserByUsername()

User
Database

Figure 7.3 A DaoAuthenticationManager authenticates users on behalf of
the authentication manager by pulling user information from a database.

Authenticating users 257
 Configuring a DaoAuthenticationProvider couldn’t be simpler. The follow-
ing XML excerpt shows how to declare a DaoAuthenticationProvider bean and
wire it with a reference to its DAO:

<bean id="authenticationProvider"
 class="org.acegisecurity.providers.dao.DaoAuthenticationProvider">
 <property name="userDetailsService"
 ref="userDetailsService"/>
</bean>

 The userDetailsService property is used to identify the bean that will be used
to retrieve user information from the database. This property expects an instance
of org.acegisecurity.userdetails.UserDetailsService. The question that
remains is how the userDetailsService bean is configured.

 The UserDetailsService interface requires that only one method be imple-
mented:

public interface UserDetailsService {
 UserDetails loadUserByUsername(String username)
 throws UsernameNotFoundException, DataAccessException;
}

This method is fairly self-explanatory and you may already be thinking of several
ways that you can implement this interface. But before you start writing your own
implementation of UserDetailsService, you may be interested to know that
Spring Security comes with two ready-made implementations of Authentication-
Dao to choose from: InMemoryDaoImpl and JdbcDaoImpl. Let’s see how these two
classes work to look up user details, starting with InMemoryDaoImpl.

Using an in-memory DAO
Although it may seem natural to assume that an AuthenticationDao object will
always query a relational database for user information, that doesn’t necessarily
have to be the case. If your application’s authentication needs are trivial or for
development-time convenience, it may be simpler to configure your user informa-
tion directly in the Spring configuration file.

 For that purpose, Spring Security comes with InMemoryDaoImpl, an implemen-
tation of UserDetailsService that draws its user information from its Spring con-
figuration. Here’s an example of how you may configure an InMemoryDaoImpl in
the Spring configuration file:

<bean id="authenticationDao"
 class="org.acegisecurity.userdetails.memory.InMemoryDaoImpl">
 <property name="userMap">
 <value>

258 CHAPTER 7

Securing Spring
 palmerd=4moreyears,disabled,ROLE_PRESIDENT
 bauerj=ineedsleep,ROLE_FIELD_OPS
 obrianc=nosmile,ROLE_SR_ANALYST,ROLE_OPS
 myersn=traitor,disabled,ROLE_CENTRAL_OPS
 </value>
 </property>
</bean>

The userMap property is configured with an org.acegisecurity.userde-

tails.memory.UserMap object that defines a set of usernames, passwords, and
privileges. Fortunately, you needn’t concern yourself with constructing a UserMap
instance when wiring InMemoryDaoImpl because there’s a property editor that
handles the conversion of a String to a UserMap object for you.

 On each line of the userMap, String is a name-value pair where the name is the
username and the value is a comma-separated list that starts with the user’s pass-
word and is followed by one or more names that are the authorities to be granted
to the user. Figure 7.4 breaks down the format of an entry in the user map.

 In the declaration of the authenticationDao bean earlier, four users are
defined: parlmerd, bauerj, obrianc, and myersn. Respectively, their passwords
are 4moreyears, ineedsleep, nosmile, and traitor. The authorities are granted
as follows:

■ ROLE_PRESIDENT authority has been given to the user whose username is
palmerd.

■ ROLE_FIELD_OPS has been given to bauerj.

■ ROLE_CENTRAL_OPS has been given to myersn.

■ The obrianc user has been granted two authorities: ROLE_SR_ANALYST and
ROLE_OPS.

Take special note of the palmerd and myersn users. A special disabled flag imme-
diately follows their passwords, indicating that they have been disabled (and thus
can’t authenticate).

 Although InMemoryDaoImpl is convenient and simple, it has some obvious lim-
itations. Primarily, security administration requires that you edit the Spring

myersn=traitor,disabled,ROLE_CENTRAL_OPS

username

password privileges

enabled status (optional)

Figure 7.4
A Spring Security user map maps a
username to a password, granted
privileges, and optionally their status.

Authenticating users 259
configuration file and redeploy your application. While this is acceptable (and
maybe even helpful) in a development environment, it is probably too cumber-
some for production use. Therefore, I strongly advise against using InMemoryDao-
Impl in a production setting. Instead, you should consider using JdbcDaoImpl,
which we’ll look at next.

Declaring a JDBC DAO
JdbcDaoImpl is a simple, yet flexible, authentication DAO that retrieves user infor-
mation from a relational database. In its simplest form, all it needs is a reference
to a javax.sql.DataSource, and it can be declared in the Spring configuration
file as follows:

<bean id="authenticationDao"
 class="org.acegisecurity.userdetails.jdbc.JdbcDaoImpl">
 <property name="dataSource" ref="dataSource"/>
</bean>

As configured here, JdbcDaoImpl makes some basic assumptions about how user
information is stored in the database. Specifically, it assumes a Users table and an
Authorities table, as illustrated in figure 7.5.

 When JdbcDaoImpl looks up user information, it will query with the following
SQL:

SELECT username, password, enabled
 FROM users
 WHERE username = ?

Likewise, when looking up a user’s granted authorities, JdbcDaoImpl will use the
following SQL:

SELECT username, authority
 FROM authorities
 WHERE username = ?

While the table structures assumed by JdbcDaoImpl are straightforward, they
probably do not match the tables you have set up for your own application’s secu-
rity. For instance, in the RoadRantz application, the Motorist table holds regis-
tered users’ usernames (in the email column) and password. Does this mean that
we can’t use JdbcDaoImpl to authenticate motorists in the RoadRantz application?

Users

username : String
password : String
enabled : boolean

Authorities

username : String
authority : String

Figure 7.5
The database tables assumed by JdbcDaoImpl.

260 CHAPTER 7

Securing Spring
 Not at all. But if we are to use JdbcDaoImpl, we must help it out a bit by telling
it how to find the user information by setting the usersByUsernameQuery
property. The following adjustment to the authenticationDao bean sets it up to
query users from RoadRantz’s Motorist table:

<bean id="authenticationDao"
 class="org.acegisecurity.userdetails.jdbc.JdbcDaoImpl">
 <property name="dataSource" ref bean="dataSource" />
 <property name="usersByUsernameQuery">
 <value>
 SELECT email as username, password, enabled
 FROM Motorist
 WHERE email=?
 </value>
 </property>
</bean>

Now JdbcDaoImpl knows to look in the Motorist table for authentication informa-
tion. But we must also tell JdbcDaoImpl how to query the database for a user’s
granted authorities. For that we’ll set the authoritiesByUsernameQuery property:

<bean id="authenticationDao"
 class="org.acegisecurity.userdetails.jdbc.JdbcDaoImpl">
 <property name="dataSource" ref="dataSource" />
 ...
 <property name="authoritiesByUsernameQuery">
 <value>
 SELECT email as username, privilege as authority
 FROM Motorist_Privileges mp, Motorist m
 WHERE mp.motorist_id = m.id
 AND m.email=?
 </value>
 </property>
</bean>

Here we’ve configured JdbcDaoImpl to retrieve the motorist’s granted authorities
from the Motorist_Privileges table. The query joins in the Motorist table because
the Motorist_Privileges table only knows about a Motorist through a foreign key
and JdbcDaoImpl expects the query to retrieve the authorities by username.

Working with encrypted passwords
When DaoAuthenticationProvider compares the user-provided password (at
authentication) with the one retrieved from the database, it assumes that the pass-
word has been stored unencrypted. To beef up security, you may want to encrypt
the password before storing it in the database. But if the password is stored
encrypted in the database, the user-provided password must also be encrypted
before the two passwords can be compared.

Authenticating users 261
 To accommodate encrypted passwords, DaoAuthenticationProvider can be
wired with a password encoder. Spring Security comes with several password
encoders to choose from, as described in table 7.2.

By default DaoAuthenticationProvider uses the PlaintextPasswordEncoder,
which means that the password is left unencoded. But we can specify a different
encoding by wiring DaoAuthenticationProvider’s passwordEncoder property.
For example, here’s how to wire DaoAuthenticationProvider to use MD5
encoding:

<bean id="daoAuthenticationProvider"
 class="org.acegisecurity.providers.dao.
 ➥ DaoAuthenticationProvider">
 <property name="userDetailsService" ref="authenticationDao" />
 <property name="passwordEncoder">
 <bean class="org.acegisecurity.providers.encoding.
 ➥ Md5PasswordEncoder" />
 </property>
</bean>

You’ll also need to set a salt source for the encoder. A salt source provides the salt,
or encryption key, for the encoding. Spring Security provides two salt sources:

■ SystemWideSaltSource—Provides the same salt for all users

■ ReflectionSaltSource—Uses reflection on a specified property of the
user’s User object to generate the salt

ReflectionSaltSource is the more secure of the two salt sources because each
user’s password will likely be encoded using a different salt value. Even if a hacker
were to figure out the salt used to encode one user’s password, it’s unlikely that

Table 7.2 Spring Security’s password encoders.

Password encoder (org.acegisecurity.providers.*) Purpose

encoding.Md5PasswordEncoder Performs Message Digest (MD5)
encoding on the password

encoding.PlaintextPasswordEncoder Performs no encoding on the pass-
word, returning it unaltered

encoding.ShaPasswordEncoder Performs Secure Hash Algorithm (SHA)
encoding on the password

ldap.authenticator.LdapShaPasswordEncoder Encodes the password using LDAP SHA
and salted-SHA (SSHA) encodings

262 CHAPTER 7

Securing Spring
they’ll be able to use the same salt to crack another user’s password. To use a
ReflectionSaltSource, wire it into DaoAuthenticationProvider’s saltSource
property like this:

<bean id="daoAuthenticationProvider"
 class="org.acegisecurity.providers.dao.
 ➥ DaoAuthenticationProvider">
 <property name="userDetailsService" ref="authenticationDao" />
 <property name="passwordEncoder">
 <bean class="org.acegisecurity.providers.encoding.
 ➥ Md5PasswordEncoder" />
 </property>
 <property name="saltSource">
 <bean class="org.acegisecurity.providers.dao.salt.
 ReflectionSaltSource">
 <property name="userPropertyToUse" value="userName" />
 </bean>
 </property>
</bean>

Here the user’s userName property is used as the salt to encode the user’s pass-
word. It’s important that the salt be static and never change. Otherwise, it will be
impossible to authenticate the user (unless the password is re-encoded after the
change using the new salt).

 Although ReflectionSaltSource is certainly more secure, SystemWideSalt-
Source is much simpler and is sufficient for most circumstances. SystemWide-
SaltSource uses a single salt value for encoding all users’ passwords. To use a
SystemWideSaltSource, wire the saltSource property like this:

<bean id="daoAuthenticationProvider"
 class="org.acegisecurity.providers.dao.
 ➥ DaoAuthenticationProvider">
 <property name="userDetailsService" ref="authenticationDao" />
 <property name="passwordEncoder">
 <bean class="org.acegisecurity.providers.encoding.
 ➥ Md5PasswordEncoder" />
 </property>
 <property name="saltSource">
 <bean class="org.acegisecurity.providers.dao.salt.
 ➥ SystemWideSaltSource">
 <property name="systemWideSalt" value="ABC123XYZ789" />
 </bean>
 </property>
</bean>

In this case, the same salt value, ABC123XYZ789, is used for encoding all passwords.

Authenticating users 263
Caching user information
Every time that a request is made to a secured resource, the authentication man-
ager is asked to retrieve the user’s security information. But if retrieving the user’s
information involves performing a database query, querying for the same data
every time may hinder application performance. Recognizing that a user’s infor-
mation will not frequently change, it may be better to cache the user data upon
the first query and retrieve it from cache with every subsequent request.

 To enable caching of user information, we must provide DaoAuthentication-
Provider with an implementation of the org.acegisecurity.provid-

ers.dao.UserCache interface. This interface mandates the implementation of
three methods:

public UserDetails getUserFromCache(String username);
public void putUserInCache(UserDetails user);
public void removeUserFromCache(String username);

The methods in the UserCache are self-explanatory, providing the ability to put,
retrieve, or remove user details from the cache. It would be simple enough for
you to write your own implementation of UserCache. However, Spring Security
provides two convenient implementations that you should consider before devel-
oping your own:

■ org.acegisecurity.providers.dao.cache.NullUserCache

■ org.acegisecurity.providers.dao.cache.EhCacheBasedUserCache

NullUserCache does not actually perform any caching at all. Instead, it always
returns null from its getUserFromCache() method, forcing DaoAuthentication-
Provider to query for the user information. This is the default UserCache used by
DaoAuthenticationProvider.

 EhCacheBasedUserCache is a more useful cache implementation. As its name
implies, it is based on EHCache. Using EHCache with DaoAuthenticationPro-
vider is simple. Simply wire an EhCacheBasedUserCache bean into DaoAuthenti-
cationProvider’s userCache property:

<bean id="daoAuthenticationProvider"
 class="org.acegisecurity.providers.dao.
 ➥ DaoAuthenticationProvider">
 <property name="userDetailsService" ref="authenticationDao" />
 ...

 <property name="userCache">
 <bean class="org.acegisecurity.providers.dao.cache.
 ➥ EhCacheBasedUserCache">
 <property name="cache" ref="ehcache" />

264 CHAPTER 7

Securing Spring
 </bean>
 </property>
</bean>

The cache property refers to an ehcache bean, which should be an EHCache
Cache object. One way to get such a Cache object is to use the Spring Modules’
cache module. For example, the following XML uses Spring Modules to configure
EHCache:

<bean id="ehcache"
 class="org.springframework.cache.ehcache.EhCacheFactoryBean">
 <property name="cacheManager" ref="cacheManager" />
 <property name="cacheName" value="userCache" />
</bean>

<bean id="cacheManager"
 class="org.springframework.cache.ehcache.
 ➥ EhCacheManagerFactoryBean">
 <property name="configLocation" value="classpath:ehcache.xml" />
</bean>

As you may recall from chapter 5, Spring Modules’ EhCacheFactoryBean is a
Spring factory bean that produces an EHCache Cache object. The actual caching
configuration is found in the ehcache.xml file, which will be retrieved from the
classpath.

 DaoAuthenticationProvider is great when your application’s security infor-
mation is kept in a relational database. Often, however, an application’s security is
architected to authenticate against an LDAP server. Let’s see how to use Spring
Security’s LdapAuthenticationProvider, which is a more suitable choice when
authentication must happen via LDAP.

7.2.3 Authenticating against an LDAP repository

Spring Security supports authentication against LDAP through LdapAuthentica-
tionProvider, an authentication provider that knows how to check user creden-
tials against an LDAP repository. The following <bean> illustrates a typical
configuration for LdapAuthenticationProvider:

<bean id="ldapAuthProvider"
 class="org.acegisecurity.providers.ldap.
 ➥ LdapAuthenticationProvider">
 <constructor-arg ref="authenticator" />
 <constructor-arg ref="populator" />
</bean>

As you can see, there’s not much exciting about the LdapAuthenticationPro-
vider. There are no details on how to find the LDAP server or about the

Authenticating users 265
repository’s initial context. Instead, LdapAuthenticationProvider is wired with
an authenticator and a populator through constructor injection. What are
those beans and what are they used for?

 In fact, although LdapAuthenticationProvider claims to know how to talk to
an LDAP repository, it actually relies on two strategy objects to do the real work:

■ The authenticator strategy handles the actual authentication (e.g., verifica-
tion of user credentials) against the LDAP repository. The authenticator
strategy can be any object that implements org.acegisecurity.provid-
ers.ldap.LdapAuthenticator.

■ The populator strategy is responsible for retrieving a user’s set of granted
authorities from the LDAP repository. The populator strategy is any object
that implements org.acegisecurity.providers.ldap.LdapAuthorities-
Populator.

Because the authentication and authorities responsibilities are defined as strate-
gies, separate from LdapAuthenticationProvider, you are able to wire in the
strategy implementations that best fit your application’s security needs.

 So just how are the authenticator and populator beans defined? Let’s start
by looking at the authenticator bean, which defines the authentication strategy
for LdapAuthenticationProvider.

Authenticating with LDAP binding
When it comes to authenticating against LDAP, two approaches are commonly
taken:

■ Binding to the LDAP server using the username and password of an LDAP
user

■ Retrieving a user’s entry in LDAP and comparing the supplied password
with a password attribute in the LDAP record

For bind authentication, Spring Security comes with an LdapAuthenticator
implementation called BindAuthenticator. BindAuthenticator uses an LDAP
bind operator to bind as a user to the LDAP server. This approach relies on the
LDAP server to authenticate the user’s credentials.

 The following <bean> declares a BindAuthenticator in Spring:

<bean id="authenticator"
 class="org.acegisecurity.providers.ldap.authenticator.
 ➥ BindAuthenticator">
 <constructor-arg ref="initialDirContextFactory" />

266 CHAPTER 7

Securing Spring
 <property name="userDnPatterns">
 <list>
 <value>uid={0},ou=motorists</value>
 </list>
 </property>
</bean>

Here I’ve declared the BindAuthenticator to be injected through a constructor
argument and through the userDnPatterns property. We’ll come back to the con-
structor argument in a moment. First, let’s consider the userDnPatterns property.

 The userDnPatterns property is used to tell BindAuthenticator how to find a
user in LDAP. It takes a list of one or more patterns that BindAuthenticator will
use as the distinguished name (DN) to identify the user. In this case, we’re only
using a single DN pattern, as described in figure 7.6.

 The {0} in the DN pattern is a pattern argument that serves as a placeholder
for the username. For example, if the username is cwagon, the DN used to bind to
LDAP will be uid=cwagon,ou=motorists.

 Now back to the constructor argument. The main thing that a BindAuthenti-
cator needs to know to be able to do its job is how to access the LDAP repository.
Thus, it is constructed with a constructor argument wired to initialDirContext-
Factory, which is declared as follows:

<bean id="initialDirContextFactory"
 class="org.acegisecurity.ldap.
 ➥ DefaultInitialDirContextFactory">
 <constructor-arg
 value="ldap://ldap.roadrantz.com:389/dc=roadrantz,dc=com"/>
</bean>

DefaultInitialDirContextFactory captures all the information needed to con-
nect to an LDAP server and produces a JNDI DirContext object. If you don’t know
much about JNDI or DirContext, don’t worry about these details. Just keep in
mind that BindAuthenticator uses DefaultInitialDirContextFactory to know
how to get to the LDAP repository.

uid={0},ou=motorists

The user ID attribute

The "motorists"
organizational unit

User ID
placeholder

Figure 7.6
For our purposes, a user’s distinguished name
(DN) is broken into the user’s ID (UID) and
organizational unit (OU).

Authenticating users 267
 The constructor argument used to create DefaultInitialDirContextFactory
is wired with the URL of the LDAP provider. In this case, I’ve wired it with a refer-
ence to the RoadRantz LDAP server2 and established the initial context at
dc=roadrantz,dc=com. The DN used to look up the user information will be rela-
tive to this initial context.

Authenticating by comparing passwords
As an alternative to bind authentication, Spring Security also supports authentica-
tion by password comparison with PasswordComparisonAuthenticator. Pass-
wordComparisonAuthenticator works by comparing the supplied password with a
password attribute (userPassword, by default) in the user record. Here’s how it
might be configured in Spring:

<bean id="authenticator"
 class="org.acegisecurity.providers.ldap.authenticator.
 ➥ PasswordComparisonAuthenticator">
 <constructor-arg ref="initialDirContextFactory" />
 <property name="userDnPatterns">
 <list>
 <value>uid={0},ou=motorists</value>
 </list>
 </property>
</bean>

Notice that with the exception of the class name, this PasswordComparisonAu-
thenticator declaration is identical to the BindAuthenticator declaration.
That’s because in their simplest forms, both are fundamentally the same. Both
need an initial context factory to know how to get to the LDAP repository, and
both need one or more DN patterns for locating user records.

 But there are a few more properties you use to customize PasswordCompariso-
nAuthenticator. For example, if the default userPassword attribute doesn’t suit
your needs, you can override it by wiring in a new value to the passwordAt-
tributeName property. For example, declare PasswordComparisonAuthenticator
as follows to compare the password against an attribute named userCredentials:

<bean id="authenticator"
 class="org.acegisecurity.providers.ldap.authenticator.
 ➥ PasswordComparisonAuthenticator">
 <constructor-arg ref="initialDirContextFactory" />
 <property name="userDnPatterns">
 <list>

2 In case you’re already thinking about it, don’t try accessing the LDAP server at ldap.roadrantz.com.
That address is just an example… there’s no LDAP provider there.

268 CHAPTER 7

Securing Spring
 <value>uid={0},ou=motorists</value>
 </list>
 </property>
 <property name="passwordAttributeName" value="userCredentials" />
</bean>

Another customization you may choose is how the password is encoded in LDAP.
By default, PasswordComparisonAuthenticator uses Spring Security’s LdapSha-
PasswordEncoder to encode the password before comparison. LdapShaPasswor-
dEncoder supports LDAP Secure Hash Algorithm (SHA) and SSHA (salted-SHA)
encodings. But if these don’t suit your needs, any implementation of
org.acegisecurity.providers.encoding.PasswordEncoder, including those in
table 7.2, can be wired into the passwordEncoder property.

 For example, should you store the password in LDAP in plain text (not advised,
but possible), declare PasswordComparisonAuthenticator like this:

<bean id="authenticator"
 class="org.acegisecurity.providers.ldap.authenticator.
 ➥ PasswordComparisonAuthenticator">
 <constructor-arg ref="initialDirContextFactory" />
 <property name="userDnPatterns">
 <list>
 <value>uid={0},ou=motorists</value>
 </list>
 </property>
 <property name="passwordEncoder">

 <bean class="org.acegisecurity.providers.encoding.
 ➥ PlaintextPasswordEncoder" />
 </property>
</bean>

Before we move on to the populator strategy bean, let’s make one last tweak to
the initialDirContextFactory bean.

 Unlike BindAuthenticator, PasswordComparisonAuthenticator doesn’t bind
to LDAP using the user’s DN. Some LDAP providers allow anonymous binding, in
which case the initialDirContextFactory will work as is. However, for security
reasons, most LDAP providers do not allow anonymous binding, so we’ll need to
provide a manager DN and password for DefaultInitialDirContextFactory to
bind with:

<bean id="initialDirContextFactory"
 class="org.acegisecurity.ldap.
 ➥ DefaultInitialDirContextFactory">
 <constructor-arg
 value="ldap://ldap.roadrantz.com:389/dc=roadrantz,dc=com"/>
 <property name="managerDn"

Authenticating users 269
 value="cn=manager,dc=roadrantz,dc=com" />
 <property name="managerPassword" value="letmein" />
</bean>

When DefaultInitialDirContextFactory accesses LDAP, it will bind as the man-
ager and act on behalf of the user when comparing the user’s password.

 Now let’s configure the populator strategy bean to complete the LDAP authen-
tication picture.

Declaring the populator strategy bean
Authenticating the user is only the first step performed by LdapAuthentication-
Provider. Once the user’s identity is confirmed, LdapAuthenticationProvider
must retrieve a list of the user’s granted authorities to determine what rights the
user has within the application.

 As with authentication, LdapAuthenticatorProvider uses a strategy object to
find a user’s granted authorities from LDAP. Spring Security comes with one
implementation of the LdapAuthoritiesPopulator interface: DefaultLdapAu-
thoritiesPopulator. Here’s how DefaultLdapAuthoritiesPopulator is config-
ured in Spring:

<bean id="populator"
 class="org.acegisecurity.providers.ldap.populator.
 ➥ DefaultLdapAuthoritiesPopulator">
 <constructor-arg ref="initialDirContextFactory" />
 <constructor-arg value="ou=groups" />
 <property name="groupRoleAttribute" value="ou" />
</bean>

The first thing you’ll notice is that DefaultLdapAuthoritiesPopulator is con-
structed with two constructor arguments, the first of which is a reference to our
old friend, initialDirContextFactory. Just like the authenticator strategy
bean, the populator strategy bean needs to know how to get to the LDAP reposi-
tory to retrieve the user’s granted authorities.

 The second constructor argument helps DefaultLdapAuthoritiesPopulator
find groups within the LDAP repository. Since an LDAP repository is hierarchical
in nature, security groups could be found anywhere. This constructor argument
specifies a base DN from which to search for groups. This base DN is relative to the
initial context. Therefore, with the group base DN as ou=groups, we’ll be search-
ing for groups in ou=groups,dc=roadrantz,dc=com.

 Finally, the groupRoleAttribute property specifies the name of the attribute
that will contain role information (which effectively translates to a user’s granted
authorities). It defaults to cn, but for our example, we’ve set it to ou.

270 CHAPTER 7

Securing Spring
 Configured this way, DefaultLdapAuthoritiesPopulator will retrieve all
groups that the user is a member of—that is, all groups that have a member
attribute with the user’s DN.

 For example, suppose that you have an LDAP repository populated with the fol-
lowing LDIF:3

dn: ou=groups,dc=roadrantz,dc=com
objectClass: top
objectClass: organizationalUnit
ou: groups

dn: cn=motorists,ou=groups,dc=roadrantz,dc=com
objectClass: groupOfNames
objectClass: top
cn: motorists
description: Acegi Security Motorists
member: uid=craig,ou=people,dc=roadrantz,dc=com
member: uid=raymie,ou=people,dc=roadrantz,dc=com
ou: motorist

dn: cn=vips,ou=groups,dc=roadrantz,dc=com
objectClass: groupOfNames
objectClass: top
cn: vips
description: Acegi Security Motorists
member: uid=craig,ou=people,dc=roadrantz,dc=com
ou: vip

When the user named craig is authenticated, his granted authorities will include
ROLE_MOTORIST and ROLE_VIP. But when raymie is authenticated, her granted
authorities will only include ROLE_MOTORIST, because the vips group does not
have her DN as a member attribute.

 Note that the group name (which is in the ou attribute) is converted to
uppercase and then prefixed with ROLE_. The case normalization is just a conve-
nience that helps find a user’s authorities regardless of whether it’s lower or
uppercase. You can turn off this behavior by setting the convertToUpperCase
property to false.

 The ROLE_ prefix is provided for the sake of RoleVoter, which we’ll talk about
in section 7.3.2. If you would rather use a different role prefix, you can configure
DefaultLdapAuthoritiesPopulator’s rolePrefix property however you’d like.

 For example, to turn off uppercase normalization and change the role prefix
to GROUP_, configure DefaultLdapAuthoritiesPopulator like this:

3 LDAP aficionados know LDIF to be the LDAP Data Interchange Format. It’s the standard way of repre-
senting LDAP directory content.

Controlling access 271
<bean id="populator"
 class="org.acegisecurity.providers.ldap.populator.
 ➥ DefaultLdapAuthoritiesPopulator">
 <constructor-arg ref="initialDirContextFactory" />
 <constructor-arg value="ou=groups" />
 <property name="groupRoleAttribute" value="ou" />
 <property name="convertToUpperCase" value="false" />
 <property name="rolePrefix" value="GROUP_" />
</bean>

One more tweak that you may want to make to DefaultLdapAuthoritiesPopula-
tor is to change how it looks for members. Normally, it looks for groups whose
member attribute has the user’s DN. That’s fine if your LDAP is set up to use the
member attribute that way. But let’s say that instead of member, your LDAP reposi-
tory uses an associate attribute to track membership. In that case, you’ll want to
set the groupSearchFilter property like this:

<bean id="populator"
 class="org.acegisecurity.providers.ldap.populator.
 ➥ DefaultLdapAuthoritiesPopulator">
 <constructor-arg ref="initialDirContextFactory" />
 <constructor-arg value="ou=groups" />
 <property name="groupRoleAttribute" value="ou" />
 <property name="convertToUpperCase" value="false" />
 <property name="rolePrefix" value="GROUP_" />
 <property name="groupSearchFilter" value="(associate={0})" />
</bean>

Notice that the groupSearchFilter property uses the {0} pattern argument to
represent the user’s DN.

 Now we’ve wired in Spring Security’s authentication processing beans to iden-
tify the user. Next let’s see how Spring Security determines whether an authenti-
cated user has the proper authority to access the secured resource.

7.3 Controlling access

Authentication is only the first step in Spring Security. Once Spring Security has
figured out who the user is, it must decide whether to grant access to the
resources that it secures. We’ve configured the authentication manager from fig-
ure 7.1. Now it’s time to configure the access decision manager. An access decision
manager is responsible for deciding whether the user has the proper privileges to
access secured resources. Access decision managers are defined by the
org.acegisecurity.AccessDecisionManager interface:

272 CHAPTER 7

Securing Spring
public interface AccessDecisionManager {
 public void decide(Authentication authentication, Object object,
 ConfigAttributeDefinition config)
 throws AccessDeniedException,
 InsufficientAuthenticationException;
 public boolean supports(ConfigAttribute attribute);
 public boolean supports(Class clazz);
}

The supports() methods consider the secured resource’s class type and its con-
figuration attributes (the access requirements of the secured resource) to deter-
mine whether the access decision manager is capable of making access decisions
for the resource. The decide() method is where the ultimate decision is made. If
it returns without throwing an AccessDeniedException or InsufficientAuthen-
ticationException, access to the secured resource is granted. Otherwise, access
is denied.

7.3.1 Voting access decisions

Spring Security’s access decision managers are ultimately responsible for deter-
mining the access rights for an authenticated user. However, they do not arrive at
their decision on their own. Instead, they poll one or more objects that vote on
whether or not a user is granted access to a secured resource. Once all votes are
in, the decision manager tallies the votes and arrives at its final decision.

 Spring Security comes with three implementations of AccessDecisionMan-
ager, as listed in table 7.3. Each takes a different approach to tallying votes.

 All of the access decision managers are configured the same in the Spring con-
figuration file. For example, the following XML excerpt configures a Unanimous-
Based access decision manager:

Table 7.3 Spring Security’s access decision managers help decide whether a user is granted access by
tallying votes on whether to let the user in.

Access decision manager How it decides to grant/deny access

org.acegisecurity.vote.AffirmativeBased Allows access if at least one voter votes to
grant access

org.acegisecurity.vote.ConsensusBased Allows access if a consensus of voters
vote to grant access

org.acegisecurity.vote.UnanimousBased Allows access if all voters vote to grant
access

Controlling access 273
<bean id="accessDecisionManager"
 class="org.acegisecurity.vote.UnanimousBased">
 <property name="decisionVoters">
 <list>
 <ref bean="roleVoter"/>
 </list>
 </property>
</bean>

The decisionVoters property is where you provide the access decision manager
with its list of voters. In this case, there’s only one voter, which is a reference to a
bean named roleVoter. Let’s see how the roleVoter is configured.

7.3.2 Casting an access decision vote

Although access decision voters don’t have the final say on whether access is
granted to a secured resource (that job belongs to the access decision manager),
they play an important part in the access decision process. An access decision
voter’s job is to consider the user’s granted authorities alongside the authorities
required by the configuration attributes of the secured resource. Based on this
information, the access decision voter casts its vote for the access decision man-
ager to use in making its decision.

 An access decision voter is any object that implements the org.acegisecu-
rity.vote.AccessDecisionVoter interface:

public interface AccessDecisionVoter {
 public static final int ACCESS_GRANTED = 1;
 public static final int ACCESS_ABSTAIN = 0;
 public static final int ACCESS_DENIED = -1;

 public boolean supports(ConfigAttribute attribute);
 public boolean supports(Class clazz);
 public int vote(Authentication authentication, Object object,
 ConfigAttributeDefinition config);
}

As you can see, the AccessDecisionVoter interface is similar to that of AccessDe-
cisionManager. The big difference is that instead of a decide() method that
returns void, there is a vote() method that returns int. That’s because an access
decision voter doesn’t decide whether to allow access—it only returns its vote as to
whether or not to grant access.

 When faced with the opportunity to place a vote, an access decision voter can
vote one of three ways:

274 CHAPTER 7

Securing Spring
■ ACCESS_GRANTED—The voter wishes to allow access to the secured resource.

■ ACCESS_DENIED—The voter wishes to deny access to the secured resource.

■ ACCESS_ABSTAIN—The voter is indifferent.

As with most Spring Security components, you are free to write your own imple-
mentation of AccessDecisionVoter. However, Spring Security comes with
RoleVoter, a useful implementation that votes when the secured resources config-
uration attributes represent a role. More specifically, RoleVoter participates in a
vote when the secured resource has a configuration attribute whose name starts
with ROLE_.

 The way that RoleVoter decides on its vote is by simply comparing all of the
configuration attributes of the secured resource (that are prefixed with ROLE_)
with all of the authorities granted to the authenticated user. If RoleVoter finds a
match, it will cast an ACCESS_GRANTED vote. Otherwise, it will cast an ACCESS_
DENIED vote.

 The RoleVoter will only abstain from voting when the authorities required for
access are not prefixed with ROLE_. For example, if the secured resource only
requires non-role authorities (such as CREATE_USER), the RoleVoter will abstain
from voting.

 You can configure a RoleVoter with the following XML in the Spring configu-
ration file:

<bean id="roleVoter"
 class="org.acegisecurity.vote.RoleVoter"/>

As stated earlier, RoleVoter only votes when the secured resource has configura-
tion attributes that are prefixed with ROLE_. However, the ROLE_ prefix is only a
default. You may choose to override the default prefix by setting the rolePrefix
property:

<bean id="roleVoter"
 class="org.acegisecurity.vote.RoleVoter">
 <property name="rolePrefix" value="GROUP_" />
</bean>

Here, the default prefix has been overridden to be GROUP_. Thus the RoleVoter
will now only cast authorization votes on privileges that begin with GROUP_.

Securing web applications 275
7.3.3 Handling voter abstinence

Knowing that any voter can vote to grant or deny access or abstain from voting,
you may be wondering what would happen if all voters abstained from voting. Will
the user be granted or denied access?

 By default, all the access decision managers deny access to a resource if all the
voters abstain. However, you can override this default behavior by setting the
allowIfAllAbstain property on the access decision manager to true:

<bean id="accessDecisionManager"
 class="org.acegisecurity.vote.UnanimousBased">
 <property name="decisionVoters">
 <list>
 <ref bean="roleVoter"/>
 </list>
 </property>
 <property name="allowIfAllAbstain" value="true" />
</bean>

By setting allowIfAllAbstain to true, you are establishing a policy of “silence is
consent.” In other words, if all voters abstain from voting, access is granted as if
they had voted to grant access.

 Now that you’ve seen how Spring Security’s authentication and access control
managers work, let’s put them to work. In the next section you’ll learn how to use
Spring Security’s collection of servlet filters to secure a web application. Later, in
section 7.6, we’ll dig deep into an application and see how to use Spring AOP to
apply security at the method-invocation level.

7.4 Securing web applications

Spring Security’s support for web security is heavily based on servlet filters. These
filters intercept an incoming request and apply some security processing before
the request is handled by your application. Spring Security comes with a handful
of filters that intercept servlet requests and pass them on to the authentication
and access decision managers to enforce security. Depending on your needs, you
may use several of the filters listed in table 7.4 to secure your application.

 Even though table 7.4 lists 17 filters provided by Spring Security, most applica-
tions will suffice with only a handful of them. Specifically, when a request is sub-
mitted to a Spring-secured web application, it will pass through at least the
following four filters (as illustrated in figure 7.7):

276 CHAPTER 7

Securing Spring
Table 7.4 Spring Security controls access to web applications through several servlet
filters.

Filter (org.acegisecurity.*) Purpose

adapters.HttpRequestIntegrationFilter Populates the security context using infor-
mation from the user principal provided by
the web container.

captcha.
CaptchaValidationProcessingFilter

Helps to identify a user as a human (as
opposed to an automated process) using
Captcha techniques. Captcha is a technique
used to distinguish human users from auto-
mated/computer-driven users by challeng-
ing the user to identify something (typically
an image) that is easily identified by a
human, but difficult for a computer to make
out.

concurrent.ConcurrentSessionFilter Ensures that a user is not simultaneously
logged in more than a set number of times.

context.
HttpSessionContextIntegrationFilter

Populates the security context using infor-
mation obtained from the HttpSession.

intercept.web.
FilterSecurityInterceptor

Plays the role of security interceptor, decid-
ing whether or not to allow access to a
secured resource.

providers.anonymous.
AnonymousProcessingFilter

Used to identify an unauthenticated user as
an anonymous user.

securechannel.
ChannelProcessingFilter

Ensures that a request is being sent over
HTTP or HTTPS (as the need dictates).

ui.basicauth.BasicProcessingFilter Attempts to authenticate a user by process-
ing an HTTP Basic authentication.

ui.cas.CasProcessingFilter Authenticates a user by processing a CAS
(Central Authentication Service) ticket.

ui.digestauth.DigestProcessingFilter Attempts to authenticate a user by process-
ing an HTTP Digest authentication.

ui.ExceptionTranslationFilter Handles any AccessDeniedException
or AuthenticationException thrown
by any of the other filters in the filter chain.

ui.logout.LogoutFilter Used to log a user out of the application.

ui.rememberme.
RememberMeProcessingFilter

Automatically authenticates a user who has
asked to be “remembered” by the applica-
tion.

Securing web applications 277
1 Due to the stateless nature of HTTP, Spring
Security needs a way to preserve a user’s
authentication between web requests. An
integration filter is responsible for retrieving
a previously stored authentication (most
likely stored in the HTTP session) at the
beginning of a request so that it will be
ready for Spring Security’s other filters to
process.

2 Next, one of the authentication-processing fil-
ters will determine if the request is an
authentication request. If so, the pertinent
user information (typically a username/
password pair) is retrieved from the
request and passed on to the authentica-
tion manager to determine the user’s iden-
tity. If this is not an authentication request,
the filter performs no processing and the
request flows on down the filter chain.

3 The next filter in line is the exception trans-
lation filter. The exception translation fil-
ter’s sole purpose in life is to translate

ui.switchuser.
SwitchUserProcessingFilter

Used to switch out a user. Provides function-
ality similar to Unix’s su.

ui.webapp.
AuthenticationProcessingFilter

Accepts the user’s principal and credentials
and attempts to authenticate the user.

ui.webapp.SiteminderAuthentication-
ProcessingFilter

Authenticates a users by processing CA/
Netegrity SiteMinder headers.

ui.x509.X509ProcessingFilter Authenticates a user by processing an
X.509 certificate submitted by a client web
browser.

wrapper.SecurityContextHolderAware-
RequestFilter

Populates the servlet request with a
request wrapper.

Table 7.4 Spring Security controls access to web applications through several servlet
filters. (continued)

Filter (org.acegisecurity.*) Purpose

Request

Integration Filter
1

Authentication-Processing Filter
2

Exception Translation Filter
3

Filter Security Interceptor
4

Secured Web Resource

Response

Figure 7.7 The flow of a request
through Spring Security’s core filters.

278 CHAPTER 7

Securing Spring
AccessDeniedExceptions and AuthenticationExceptions that may have
been thrown into appropriate HTTP responses. If an AuthenticationEx-
ception is detected, the request will be sent to an authentication entry
point (e.g., login screen). If an AccessDeniedException is thrown, the
default behavior will be to return an HTTP 403 error to the browser.

4 The last of the required filters is the filter security interceptor. This filter plays
the part of the security interceptor (see section 7.1.1) for web applications.
Its job is to examine the request and determine whether the user has the
necessary privileges to access the secured resource. It doesn’t work alone,
though. It leans heavily on the authentication manager and the access deci-
sion manager to help it grant or restrict access to the resource.

If the user makes it past the filter security interceptor, the user will be granted
access to the secured web resource. Otherwise, an AccessDeniedException will
be thrown and the exception translation filter will handle it appropriately.

 We’ll explore each of these filters individually in more detail. But before you
can start using them, you need to understand how Spring Security places a Spring-
flavored twist on servlet filters.

7.4.1 Proxying Spring Security’s filters

If you’ve ever used servlet filters, you know that for them to take effect, you must
configure them in the web application’s web.xml file, using the <filter> and
<filter-mapping> elements. While this works, it doesn’t lend itself to configura-
tion using dependency injection.

 For example, suppose you have the following filter declared in your web.xml
file:

<filter>
 <filter-name>Foo</filter-name>
 <filter-class>FooFilter</filter-class>
</filter>

Now suppose that FooFilter needs a reference to a Bar bean to do its job. How
can you inject an instance of Bar into FooFilter?

 The short answer is that you can’t. The web.xml file has no notion of depen-
dency injection, nor is there a straightforward way of retrieving beans from the
Spring application context and wiring them into a servlet filter. The only option
you have is to use Spring’s WebApplicationContextUtils to retrieve the bar bean
from the Spring context. For example, you might place the following in the fil-
ter’s code:

Securing web applications 279
ApplicationContext ctx = WebApplicationContextUtils.
 getWebApplicationContext(servletContext);
Bar bar = (Bar) ctx.getBean("bar");

The problem with this approach, however, is that you must code Spring-specific
code into your servlet filter. Furthermore, you end up hard-coding a reference to
the name of the bar bean.

 Fortunately, Spring Security provides a better way through FilterToBean-
Proxy.

Proxying servlet filters
FilterToBeanProxy is a special servlet filter that, by itself, doesn’t do much.
Instead, it delegates its work to a bean in the Spring application context, as illus-
trated in figure 7.8. The delegate bean implements the javax.servlet.Filter
interface just like any other servlet filter, but is configured in the Spring configu-
ration file instead of web.xml.

By using FilterToBeanProxy, you are able to configure the actual filter in Spring,
taking full advantage of Spring’s support for dependency injection. The web.xml
file only contains the <filter> declaration for FilterToBeanProxy. The actual
FooFilter is configured in the Spring configuration file and uses setter injection
to set the bar property with a reference to a Bar bean.

 To use FilterToBeanProxy, you must set up a <filter> entry in the web appli-
cation’s web.xml file. For example, if you are configuring a FooFilter using Fil-
terToBeanProxy, you’d use the following code:

<filter>
 <filter-name>Foo</filter-name>
 <filter-class>org.acegisecurity.util.
 ➥ FilterToBeanProxy</filter-class>
 <init-param>
 <param-name>targetClass</param-name>
 <param-value>
 com.roadrantz.FooFilter

Spring Application ContextServlet Context

FilterToBeanProxy
Spring-Injected

Filter

delegates to

Figure 7.8 FilterToBeanProxy proxies filter handling to a delegate filter bean in
the Spring application context.

280 CHAPTER 7

Securing Spring
 </param-value>
 </init-param>
</filter>

Here the targetClass initialization parameter is set to the fully qualified class
name of the delegate filter bean. When this FilterToBeanProxy is initialized, it
will look for a bean in the Spring context whose type is FooFilter. FilterToBean-
Proxy will delegate its filtering to the FooFilter bean found in the Spring context:

<bean id="fooFilter"
 class="com.roadrantz.FooFilter">
 <property name="bar" ref="bar" />
</bean>

If a FooFilter bean isn’t found, an exception will be thrown. If more than one
matching bean is found, the first one found will be used.

 Optionally, you can set the targetBean initialization parameter instead of tar-
getClass to pick out a specific bean from the Spring context. For example, you
might pick out the fooFilter bean by name by setting targetBean as follows:

<filter>
 <filter-name>Foo</filter-name>
 <filter-class>org.acegisecurity.
 util.FilterToBeanProxy</filter-class>
 <init-param>
 <param-name>targetBean</param-name>
 <param-value>fooFilter</param-value>
 </init-param>
</filter>

The targetBean initialization parameter enables you to be more specific about
which bean to delegate filtering to, but requires that you match the delegate’s
name exactly between web.xml and the Spring configuration file. This creates
extra work for you if you decide to rename the bean. For this reason, it’s probably
better to use targetClass instead of targetBean.

NOTE It may be interesting to know that there’s nothing about FilterToBean-
Proxy that is specific to Spring Security or to securing web applications.
You may find that FilterToBeanProxy is useful when configuring your
own servlet filters. In fact, because it’s so useful, a similar filter named
org.springframework.web.filter.DelegatingFilterProxy was added
to Spring in version 1.2.

Finally, you’ll need to associate the filter to a URL pattern. The following <fil-
ter-mapping> ties the Foo instance of FilterToBeanProxy to a URL pattern of /*
so that all requests are processed:

Securing web applications 281
<filter-mapping>
 <filter-name>Foo</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Regardless of whether you choose targetClass or targetBean, FilterToBean-
Proxy must be able to access the Spring application context. This means that the
Spring context has to be loaded using Spring’s ContextLoaderListener or Con-
textLoaderServlet (see chapter 13).

 So now that you know how FilterToBeanProxy works, the burning question is:
what does all of this have to do with Spring Security? I’m glad you asked.

 As I mentioned earlier, Spring Security uses servlet filters in enforcing web
security. Each of these filters must be injected with other beans from the Spring
application context to do their job. For example, the FilterSecurityIntercep-
tor needs to be injected with the AuthenticationManager and the AccessDeci-
sionManager so that it can enforce security. Unfortunately, the servlet
specification doesn’t make it easy to do dependency injection on servlet filters.
FilterToBeanProxy solves this problem by being the “front-man” for the real fil-
ters that are configured as beans in the Spring application context.

Proxying multiple filters
Now you’re probably wondering, if FilterToBeanProxy handles requests by prox-
ying to a Spring-configured bean, what is on the receiving end (on the Spring
side)? That’s an excellent question.

 Actually, the bean that FilterToBeanProxy proxies to can be any implementa-
tion of javax.servlet.Filter. This could be any of Spring Security’s filters, or it
could be a filter of your own creation. But as I’ve already mentioned, Spring Secu-
rity requires at least four and possibly a dozen or more filters to be configured.
Does this mean that you have to configure a FilterToBeanProxy for each of
Spring Security’s filters?

 Absolutely not. While it’s certainly possible to add several FilterToBeanProxys
to web.xml (one for each of Spring Security’s filters), that’d be way too much
XML to write. To make life easier, Spring Security offers FilterToBeanProxy’s
cohort, FilterChainProxy.

 FilterChainProxy is an implementation of javax.servlet.Filter that can
be configured to chain together several filters at once, as illustrated in figure 7.9.

 FilterBeanProxy intercepts the request from the client and sends it to Fil-
terChainProxy for handling. FilterChainProxy then passes the request through
one or more filters that are configured in the Spring application context. Filter-
ChainProxy is configured like this in the Spring application context:

282 CHAPTER 7

Securing Spring
<bean id="filterChainProxy"
 class="org.acegisecurity.util.FilterChainProxy">
 <property name="filterInvocationDefinitionSource">
 <value>
 CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON
 PATTERN_TYPE_APACHE_ANT
 /**=filter1,filter2,filter3
 </value>
 </property>
</bean>

The filterInvocationDefinitionSource property takes a String that is parsed
into a scheme that FilterChainProxy will use to chain filters together. In this
example, the first line tells FilterChainProxy to normalize URL patterns to low-
ercase before comparing them. The next line says that Apache Ant–style paths are
to be used when declaring URL patterns.

 Finally, one or more URL-to-filter-chain mappings are provided. Here, the /**
pattern (in Ant, this means all URLs will match) is mapped to three filters. The fil-
ter configured as the filter1 bean will be the outermost filter and will receive the
request first. The filter2 bean is next. And the filter3 bean will be the inner-
most bean and will be the last filter to receive the request before the actual
secured resource is processed. When a response is returned, it flows in reverse
order, from filter3 to filter1.

Spring Application Context

Servlet Context

FilterToBeanProxy FilterChainProxy
delegates to

Spring-Injected
Filter #1

Spring-Injected
Filter #3

Spring-Injected
Filter #2

Figure 7.9 FilterChainProxy chains multiple filters together on behalf of
FilterToBeanProxy.

Securing web applications 283
Configuring proxies for Spring Security
Up to now, we’ve kept the configuration of the filter proxies mostly generic. But
it’s time to configure them for use in Spring Security. First up, let’s configure a
FilterToBeanProxy in web.xml:

<filter>
 <filter-name>Spring Security Filter Chain Proxy</filter-name>
 <filter-class>org.acegisecurity.util.
 ➥ FilterToBeanProxy</filter-class>
 <init-param>
 <param-name>targetClass</param-name>
 <param-value>org.acegisecurity.util.
 ➥ FilterChainProxy</param-value>
 </init-param>
</filter>

Here we’ve configured FilterToBeanProxy to proxy to any bean in the Spring
context whose type is FilterChainProxy. This is perfect because, as you may have
guessed, we’re going to configure a FilterChainProxy in the Spring context.

 But before we leave the web.xml file, we need to configure a filter mapping for
the FilterToBeanProxy:

<filter-mapping>
 <filter-name>Spring Security Filter Chain Proxy</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

As with any servlet <filter-mapping>, the <filter-name> value must match the
<filter-name> of the <filter> that is being mapped. As for the <url-pattern>,
we recommend that you use /* so that all requests are piped through Spring Secu-
rity and are potentially secured. Even if it isn’t necessary to secure the entire appli-
cation, filtering all requests through /* will keep the web.xml configuration
simple. Later, when we configure FilterSecurityInterceptor, we can choose
which parts of the application should be secured and which should not.

 And that’s all that’s needed in the web.xml file! Even though Spring Security
uses several filters to secure a web application, we only have to configure the one
FilterToBeanProxy filter in web.xml. From here on out, we’ll configure Spring
Security in the Spring application context.

 Speaking of the Spring application context, we’re going to need a Filter-
ChainProxy bean to handle the requests delegated from FilterToBeanProxy. For
the RoadRantz application, let’s start with the minimal Spring Security configura-
tion by configuring a FilterChainProxy in the Spring application context (in
roadrantz-security.xml) with the <bean> declaration shown in listing 7.1.

284 CHAPTER 7

Securing Spring

<bean id="filterChainProxy"
 class="org.acegisecurity.util.FilterChainProxy">
 <property name="filterInvocationDefinitionSource">
 <value>
 CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON
 PATTERN_TYPE_APACHE_ANT
 /**=httpSessionIntegrationFilter,
 ➥ authenticationProcessingFilter,
 ➥ exceptionTranslationFilter,
 ➥ filterSecurityInterceptor
 </value>
 </property>
</bean>

Here, we’ve configured FilterChainProxy to chain together four of Spring Secu-
rity’s filters. We’ll explore each of these filters in more detail in a moment. First,
however, it’s important to point out that if it weren’t for FilterChainProxy, we’d
have to configure four different <filter> entries and eight different <filter-
mapping> entries in web.xml. But with FilterChainProxy, the web.xml configura-
tion is simplified to a single <filter> and <filter-mapping> pair.

 As the request comes in from the client and makes its way toward the secured
resource, it passes through each of the filters. You can think of Spring Security’s
filters as different layers in the skin of an onion. Figure 7.10 shows how a request
flows through each of Spring Security’s filters on its way to a secured resource.

 Aside from looking a bit like the opening segment of a Looney Tunes cartoon,4

figure 7.10 illustrates something very important about Spring Security. Although
not all of Spring Security’s filters are required for every application, it’s crucial
that the ones that are used be configured in a specific order in the filterInvoca-
tionDefinitionSource property. That’s because some of the filters make assump-
tions about what security tasks have been performed before them. If the filters are
configured out of order, they conflict with one another.

 Each of the filters configured in the filterInvocationDefinitionSource
property of FilterChainProxy refers to a <bean> configured in the Spring appli-
cation context. Let’s follow the path of the request through each of the filters,
starting with the integration filter.

Listing 7.1 Configuring a FilterChainProxy for Spring Security

4 Admit it… you can’t stop thinking about Porky Pig bursting out of the center of that picture and saying,
“Th-th-d-th-d-th-d-d-that’s all, folks!”

Securing web applications 285
7.4.2 Handling the security context

Have you seen the movie Finding Nemo? If so, you’ll most certainly remember that
one of the main characters was a blue tang (that’s a fish, in case you didn’t know)
named Dory. Many of the funniest moments in the movie were a result of Dory’s
struggle with short-term memory loss. Throughout much of the movie, she would
forget little things, such as where they were going or the name of Marlin, the
clownfish who was looking for his son Nemo.

 As it turns out, HTTP and Dory have a lot in common. You see, HTTP is a state-
less protocol. That means that, like Dory, HTTP lives in the here-and-now and
tends to forget things between requests. This poses a small problem for secure
applications that are served over HTTP. Without something to help HTTP remem-
ber who you are, you’d have to log into an application with each request.

 Fortunately, several solutions have been devised to help HTTP with its short-
term memory loss. With Java-based web applications, sessions can be used to store
data between requests. With each request, stored user information can be
retrieved from the session, used to process the request, and then placed back into
the session so that it’s available for the next request.

Secured
Resource

Channel Processing
Concurrent Session

HTTP Session Integration

Authentication Processing
Remember-Me Processing

Anonymous Processing

Logout

Exception Translation
Security Interceptor

R
equest

Figure 7.10 Spring Security’s filters layer each other to apply security tasks.

286 CHAPTER 7

Securing Spring
 The first Spring Security filter that a request must pass through is HttpSes-
sionContextIntegrationFilter. This filter’s main job is to try to remember an
authenticated user between requests. It is configured in the Spring application
context like this:

<bean id="httpSessionIntegrationFilter"
 class="org.acegisecurity.context.
 ➥ HttpSessionContextIntegrationFilter"/>

When a request first comes in, HttpSessionContextIntegrationFilter checks
to see if it can find the user’s authentication information in the session (stored
there from a previous request). If so then HttpSessionContextIntegrationFil-
ter makes the user information available for Spring Security to use in the course
of the current request. At the end of the request, HttpSessionContextIntegra-
tionFilter will deposit the user’s authentication information back into the ses-
sion so that it will be available for the next request.

 If HttpSessionContextIntegrationFilter finds a user’s authentication infor-
mation in the session, there’s no need for the user to log in again. But if the user’s
authentication can’t be found, it probably means that they haven’t logged in yet.
To handle user login, we’ll need to configure an authentication-processing filter,
which is the next filter configured in FilterChainProxy and the next filter we’ll
discuss.

7.4.3 Prompting the user to log in

When securing web applications with Spring Security, authentication is per-
formed using a tag-team made up of an authentication entry point and an authen-
tication-processing filter. As illustrated in figure 7.11, an authentication entry
point prompts the user for login information, which is then processed by the
authentication-processing filter.

 An authentication entry point starts the login process by prompting the user
with a chance to provide their credentials. After the user submits the requested
information, an authentication-processing filter attempts to authenticate the user.

 Spring Security comes with five matched pairs of authentication entry points
and authentication-processing filters, as described in table 7.5.

Authentication
Entry
Point

Authentication
Processing

Filter

Login
Prompt

Figure 7.11 Authentication entry points and authentication-
processing filters work together to authenticate a web user.

Securing web applications 287
Let’s take a closer look at how the authentication entry point and authentication-
processing filter work together to authenticate a user. We’ll examine a few of
Spring Security’s authentication options, starting with Spring Security’s support
for HTTP Basic authentication.

Basic authentication
The simplest form of web-based authentication is known as Basic authentication.
Basic authentication works by sending an HTTP 401 (Unauthorized) response to
the web browser. When the browser sees this response, it realizes that the server
needs the user to log in. In response, the browser pops up a dialog box to prompt
the user for a username and password (see figure 7.12).

Table 7.5 Spring Security’s authentication entry points prompt the user to log in. An authentication-processing
filter processes the login request once the credentials are submitted.

Authentication entry point Authentication-processing filter Purpose

BasicProcessingFilterEntry
Point

BasicProcessingFilter Prompts the user to log in via a
browser dialog using HTTP
Basic authentication

AuthenticationProcessing
FilterEntryPoint

AuthenticationProcessing
Filter

Redirects the user to an HTML
form-based login page

CasProcessingFilterEntry
Point

CasProcessingFilter Redirects the user to login
page provided by JA-SIG’s CAS
single sign-on solution

DigestProcessingFilterEntry
Point

DigestProcessingFilter Prompts the user to log in via a
browser dialog using HTTP
Digest authentication

X509ProcessingFilterEntry
Point

X509ProcessingFilter Processes authentication using
X.509 certificates

Figure 7.12
HTTP Basic authentication uses
a browser-produced login dialog
box to prompt a user for their
credentials. This dialog box is
from the Mac OS X version of
Mozilla Firefox.

288 CHAPTER 7

Securing Spring
 When the user submits the login, the browser sends it back to the server to per-
form the authentication. If authentication is successful, the user is sent to the
desired target URL. Otherwise, the server may send back another HTTP 401
response and the browser will prompt the user again to log in.

 Using Basic authentication with Spring Security starts with configuring a
BasicProcessingFilterEntryPoint bean:

<bean id="authenticationEntryPoint"
 class="org.acegisecurity.ui.basicauth.
 ➥ BasicProcessingFilterEntryPoint">
 <property name="realmName" value="RoadRantz" />
</bean>

BasicProcessingFilterEntryPoint has only one property to be configured.
The realmName property specifies an arbitrary String that is displayed in the
login dialog box to give users some indication of what it is that they’re being asked
to log into. For example, the dialog box shown in figure 7.12 asks the user to
enter a username and password for the RoadRantz realm.

 After the user clicks the OK button in the login dialog box, the username and
password are submitted via the HTTP header back to the server. At that point,
BasicProcessingFilter picks it up and processes it:

<bean id="authenticationProcessingFilter"
 class="org.acegisecurity.ui.basicauth.
 ➥ BasicProcessingFilter">
 <property name="authenticationManager"
 ref="authenticationManager"/>
 <property name="authenticationEntryPoint"
 ref="authenticationEntryPoint"/>
</bean>

BasicProcessingFilter pulls the username and password from the HTTP header
and sends them on to the authentication manager, which is wired in through the
authenticationManager property. If authentication is successful, an Authentica-
tion object is placed into the session for future reference. Otherwise, if authenti-
cation fails, control is passed on to the authentication entry point (the
BasicProcessingFilterEntryPoint wired in through the authenticationEn-
tryPoint property) to give the user another chance.

 Although Basic authentication is fine for simple applications, it has some limi-
tations. Primarily, the login dialog box presented by the browser is neither user-
friendly nor aesthetically appealing. Basic authentication doesn’t fit the bill when
you want a more professional-looking login.

Securing web applications 289
 For the RoadRantz application, we want an eye-appealing web page that shares
the same look and feel as the rest of the application. Therefore, Spring Security’s
AuthenticationProcessingFilterEntryPoint is more appropriate for our
needs. Let’s see how it works.

Form-based authentication
AuthenticationProcessingFilterEntryPoint is an authentication entry point
that prompts the user with an HTML-based login form. For the RoadRantz appli-
cation, we’ll configure it in roadrantz-security.xml as follows:

<bean id="authenticationEntryPoint"
 class="org.acegisecurity.ui.webapp.
 ➥ AuthenticationProcessingFilterEntryPoint">
 <property name="loginFormUrl" value="/login.htm" />
 <property name="forceHttps" value="true" />
</bean>

AuthenticationProcessingFilterEntryPoint is configured here with two prop-
erties. The loginFormUrl property is set to a URL (relative to the web applica-
tion’s context) that will display the login page. The forceHttps property is set to
true to force the login page to be displayed securely over HTTPS, even if the origi-
nal request was made over HTTP.

 Here we’ve set loginFormUrl to /login.htm. loginFormUrl can be configured
with any URL that takes the user to an HTML form for login. In the case of the
RoadRantz application, /login.htm is ultimately associated with a Spring MVC
UrlFilenameViewController that displays the login page. Figure 7.13 shows what
the RoadRantz login page might look like.

 Regardless of how the login page is displayed, it’s important that it contain an
HTML form that resembles the following:

<form method="POST" action="j_acegi_security_check">
Username: <input type="text" name="j_username">

Password: <input type="password" name="j_password">

<input type="submit" value="Login">
</form>

The login form must have two fields named j_username and j_password in which
the user will enter the username and password, respectively. That’s because those
are the field names expected by AuthenticationProcessingFilter. As for the
form’s action attribute, it has been set to j_acegi_security_check, which will be
intercepted by AuthenticationProcessingFilter.

290 CHAPTER 7

Securing Spring
AuthenticationProcessingFilter is a filter that processes authentication based
on the username and password information given to it in the j_username and
j_password parameters. It is configured in roadrantz-security.xml as follows:

<bean id="authenticationProcessingFilter"
 class="org.acegisecurity.ui.webapp.
 ➥ AuthenticationProcessingFilter">
 <property name="filterProcessesUrl"
 value="/j_acegi_security_check" />
 <property name="authenticationFailureUrl"
 value="/login.htm?login_error=1" />
 <property name="defaultTargetUrl" value="/" />
 <property name="authenticationManager"
 ref="authenticationManager"/>
</bean>

The filterProcessesUrl property tells AuthenticationProcessingFilter

which URL it should intercept. This is the same URL that is in the login form’s

Figure 7.13 The RoadRantz login page is found at /login.htm, which is ultimately handled by
Spring MVC’s UrlFilenameViewController.

Securing web applications 291
action attribute. It defaults to /j_acegi_security_check, but I’ve explicitly
defined it here to illustrate that you can change it if you’d like.

 The authenticationFailureUrl property indicates where the user will be sent
should authentication fail. In this case, we’re sending them back to the login
page, passing a parameter to indicate that authentication failed (so that an error
message may be displayed).

 Under normal circumstances, when authentication is successful, Authentica-
tionProcessingFilter will place an Authentication object in the session and
redirect the user to their desired target page. The defaultTargetUrl property
defines what will happen in the unusual circumstance where the target URL isn’t
known. This could happen if the user navigates directly to the login screen with-
out first attempting to access a secured resource.

 Finally, the authenticationManager property is wired with a reference to an
authenticationManager bean. Just like all other authentication-processing filters,
the form-based AuthenticationProcessingFilter relies on an authentication
manager to help establish the user’s identity.

 Now we have an authentication processing filter and authentication entry
point defined in the Spring configuration, ready for users to log in. But there’s
one loose end left to tie up. The authentication-processing filter is wired into the
FilterChainProxy, but you’re probably wondering what is supposed to be done
with the authentication entry point. What part of Spring Security uses the authen-
tication entry point to prompt the user for login?

 I’ll answer that question for you soon. But first, we’ll need to look at the excep-
tion translation filter, the next filter in line to handle a secured request.

7.4.4 Handling security exceptions

In the course of providing security, any of Spring Security’s filters may throw some
variation of AuthenticationException or AccessDeniedException. Authentica-
tionException, for example, will be thrown if, for any reason, the user cannot be
authenticated. This could be because the user provided an invalid username/
password pair. Or it could even mean that the user hasn’t even attempted to log in
yet. Even if the user is successfully authenticated, they may not be granted the
authority necessary to visit certain secured pages. In that case, AccessDeniedEx-
ception will be thrown.

 Without anything to handle Spring Security’s AuthenticationException or
AccessDeniedException, they’d flow up to the servlet container and be displayed
in the browser as a really ugly stack trace. It goes without saying that this is less
than ideal. We’d prefer to handle such exceptions in a more graceful manner.

292 CHAPTER 7

Securing Spring
 That’s where ExceptionTranslationFilter comes in. ExceptionTransla-
tionFilter is configured at a level just outside of FilterSecurityInterceptor
so that it will have a chance to catch the exceptions that may be thrown by Fil-
terSecurityInterceptor. ExceptionTranslationFilter is configured in Spring
as follows:

<bean id="exceptionTranslationFilter"
 class="org.acegisecurity.ui.ExceptionTranslationFilter">
 <property name="authenticationEntryPoint"
 ref="authenticationEntryPoint" />
</bean>

ExceptionTranslationFilter catches the exceptions thrown from FilterSecu-
rityInterceptor… but what does it do with them?

 Notice that ExceptionTranslationFilter is injected with a reference to the
authentication entry point. If ExceptionTranslationFilter catches an Authen-
ticationException, it means that the user hasn’t been successfully authenti-
cated. In that case, the user is sent to the authentication entry point configured in
the authenticationEntryPoint property to try to log in.

Handling authorization exceptions
An AccessDeniedException indicates that the user has been authenticated but
has not been granted sufficient authority to access the resource that has been
requested. In that case, an HTTP 403 error is returned to the browser. The HTTP
403 error means “forbidden” and indicates that the user isn’t allowed to access a
requested resource.

 By default, ExceptionTranslationFilter uses an AccessDeniedHandlerImpl
to deal with AccessDeniedExceptions. Unless otherwise configured, AccessDe-
niedHandlerImpl only sends an HTTP 403 error to the browser. Unfortunately, an
HTTP 403 error is usually displayed in a user-unfriendly way in the browser.

 But we can configure our own AccessDeniedHandlerImpl that will forward the
user to a nicer-looking error page when AccessDeniedException is caught. The
following XML configures an AccessDeniedHandlerImpl that sends the user to an
error page at the URL /error.htm:

<bean id="accessDeniedHandler"
 class="org.acegisecurity.ui.AccessDeniedHandlerImpl">
 <property name="errorPage" value="/error.htm" />
</bean>

All that’s left to do is to wire this accessDeniedHandler into the ExceptionTrans-
lationFilter:

Securing web applications 293
<bean id="exceptionTranslationFilter"
 class="org.acegisecurity.ui.ExceptionTranslationFilter">
 <property name="authenticationEntryPoint"
 ref="authenticationEntryPoint" />
 <property name="accessDeniedHandler"
 ref="accessDeniedHandler" />
</bean>

We’ve now declared three out of the four security filters required by Spring Secu-
rity. The three filters configured thus far are the tumblers in Spring Security’s
lock. Now it’s time to configure FilterSecurityInterceptor, the latch that
decides whether or not to allow access to a web resource.

7.4.5 Enforcing web security

Whenever a user requests a page within a web application, that page may or may
not be a page that needs to be secure. In Spring Security, a filter security inter-
ceptor handles the interception of requests, determining whether a request is
secure and giving the authentication and access decision managers a chance to
verify the user’s identity and privileges. It is declared in the Spring configura-
tion file as follows:

<bean id="filterSecurityInterceptor"
 class="org.acegisecurity.intercept.web.FilterSecurityInterceptor">
 <property name="authenticationManager"
 ref="authenticationManager" />
 <property name="accessDecisionManager"
 ref="accessDecisionManager" />
 <property name="objectDefinitionSource">
 <value>
 CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON
 PATTERN_TYPE_APACHE_ANT
 /editProfile.htm=ROLE_MOTORIST
 </value>
 </property>
</bean>

FilterSecurityInterceptor plays the part of the security interceptor (as
described in section 7.1.1) for web applications. When a request comes in for a
resource (likely a web page or Spring MVC controller), FilterSecurityInter-
ceptor will perform several checks to see whether the user is allowed to access the
resource:

■ Has the user been authenticated? If not, FilterSecurityInterceptor will
throw an AuthenticationException (which will be handled by the excep-
tion translation filter, which will be handled by the exception translation
filter).

294 CHAPTER 7

Securing Spring
■ Is the requested resource secured? The objectDefinitionSource property
defines which resources are to be secured and what privileges are required
to access them. If the request’s URL matches one of the URL patterns in
objectDefinitionSource then the resource is secure.

■ Has the user been granted privileges that are sufficient for accessing the
resource? FilterSecurityInterceptor will compare the user’s granted
privileges with those declared as being required for the resource. If the
user’s privileges are sufficient, the request will be granted. If not, FilterSe-
curityInterceptor will throw an AccessDeniedException (that will be
handled by the exception translation filter).

FilterSecurityInterceptor doesn’t work alone when making these decisions.
That’s why it’s wired with a reference to an authentication manager and a refer-
ence to an access decision manager.

 As for the objectDefinitionSource property, this is how we declare which
resources are secured and what privileges are required to access them. The first
line indicates that we want all URL patterns to be normalized to lowercase before
comparison (otherwise, the URL patterns will be case sensitive). The next line
indicates that we’ll be using Ant-style paths for declaring the URL patterns.

 From the third line on, we can declare one or more URL patterns and what
privilege is required to access each. In this case, we have one URL pattern that
ensures that only authenticated users with the ROLE_MOTORIST role are allowed to
visit the editProfile.htm page.

 If the user has been authenticated and has appropriate privileges, FilterSe-
curityInterceptor will let the request continue. If, however, FilterSecurity-
Interceptor determines that the user doesn’t have adequate privileges, either an
AuthenticationException or an AccessDeniedException will be thrown.

 At this point, we’ve configured the basic filters required to secure the
RoadRantz application with Spring Security. But there’s one more filter that,
although not required, comes in handy for guaranteeing that secure information
be transmitted securely in web requests. Next, I’ll show you how to ensure that
secure requests are carried over HTTPS using Spring Security’s ChannelProcess-
ingFilter.

7.4.6 Ensuring a secure channel

The letter “s” is the most important letter on the Internet. Anyone who has spent
more than five minutes surfing the Web knows that most web pages are associated

Securing web applications 295
with URLs that start with “http://”. That’s because most web pages are requested
and sent using the HTTP protocol.

 HTTP is perfect for most pages, but is woefully insufficient when confidential
information is passed around on the Internet. Information sent over HTTP can be
easily intercepted and read by nefarious hackers who will use it for their ill-
purposed plans.

 When information must be sent confidentially, the letter “s” goes to work. For
those pages, you’ll find that the URL begins with “https://” instead of simply
“http://”. With HTTPS, information is still sent using HTTP, but is sent on a differ-
ent port and is encrypted so that if it is intercepted, it can’t be read by anyone for
whom it isn’t meant.

 Unfortunately, the problem with HTTPS is that the burden of ensuring that a
page be transferred over HTTPS belongs to whoever writes the link to the secure
page. In other words, for a page to be secured with encrypted HTTPS, it must be
linked to with a URL that starts with “https://”. Without that one little “s” in
there, the page will be sent unencrypted over HTTP.

 Because it’s too easy to omit the all-important “s,” Spring Security offers a fool-
proof way to ensure that certain pages be transferred using HTTPS, regardless of
which URL was used to link to them. As illustrated in figure 7.14, ChannelPro-
cessingFilter is a Spring Security filter that intercepts a request, checks to see if
it needs to be secure and, if so, calls “s” to work by redirecting the request to an
HTTPS form of the original request URL.

 We’ve configured a ChannelProcessingFilter for the RoadRantz application
in roadrantz-security.xml as follows:

Web
Application

Web Browser

HTTP Request

HTTPS

C
hannel P

rocessing F
ilter

Figure 7.14 ChannelProcessingFilter redirects HTTP requests as HTTPS (and
vice versa), ensuring the proper security for each request.

296 CHAPTER 7

Securing Spring
<bean id="channelProcessingFilter"
 class="org.acegisecurity.securechannel.
 ➥ ChannelProcessingFilter">
 <property name="filterInvocationDefinitionSource">
 <value>
 CONVERT_URL_TO_LOWERCASE_BEFORE_COMPARISON
 PATTERN_TYPE_APACHE_ANT
 /login.htm=REQUIRES_SECURE_CHANNEL
 /j_acegi_security_check*=REQUIRES_SECURE_CHANNEL
 /**=REQUIRES_INSECURE_CHANNEL
 </value>
 </property>
 <property name="channelDecisionManager"
 ref="channelDecisionManager" />
</bean>

The filterInvocationDefinitionSource property is configured to tell Channel-
ProcessingFilter which pages should be secured with HTTPS and which should
not. It is configured with one or more URL patterns that are mapped to be either
secure or not secure.

 But before the URL patterns appear, we must set a few ground rules for how
the URLs will be handled. The first line contains CONVERT_URL_TO_LOWERCASE_
BEFORE_COMPARISON to tell Spring Security to normalize all URLs before compar-
ing them to the URL patterns that will follow. The second line contains
PATTERN_TYPE_APACHE_ANT, which indicates that the URL patterns will be pre-
sented using Apache Ant–style paths.

 Each line that follows maps a URL pattern to its security requirements. In the
RoadRantz application, the login page must be secure (so that nobody can inter-
cept a user’s password). Therefore, /login.htm is mapped to
REQUIRES_SECURE_CHANNEL, indicating that it should be sent over HTTPS. Like-
wise, information sent to the URL that processes logins must also be encrypted. As
you’ll see soon, Spring Security’s AuthenticationProcessingFilter responds to
/j_acegi_security_check, so this URL pattern is also set to REQUIRES_

SECURE_CHANNEL.
 None of the other pages in the RoadRantz application require encryption. So

the /** URL pattern (which, in Ant path syntax indicates all URLs) is set to
REQUIRES_INSECURE_CHANNEL, specifying that all other pages must be sent over
plain, unsecured HTTP. Notice that these pages require an insecure channel. That
means that if these pages are accessed over HTTPS, ChannelProcessingFilter
will redirect them to be sent over HTTP.

View-layer security 297
Managing channel decisions
While ChannelProcessingFilter handles the task of redirecting the HTTP
requests to HTTPS (and vice versa), it doesn’t necessarily need to redirect every
request. Thus, it depends on a ChannelDecisionManagerImpl (wired into the
channelDecisionManager property) to weigh the decision as to whether or not
a request should be redirected. The ChannelDecisionManagerImpl is config-
ured as follows:

<bean id="channelDecisionManager"
 class="org.acegisecurity.securechannel.
 ➥ ChannelDecisionManagerImpl">
 <property name="channelProcessors">
 <list>
 <bean class="org.acegisecurity.securechannel.
 ➥ SecureChannelProcessor"/>
 <bean class="org.acegisecurity.securechannel.
 ➥ InsecureChannelProcessor"/>
 </list>
 </property>
</bean>

Here we’ve configured ChannelDecisionManagerImpl with two channel proces-
sors—one for secure channel (HTTPS) processing and one for insecure (HTTP)
channel processing.

 Before we move past Spring Security’s support for web-based security, let’s see
how to use Spring Security’s tag library to enforce security rules within a page in
the web application.

7.5 View-layer security

In most applications, there are certain elements that should only be displayed to a
certain class of users. As you’ve already seen, Spring Security’s filters prevent cer-
tain pages from being presented to users who are not granted a specific set of
authorities.

 But filters provide a coarse-grained security, limiting access at the request level.
In some cases, you may want more fine-grained control over what the user is
allowed to see. Maybe all users of an application will be allowed to see a certain
page, but only users who are granted special authority may see certain elements
on that page.

 To provide fine-grained security in web applications, Spring Security comes
with a small, but powerful, JSP tag library. This tag library provides only three tags,
as listed in table 7.6.

298 CHAPTER 7

Securing Spring
To use these tags in a JSP page, the tag library must be imported using the JSP
<%@taglib%> directive:

<%@ taglib prefix="authz" uri="http://acegisecurity.org/authz" %>

Let’s have a look at how to apply these tags, starting with <authz:authorize>.

7.5.1 Conditionally rendering content

The most useful of Spring Security’s JSP tags is the <authz:authorize> tag. This
tag effectively performs an if statement, evaluating whether or not the current
user has been granted proper authority to view certain content. If so, the body of
the tag will be rendered. Otherwise, the tag’s content will be ignored.

 To illustrate, let’s add a welcome message and a link to logoff from the
RoadRantz application. It doesn’t make much sense to welcome a user who isn’t
authenticated and even less sense to offer them a logoff link. Therefore, we want
to be certain that the user has been granted certain privileges before they’re pre-
sented with that information. Using the ifAllGranted attribute of the <authz:
authorize> tag, we might add the content to the view using this JSP snippet:

<authz:authorize ifAllGranted="ROLE_MOTORIST,ROLE_VIP">
 Welcome Motorist!

 Logoff
</authz:authorize>

Because the ifAllGranted attribute was used, the content contained in the body
of the tag will only be rendered if the motorist has been granted both
ROLE_MOTORIST and ROLE_VIP privileges. However, that is too restrictive, because
while all users are granted ROLE_MOTORIST privileges, only a select few are
granted ROLE_VIP privileges. So maybe the ifAnyGranted attribute would be
more appropriate:

<authz:authorize ifAnyGranted="ROLE_MOTORIST,ROLE_VIP">
 Welcome Motorist!

Table 7.6 Spring Security’s JSP tags for view-layer security.

Tag name What it does

<authz:acl> Conditionally renders the tag body if the user has been granted
one of a set of specific permissions to a domain object

<authz:authentication> Renders information about the user

<authz:authorize> Conditionally renders the tag body if the user has been (or has
not been) granted certain authorities

View-layer security 299
 Logoff
</authz:authorize>

In this case, the user must be granted either ROLE_MOTORIST or ROLE_VIP privi-
leges for the welcome message and logoff link to be displayed.

 Although it may seem obvious, it is worth pointing out that if you are only
checking for a single privilege, the choice between ifAllGranted and
ifAnyGranted is moot. Either attribute will work equally well when only one privi-
lege is listed in the attribute value.

 The final attribute option you have is ifNotGranted, which only renders the
tag’s content if the user has not been granted any of the authorities listed. For
example, we’d use this to prevent content from being rendered to anonymous
users:

<authz:authorize ifNotGranted="ROLE_ANONYMOUS">
 <p>This is super-secret content that anonymous users aren't
 allowed to see.</p>
</authz:authorize>

These three attributes cover a lot of ground by themselves. But some real security
magic is conjured up when they’re used together. When used together, these
attributes are evaluated by logically AND’ing them together. For instance, con-
sider the following:

<authz:authorize ifAllGranted="ROLE_MOTORIST"
 ifAnyGranted="ROLE_VIP,ROLE_FAST_LANE"
 ifNotGranted="ROLE_ADMIN">
 <p>Only special users see this content.</p>
</authz:authorize>

Used together this way, the tag’s content will only be rendered if the user has been
granted ROLE_MOTORIST privileges and either ROLE_VIP or ROLE_FAST_LANE privi-
leges, and is not granted ROLE_ADMIN privileges. Even though this is a contrived
example, you can imagine how powerful the <authz:authorize> tag can be by
combining its three attributes.

 Controlling what the user can see is only one facet of Spring Security’s JSP tag
library. Now let’s see how to use Spring Security tags to display information about
an authenticated user.

7.5.2 Displaying user authentication information

In the previous section, we added a welcome message to the RoadRantz applica-
tion for authorized users. For simplicity’s sake, the message was “Welcome

300 CHAPTER 7

Securing Spring
Motorist!” That’s a good start, but we’d like to make the application more per-
sonal by displaying the user’s login name instead of “Motorist.”

 Fortunately, the user’s login is typically carried around in the object that is
returned from the user’s Authentication.getPrincipal() method. All we need
is a convenient way to access the principal object in the JSP. That’s what the
<authz:authentication> tag is for.

 The <authz:authentication> tag renders properties of the object that is
returned from Authentication.getPrincipal() to JSP output. Authentica-
tion.getPrincipal() typically returns an implementation of Spring Security’s
org.acegisecurity.userdetails.UserDetails interface, which includes a
getUsername() method. Therefore, all we need to do to display the username
property of the UserDetails object is to add the following <authz:authentica-
tion> tag:

<authz:authorize ifAnyGranted="ROLE_MOTORIST,ROLE_VIP">
 Welcome <authz:authentication operation="username"/>
</authz:authorize>

The operation attribute is a bit misleading, seeming to indicate that its purpose is
to invoke a method. It’s true that it invokes a method, but more specifically, it
invokes the getter method of the property whose name is specified in the opera-
tion attribute.

 By default, the first letter of the operation value is capitalized and the result is
prepended with get to produce the name of the method that will be called. In
this case, the getUsername() method is called and its return value is rendered to
the JSP output.

 Now you’ve seen how to secure web applications using Spring Security’s filters.
Before we are done with Spring Security, however, let’s have a quick look at how to
secure method invocations using Spring Security and AOP.

7.6 Securing method invocations

Whereas Spring Security used servlet filters to secure web requests, Spring Secu-
rity takes advantage of Spring’s AOP support to provide declarative method-level
security. This means that instead of setting up a SecurityEnforcementFilter to
enforce security, you’ll set up a Spring AOP proxy that intercepts method invoca-
tions and passes control to a security interceptor.

Securing method invocations 301
7.6.1 Creating a security aspect

Probably the easiest way to set up an AOP proxy is to use Spring’s BeanNameAuto-
ProxyCreator and simply list the beans that you’ll want secured.5 For instance,
suppose that you’d like to secure the courseService and billingService beans:

<bean id="autoProxyCreator" class=
 "org.springframework.aop.framework.autoproxy.
 ➥ BeanNameAutoProxyCreator">
 <property name="interceptorNames">
 <list>
 <value>securityInterceptor</value>
 </list>
 </property>
 <property name="beanNames">
 <list>
 <value>courseService</value>
 <value>billingService</value>
 </list>
 </property>
</bean>

Here the autoproxy creator has been instructed to proxy its beans with a single
interceptor, a bean named securityInterceptor. The securityInterceptor
bean is configured as follows:

<bean id="securityInterceptor"
 class="org.acegisecurity.intercept.method.
 ➥ MethodSecurityInterceptor">
 <property name="authenticationManager">
 <ref bean="authenticationManager"/>
 </property>
 <property name="accessDecisionManager">
 <ref bean="accessDecisionManager"/>
 </property>
 <property name="objectDefinitionSource">
 <value>
 com.springinaction.springtraining.service.
 ➥ CourseService.createCourse=ROLE_ADMIN
 com.springinaction.springtraining.service.
 ➥ CourseService.enroll*=ROLE_ADMIN,ROLE_REGISTRAR
 </value>
 </property>
</bean>

5 This is only a suggestion. If you prefer one of the other mechanisms for proxying beans (as discussed in
chapter 4), such as ProxyFactoryBean or DefaultAdvisorAutoProxyCreator, you are welcome to use
those here instead.

302 CHAPTER 7

Securing Spring
MethodSecurityInterceptor does for method invocations what FilterSecuri-
tyInterceptor does for servlet requests. That is, it intercepts the invocation and
coordinates the efforts of the authentication manager and the access decision
manager to ensure that method requirements are met.

 Notice that the authenticationManager and accessDecisionManager proper-
ties are the same as for FilterSecurityInterceptor. In fact, you may wire the
same beans into these properties as you did for FilterSecurityInterceptor.

 MethodSecurityInterceptor also has an objectDefinitionSource property
just as FilterSecurityInterceptor does. But, although it serves the same pur-
pose here as with FilterSecurityInterceptor, it is configured slightly differ-
ently. Instead of associating URL patterns with privileges, this property associates
method patterns with privileges that are required to invoke the method.

 A method pattern (see figure 7.15) includes the fully qualified class name and
the method name of the method(s) to be secured. Note that you may use wild-
cards at either the beginning or the end of a method pattern to match multiple
methods.

 When a secured method is called, MethodSecurityInterceptor will deter-
mine whether the user has been authenticated and has been granted the appro-
priate authorities to call the method. If so, the call will proceed to the target
method. If not, an AcegiSecurityException will be thrown. More specifically, an
AuthenticationException will be thrown if the user cannot be authenticated. Or,
if the user hasn’t been granted authority to make the call, an AccessDeniedEx-
ception will be thrown.

 In keeping with Spring’s exception philosophy, AcegiSecurityException is an
unchecked exception. The calling code can either catch or ignore the exception.

 Writing method security attributes in the Spring configuration file is only one
way to declare method-level security. Now let’s look at how to use Jakarta Com-
mons Attributes to declare security attributes.

com.springinaction...CourseService.enroll*
 =ROLE_ADMIN,ROLE_REGISTRAR

WildcardFully Qualified Class Name

Required Privileges

Figure 7.15 Method security rules are defined by mapping a
fully qualified class name and method to the privileges required
to execute that method. Wildcards may be used when
specifying the method.

Securing method invocations 303
7.6.2 Securing methods using metadata

As with transactions and handler mappings, the first thing you must do is declare
a metadata implementation to tell Spring how to load metadata. If you haven’t
already added a CommonsAttributes bean to your application context, add one
now:

<bean id="attributes"
 class="org.springframework.metadata.commons.CommonsAttributes"/>

Next, you must declare an object definition source. In section 7.6.1, you defined
an object definition source by setting the objectDefinitionSource property with
a String that mapped security attributes to methods. But this time you’re going
to declare security attributes directly in the secured object’s source code. Spring
Security’s MethodDefinitionAttributes is an object definition source that
retrieves its security attributes from the secured object’s metadata:

<bean id="objectDefinitionSource" class=
 "org.acegisecurity.intercept.method.MethodDefinitionAttributes">
 <property name="attributes"><ref bean="attributes"/></property>
</bean>

The attributes property of MethodDefinitionAttributes is wired with a refer-
ence to the attributes bean so that it will know to pull security attributes using
Jakarta Commons Attributes.6

 Now that the objectDefinitionSource is configured, wire it into the object-
DefinitionSource property of MethodSecurityInterceptor (replacing the
String definition from section 7.6.1):

<bean id="securityInterceptor"
 class="org.acegisecurity.intercept.method.
 ➥ MethodSecurityInterceptor">
…
 <property name="objectDefinitionSource">
 <ref bean="objectDefinitionSource"/>
 </property>
</bean>

Now you’re ready to start tagging your code with security attributes. The only
security attribute you need to know is SecurityConfig, which associates a privi-
lege with a method. For example, the following snippet of code shows how to tag

6 When Spring supports JSR-175 annotations, you will wire the attributes property with a different meta-
data implementation.

304 CHAPTER 7

Securing Spring
the enrollStudentInCourse() method from CourseService to require either
ROLE_ADMIN or ROLE_REGISTRAR privileges:

/**
 * @@org.acegisecurity.SecurityConfig("ROLE_ADMIN")
 * @@org.acegisecurity.SecurityConfig("ROLE_REGISTRAR")
 */
public void enrollStudentInCourse(Course course,
 Student student) throws CourseException;

Declaring these security attributes on enrollStudentInCourse() is equivalent to
the declaration of the objectDefinitionSource as defined in section 7.6.1.

7.7 Summary

Security is a very important aspect of many applications. Spring Security provides
a mechanism for securing your applications that is based on Spring’s philosophy
of loose coupling, dependency injection, and aspect-oriented programming.

 You may have noticed that this chapter presented very little Java code. We
hope you weren’t disappointed. The lack of Java code illustrates a key strength of
Spring Security—loose coupling between an application and its security. Security
is an aspect that transcends an application’s core concerns. Using Spring Security,
you are able to secure your applications without writing any security code directly
into your application code.

 Another thing you may have noticed is that much of the configuration required
to secure an application with Spring Security is ignorant of the application that it
is securing. The only Spring Security component that really needs to know any spe-
cifics about the secured application is the object definition source where you asso-
ciate a secured resource with the authorities required to access the resource.
Loose coupling runs both ways between Spring Security and its applications.

Spring and POJO-based
remote services
This chapter covers
■ Accessing and exposing RMI services
■ Using Hessian and Burlap services
■ Working with Spring’s HTTP invoker
■ Using Spring with web services
305

306 CHAPTER 8

Spring and POJO-based remote services
Imagine for a moment that you are stranded on a deserted island. This may sound
like a dream come true. After all, who wouldn’t want to get some solitude on a
beach, blissfully ignorant of the goings-on of the outside world?

 But on a deserted island, it’s not piña coladas and sunbathing all the time.
Even if you enjoy the peaceful seclusion, it won’t be long before you’ll get hungry,
bored, and lonely. You can only live on coconuts and spear-caught fish for so long.
You’ll eventually need food, fresh clothing, and other supplies. And if you don’t
get in contact with another human soon, you may end up talking to a volleyball!

 Many applications that you’ll develop are like island castaways. On the surface
they may seem self-sufficient, but in reality, they may collaborate with other sys-
tems, both within your organization and externally.

 For example, consider a procurement system that needs to communicate with
a vendor’s supply chain system. Maybe your company’s human resources system
needs to integrate with the payroll system. Or even the payroll system may need to
communicate with an external system that prints and mails paychecks. No matter
the circumstance, your application will need to communicate with the other sys-
tem to access services remotely.

 Several remoting technologies are available to you, as a Java developer, includ-
ing:

■ Remote Method Invocation (RMI)

■ Caucho’s Hessian and Burlap

■ Spring’s own HTTP invoker

■ Web services using SOAP and JAX-RPC

Regardless of which remoting technology you choose, Spring provides rich sup-
port for accessing and creating remote services. In this chapter, you’ll learn how
Spring both simplifies and complements these remoting services. But first, let’s set
the stage for this chapter with an overview of how remoting works in Spring.

8.1 An overview of Spring remoting

Remoting is a conversation between a client application and a service. On the client
side, some functionality is required that isn’t within the scope of the application.
So, the application reaches out to another system that can provide the functional-
ity. The remote application exposes the functionality through a remote service.

 For example, suppose that in addition to user-entered rants, we’d like to dis-
play any traffic citations issued to a motorist. The RoadRantz application itself has

An overview of Spring remoting 307
no record of traffic citations. But fortunately, we’ve discovered a third-party ser-
vice that maintains a database of traffic citations as part of public record. The
RoadRantz application could access the traffic citation service and then retrieve
and display citations alongside its rants. This would involve a remote call to the
traffic citation system, as illustrated in figure 8.1.

 The conversation between RoadRantz and the remote service begins with a
remote procedure call (RPC) from the RoadRantz application to the traffic citation
service. On the surface, an RPC is similar to a call to a method on a local object.
Both are synchronous operations, blocking execution in the calling code until the
called procedure is complete.

 The difference is a matter of proximity, with an analogy in human communica-
tion. If you are at the proverbial watercooler at work discussing the outcome of
the weekend’s football game, you are conducting a local conversation—that is,
the conversation takes place between two people in the same room. Likewise, a
local method call is one where execution flow is exchanged between two blocks of
code within the same application.

 On the other hand, if you were to pick up the phone to call a client in another
city, your conversation would be conducted remotely over the telephone network.
Similarly, RPC is when execution flow is handed off from one application to
another application, theoretically on a different machine in a remote location
over the network.

 Spring supports remoting for several different RPC models, including Remote
Method Invocation (RMI), Caucho’s Hessian and Burlap, and Spring’s own HTTP
invoker. Table 8.1 outlines each of these models and briefly discusses their useful-
ness in various situations.

Service Interface

Proxy Service

Client

Remote
Communication

Has a

Handles marshaling
and unmarshaling of
remote method calls

Figure 8.1
The RoadRantz application will
make remote calls to the
traffic citation system to dig
into a motorist’s records and
find citations.

308 CHAPTER 8

Spring and POJO-based remote services
Regardless of which remoting model you choose, you’ll find that a common
theme runs through Spring’s support for each of the models. This means that
once you understand how to configure Spring to work with one of the models,
you’ll have a very low learning curve if you decide to use a different model.

 In all models, services can be configured into your application as Spring-
managed beans. This is accomplished using a proxy factory bean that enables you
to wire remote services into properties of your other beans as if they were local
objects. Figure 8.2 illustrates how this works.

 The client makes calls to the proxy as if the proxy were providing the service
functionality. The proxy communicates with the remote service on behalf of the
client. It handles the details of connecting and making remote calls to the
remote service.

 What’s more, if the call to the remote service results in a java.rmi.RemoteEx-
ception, the proxy handles that exception and rethrows it as an unchecked
org.springframework.remoting.RemoteAccessException. Remote exceptions
usually signal problems such as network or configuration issues that can’t be
gracefully recovered from. Since there’s usually very little that a client can do to
gracefully recover from a remote exception, rethrowing a RemoteAccessExcep-
tion makes it optional for the client to handle the exception.

 On the service side, you are able to expose the functionality of any Spring-
managed bean as a remote service using any of the models listed in table 8.1.
Figure 8.3 illustrates how remote exporters expose bean methods as remote services.

Table 8.1 The RPC models supported by Spring remoting.

RPC model Useful when…

Remote Method Invocation (RMI) Accessing/exposing Java-based services when network con-
straints such as firewalls aren’t a factor

Hessian or Burlap Accessing/exposing Java-based services over HTTP when net-
work constraints are a factor

HTTP Invoker Accessing/exposing Spring-based services when network con-
straints are a factor

JAX-RPC/SOAP Accessing/exposing platform-neutral, SOAP-based web-services

RoadRantz, Inc. Traffic Enforcement

Road
Rantz

Traffic
Citation
System

Get Citations

Figure 8.2
In Spring, remote services are
proxied so that they can be
wired into client code as if they
were any other Spring bean.

Working with RMI 309
Whether you’ll be developing code that consumes remote services, implements
those services, or both, working with remote services in Spring is purely a matter
of configuration. You won’t have to write any Java code to support remoting. Your
service beans don’t have to be aware that they are involved in an RPC (although
any beans passed to or returned from remote calls may need to implement
java.io.Serializable).

 Let’s start our exploration of Spring’s remoting support by looking at RMI, the
original remoting technology for Java.

8.2 Working with RMI

If you’ve been working in Java for any length of time, you’ve no doubt heard of
(and probably used) Remote Method Invocation (RMI). RMI—first introduced into
the Java platform in JDK 1.1—gives Java programmers a powerful way to con-
duct communication between Java programs. Before RMI, the only remoting
options available to Java programmers were CORBA (which at the time required
the purchase of a third-party Object Request Broker, or ORB) or handwritten
socket programming.

 But developing and accessing RMI services is tedious, involving several steps,
both programmatic and manual. Spring simplifies the RMI model by providing a
proxy factory bean that enables you to wire RMI services into your Spring

Service Interface

Service Bean RemoteExporter
Has a

Client
Remote

Communication

Handle marshaling
and unmarshaling of
remote method calls

Figure 8.3 Spring-managed beans can be exported as remote services using
RemoteExporters.

310 CHAPTER 8

Spring and POJO-based remote services
application is if they were local JavaBeans. Spring also provides a remote exporter
that makes short work of converting your Spring-managed beans into RMI services.

 To get started with Spring’s RMI, let’s see how to wire an RMI service into the
RoadRantz application.

8.2.1 Wiring RMI services

As mentioned earlier, RoadRantz needs to be able to query a third-party service
for traffic citations written against a vehicle. Fortunately, such a service is provided
by Ticket-to-Drive, Inc. (a fictitious service-oriented company fabricated solely for
purposes of this example). Conveniently, it turns out that Ticket-to-Drive’s traffic
citation service exposes its functionality as an RMI service.

 One way to access the citation service is to write a factory method that retrieves
a reference to the service in the traditional RMI way:

private String citationUrl = "rmi:/citation/CitationService";
public CitationService lookupCitationService()
 throws RemoteException, NotBoundException,
 MalformedURLException {

 CitationService citationService = (CitationService)
 Naming.lookup(citationUrl);

 return citationService;
}

The citationUrl property will need to be set to the address for the RMI service.
Then, any time the RoadRantz application needs a reference to the citation ser-
vice, it would need to call the lookupCitationService() method. While this
would certainly work, it presents two problems:

■ Conventional RMI lookups could result in any one of three exceptions
(RemoteException, NotBoundException, and MalformedURLException)
that must be caught or rethrown.

■ Any code that needs the citation service is responsible for retrieving a refer-
ence to the service itself by calling lookupCitationService().

The exceptions thrown in the course of an RMI lookup are the kinds that typically
signal a fatal and unrecoverable condition in the application. MalformedURL-
Exception, for instance, indicates that the address given for the service is not
valid. To recover from this exception, the application will at minimum need to be
reconfigured and may have to be recompiled. No try/catch block will be able to
recover gracefully, so why should your code be forced to catch and handle it?

Working with RMI 311
 But perhaps even more sinister is the fact that lookupCitationService() is a
direct violation of dependency injection. This is bad because it means that the cli-
ent of lookupCitationService() is also aware of where the citation service is
located and of the fact that it is an RMI service. Ideally, you should be able to
inject a CitationService object into any bean that needs one instead of having
the bean look up the service itself. Using DI, any client of CitationService can
be ignorant of where the CitationService comes from.

 Spring’s RmiProxyFactoryBean is a factory bean that creates a proxy to an RMI
service. Using RmiProxyFactoryBean to reference an RMI CitationService is as
simple as declaring the following <bean> in the Spring configuration file:

<bean id="citationService"
 class="org.springframework.remoting.rmi.RmiProxyFactoryBean">
 <property name="serviceUrl"
 value="rmi://${citationhost}/CitationService" />
 <property name="serviceInterface"
 value="com.tickettodrive.CitationService" />
</bean>

The URL of the RMI service is set through the serviceUrl property. Here, the ser-
vice is named CitationService and is hosted on a machine whose name is config-
ured using a property placeholder (see section 3.5.3 in chapter 3). The
serviceInterface property specifies the interface that the service implements
and through which the client invokes methods on the service. The interaction
between the client and the RMI proxy is illustrated in figure 8.4.

RmiProxy
FactoryBean

RMI
Proxy

C
ita

tio
nS

er
vi

ce

P
ro

du
ce

s

NetworkClient
Method Call Citation

Service

JRMP
Message

JRMP
Message

Figure 8.4 RmiProxyFactoryBean produces a proxy object that talks to remote RMI
services on behalf of the client. The client talks to the proxy through the service’s interface
as if the remote service were just a local POJO.

312 CHAPTER 8

Spring and POJO-based remote services
 With the service defined as a Spring-managed bean, you are able to wire it as a
dependency into another bean just as you would any other non-remote bean. For
example, suppose that RantServiceImpl needs to use the citation service to
retrieve a list of citations for a vehicle. You’d use this code to wire the RMI service
into RantServiceImpl:

<bean id="rantService"
 class="com.roadrantz.service.RantServiceImpl">
…
 <property name="citationService">
 <ref bean="citationService"/>
 </property>
…
</bean>

What’s great about accessing an RMI service in this way is that RantServiceImpl
doesn’t even know that it’s dealing with an RMI service. It simply receives a Cita-
tionService object via injection, without any concern for where it comes from.
Furthermore, the proxy catches any RemoteExceptions that may be thrown by the
service, rethrowing them as runtime exceptions so that you may safely ignore
them. This makes it possible to swap out the remote service bean with another
implementation of the service—perhaps a different remote service or maybe a
mock implementation used when unit testing RantServiceImpl.

 RmiProxyFactoryBean certainly simplifies the use of RMI services in a Spring
application. But that’s only half of an RMI conversation. Let’s see how Spring sup-
ports the service side of RMI.

8.2.2 Exporting RMI services

Now let’s turn the tables and pretend that instead of working on the RoadRantz
application, you are tasked with implementing the citation service for Ticket-to-
Drive, Inc. as an RMI service.

 If you’ve ever created an RMI service without Spring, you know that it involves
the following steps:

1 Write the service implementation class with methods that throw
java.rmi.RemoteException.

2 Create the service interface to extend java.rmi.Remote.

3 Run the RMI compiler (rmic) to produce client stub and server skeleton
classes.

4 Start an RMI registry to host the services.

5 Register the service in the RMI registry.

Working with RMI 313
Wow! That’s a lot of work just to publish a simple RMI service. What’s perhaps
worse than all the steps required, you may have noticed that RemoteExceptions
and MalformedURLExceptions are thrown around quite a bit. These exceptions
usually indicate a fatal error that can’t be recovered from in a catch block, but
you’re still expected to write boilerplate code that catches and handles those
exceptions—even if there’s not much you can do to fix them. Clearly a lot of code
and manual work is involved to publish an RMI service without Spring.

Configuring an RMI service in Spring
Fortunately, Spring provides an easier way to publish RMI services. Instead of
writing RMI-specific classes with methods that throw RemoteException, you sim-
ply write a POJO that performs the functionality of your service. Spring handles
the rest.

 To create the citation lookup service as an RMI service, we’ll start by writing the
service interface:

package com.tickettodrive;

public interface CitationService {
 Citation[] getCitationsForVehicle(
 String state, String plateNumber);
}

Because the service interface doesn’t extend java.rmi.Remote and none of its
methods throw java.rmi.RemoteException, this trims the interface down a bit.
But more importantly, a client accessing the service through this interface will not
have to catch exceptions that they probably won’t be able to deal with.

 Next you’ll need to define the service implementation class. Listing 8.1 shows
how this service may be implemented.

package com.tickettodrive;

public class CitationServiceImpl implements CitationService {
 public CitationServiceImpl() {}

 public Citation[] getCitationsForVehicle(
 String state, String plateNumber) {
 Citation[] citations;
…
 return citations;
 }
}

Listing 8.1 A POJO citation service

Throws no
RemoteException

Looks up citations

314 CHAPTER 8

Spring and POJO-based remote services
This time CitationServiceImpl is a POJO. We have no need to implement
java.rmi.Remote and no more java.rmi.RemoteExceptions are being thrown
around. In fact, this class has no idea that it will be used remotely. Consequently,
we’ll be able to reuse this exact same CitationServiceImpl class in the other
remoting examples throughout this chapter.

 The next thing you’ll need to do is to configure CitationServiceImpl as a
<bean> in the Spring configuration file:

<bean id="citationService"
 class="com.tickettodrive.CitationServiceImpl">
…
</bean>

Notice that there’s nothing about this version of CitationServiceImpl that is
intrinsically RMI. It’s just a simple POJO suitable for declaration in a Spring config-
uration file. It’s no different than any other POJO that we might declare in Spring.
In fact, it’s entirely possible to use this implementation in a non-remote manner
by wiring it directly into a client.

 But we’re interested in using this service remotely. So, the last thing to do is to
export CitationServiceImpl as an RMI service. But instead of generating a server
skeleton and client stub using rmic and manually adding it to the RMI registry (as
you would in conventional RMI), we’ll use Spring’s RmiServiceExporter.

 RmiServiceExporter exports any Spring-managed bean as an RMI service. As
depicted in figure 8.5, RmiServiceExporter works by wrapping the bean in an
adapter class. The adapter class is then bound to the RMI registry and proxies
requests to the service class—in this case CitationServiceImpl.

 The simplest way to use RmiServiceExporter to expose the citationService
bean as an RMI service is to configure it in Spring with the following XML:

RMI Service Adapter

CitationServiceImpl

RmiServiceExporter

C
reates

RMI
RegistryBound in

Figure 8.5
RmiServiceExporter turns POJOs
into RMI services by wrapping them in a
service adapter and binding the service
adapter to the RMI registry.

Working with RMI 315
<bean class="org.springframework.remoting.rmi.RmiServiceExporter">
 <property name="service" ref="citationService"/>
 <property name="serviceName" value="CitationService"/>
 <property name="serviceInterface"
 value="com.tickettodrive.CitationService"/>
</bean>

Here the citationService bean is wired into the service property to indicate
that RmiServiceExporter is going to export the bean as an RMI service. Just as
with RmiProxyFactoryBean described in section 8.2.1, the serviceName property
names the RMI service and the serviceInterface property specifies the interface
implemented by the service.

 By default, RmiServiceExporter attempts to bind to an RMI registry on port
1099 of the local machine. If no RMI registry is found at that port, RmiServiceEx-
porter will start one. If you’d like to bind to an RMI registry at a different port or
host, you can specify so with the registryPort and registryHost properties. For
example, the following RmiServiceExporter will attempt to bind to an RMI regis-
try on port 1199 of rmi.tickettodrive.com:

<bean class="org.springframework.remoting.rmi.RmiServiceExporter">
 <property name="service" ref="citationService"/>
 <property name="serviceName" value="CitationService"/>
 <property name="serviceInterface"
 value="com.tickettodrive.CitationService"/>
 <property name="registryHost"
 value="rmi.tickettodrive.com" />
 <property name="registryPort" value="1199" />
</bean>

RMI is an excellent way to communicate with remote services, but it has its limita-
tions. First, RMI has difficulty working across firewalls. That’s because RMI uses
arbitrary ports for communication—something firewalls typically will not allow. In
an intranet environment, this usually isn’t a concern, but if you are working on
the “evil Internet,” you’ll probably run into trouble with RMI. Even though RMI
has support for tunneling through HTTP (which is usually allowed by firewalls),
setting up the tunneling can be tricky.

 Another thing to consider is that RMI is Java based. That means that both
the client and the service must be written in Java. And since RMI uses Java seri-
alization, the types of the objects being sent across the network must have the
exact same version on both sides of the call. These may or may not be issues for
your application, but it is something to bear in mind when choosing RMI for
remoting.

316 CHAPTER 8

Spring and POJO-based remote services
 Caucho Technology (the same people behind the Resin application server)
has developed a remoting solution that addresses the limitations of RMI. Actually,
they have come up with two solutions: Hessian and Burlap. Let’s see how to use
Hessian and Burlap to work with remote services in Spring.

8.3 Remoting with Hessian and Burlap

Hessian and Burlap are two solutions provided by Caucho Technology (http://
www.caucho.com) that enable lightweight remote services over HTTP. They each
aim to simplify web services by keeping both their API and their communication
protocols as simple as possible.

 You may be wondering why Caucho has two solutions to the same problem.
Indeed, Hessian and Burlap are two sides of the same coin, but each serves
slightly different purposes. Hessian, like RMI, uses binary messages to communi-
cate between client and service. However, unlike other binary remoting technolo-
gies (such as RMI), the binary message is portable to languages other than Java,
including PHP, Python, C++, and C#.

 Burlap, on the other hand, is an XML-based remoting technology, which auto-
matically makes it portable to any language that can parse XML. And because it’s
XML, it is more easily human-readable than Hessian’s binary format. Unlike other
XML-based remoting technologies (such as SOAP or XML-RPC), however, Burlap’s
message structure is as simple as possible and does not require an external defini-
tion language (e.g., WSDL or IDL).

 Both Hessian and Burlap are also lightweight with regard to their size. Each is
fully contained in an 84KB JAR file, with no external dependencies other than the
Java runtime libraries. This makes them both perfect for use in environments that
are constrained on memory, such as Java applets or handheld devices.

 You may be wondering how to make a choice between Hessian and Burlap.
For the most part, they are identical. The only difference is that Hessian messages
are binary and Burlap messages are XML. Because Hessian messages are binary,
they are more bandwidth friendly. If human-readability is important to you (for
debugging purposes) or if your application will be communicating with a lan-
guage for which there is no Hessian implementation, Burlap’s XML messages may
be preferable.

 To demonstrate Hessian and Burlap services in Spring, let’s revisit the cita-
tion service problem that was solved with RMI in section 8.2. This time, however,
we’ll look at how to solve the problem using Hessian and Burlap as the remot-
ing models.

Remoting with Hessian and Burlap 317
8.3.1 Accessing Hessian/Burlap services

As you’ll recall from section 8.2.1, RantServiceImpl has no idea that the citation
service is an RMI service. RantServiceImpl dealt only with the CitationService
interface, while all of the RMI details were completely contained in the configura-
tion of the beans in Spring’s configuration file. The good news is that because of
the client’s ignorance of the service’s implementation, switching from an RMI cli-
ent to a Hessian client is extremely easy, requiring no changes to the client code.

 The bad news is that if you really like writing code, this section may be a bit of
a letdown. That’s because the only difference between wiring the client side of an
RMI-based service and wiring the client side of a Hessian-based service is that
you’ll use Spring’s HessianProxyFactoryBean instead of RmiProxyFactoryBean.
A Hessian-based citation service is declared in the client code like this:

<bean id="citationService" class="org.springframework.
 ➥ remoting.caucho.HessianProxyFactoryBean">
 <property name="serviceUrl">
 <value>http://${serverName}/${contextPath}/
 ➥ citation.service</value>
 </property>
 <property name="serviceInterface">
 <value>com.tickettodrive.CitationService</value>
 </property>
</bean>

Just as with an RMI-based service, the serviceInterface property specifies the
interface that the service implements. And, as with RmiProxyFactoryBean, servi-
ceUrl indicates the URL of the service. Since Hessian is HTTP based, it has been
set to an HTTP URL here (you’ll see how this URL is derived in the next section).
Figure 8.6 shows the interaction between a client and the proxy produced by Hes-
sianProxyFactoryBean.

 As it turns out, wiring a Burlap service is equally uninteresting. The only differ-
ence is that you’ll use BurlapProxyFactoryBean instead of HessianProxy-
FactoryBean:

<bean id="citationService" class="org.springframework.
 ➥ remoting.caucho.BurlapProxyFactoryBean">
 <property name="serviceUrl">
 <value>http://${serverName}/${contextPath}/
 ➥ citation.service</value>
 </property>
 <property name="serviceInterface">
 <value>com.tickettodrive.CitationService</value>
 </property>
</bean>

318 CHAPTER 8

Spring and POJO-based remote services
Although I’ve made light of how uninteresting the configuration differences are
among RMI, Hessian, and Burlap services, this tedium is actually a benefit. It dem-
onstrates that you’ll be able to switch effortlessly between the various remoting
technologies supported by Spring without having to learn a completely new
model. Once you’ve configured a reference to an RMI service, it’s short work to
reconfigure it as a Hessian or Burlap service.

 Now let’s look at the other side of the conversation and expose the functional-
ity of a Spring-managed bean as either a Hessian or Burlap service.

8.3.2 Exposing bean functionality with Hessian/Burlap

Again, let’s suppose that you are tasked with implementing the citation service
and exposing its functionality as a remote service. This time, however, you’re
going to expose it as a Hessian-based service.

 Even without Spring, writing a Hessian service is fairly trivial. You simply write
your service class to extend com.caucho.hessian.server.HessianServlet and
make sure that your service methods are public (all public methods are consid-
ered service methods in Hessian).

 Because Hessian services are already quite easy to implement, Spring doesn’t
do much to simplify the Hessian model any further. However, when used with
Spring, a Hessian service can take full advantage of the Spring Framework in ways
that a pure Hessian service cannot. This includes using Spring AOP to advise a
Hessian service with systemwide services such as declarative transactions.

Hessian/Burlap
FactoryBean

Hessian/
Burlap
Proxy

C
ita

tio
nS

er
vi

ce

P
ro

du
ce

s

NetworkClient
Method Call Citation

Service

HTTP HTTP

Figure 8.6 HessianProxyFactoryBean and BurlapProxyFactoryBean produce
proxy objects that talk to a remote service over HTTP (Hessian in binary, Burlap in XML).

Remoting with Hessian and Burlap 319
Exporting a Hessian service
Exporting a Hessian service in Spring is remarkably similar to implementing an
RMI service in Spring. In fact, if you followed the RMI example in section 8.2.2,
you’ve already done most of the work required to expose the citation service bean
as a Hessian service.

 To expose the citation service bean as an RMI service, you configured an Rmi-
ServiceExporter bean in the Spring configuration file. In a similar way, to
expose the citation service as a Hessian service, you’ll need to configure another
exporter bean. This time, however, it will be a HessianServiceExporter.

 HessianServiceExporter performs the exact same function for a Hessian ser-
vice as RmiServiceExporter does for an RMI service. That is, it exposes the public
methods of a POJO as methods of a Hessian service. However, as shown in
figure 8.7, how it pulls off this feat is different from how RmiServiceExporter
exports POJOs as RMI services.

 HessianServiceExporter is a Spring MVC controller (more on that in a
moment) that receives Hessian requests and translates them into method calls on
the exported POJO.

 The following declaration of HessianServiceExporter in Spring exports the
citationService bean as a Hessian service:

<bean name="hessianCitationService" class="org.springframework.
 ➥ remoting.caucho.HessianServiceExporter">
 <property name="service">
 <ref bean="citationService"/>
 </property>
 <property name="serviceInterface">
 <value>com.tickettodrive.CitationService</value>
 </property>
</bean>

Just as with RmiServiceExporter, the service property is wired with a reference
to the bean that implements the service. Here the service property is wired with

CitationServiceImpl

HessianService
Exporter

Dispatcher
ServletRequest Dispatches to

Figure 8.7
HessianServiceExporter is
a Spring MVC controller that
exports a POJO as a Hessian
service by receiving Hessian
requests and translating them into
calls to the POJO.

320 CHAPTER 8

Spring and POJO-based remote services
a reference to the citationService bean. The serviceInterface property is set
to indicate that CitationService is the interface that the service implements.

 Unlike with RmiServiceExporter, however, you do not need to set a service-
Name property. With RMI, the serviceName property is used to register a service in
the RMI registry. Hessian doesn’t have a registry and therefore there’s no need to
name a Hessian service.

Configuring the Hessian controller
Another major difference between RmiServiceExporter and HessianServiceEx-
porter is that because Hessian is HTTP based, HessianServiceExporter is imple-
mented as a Spring MVC Controller. This means that in order to use exported
Hessian services, you’ll need to perform two additional configuration steps:

■ Configure a URL handler in your Spring configuration file to dispatch Hes-
sian service URLs to the appropriate Hessian service bean.

■ Configure a Spring DispatcherServlet in web.xml and deploy your appli-
cation as a web application.

You’ll learn the details of how Spring URL handlers and DispatcherServlet work
in chapter 13. But for now we’re only going to show you just enough to expose the
Hessian citation service.

 In section 8.3.1, you configured the serviceUrl property on the client side to
point to http://${serverName}/${contextPath}/citation.service. The
${serverName} and ${contextPath} are placeholders that are configured via
PropertyPlaceholderConfigurer. The last part of the URL, /citation.service,
is the part we’re interested in here. This is the URL pattern that you’ll map the
Hessian citation service to.

 A URL handler maps a URL pattern to a specific Controller that will handle
requests. In the case of the Hessian citation service, you want to map /cita-
tion.service to the hessianCitationService bean as follows using SimpleUrl-
HandlerMapping:

<bean id="urlMapping" class="org.springframework.web.
 ➥ servlet.handler.SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>
 <prop key="/citation.service">hessianCitationService</prop>
 </props>
 </property>
</bean>

Remoting with Hessian and Burlap 321
You’ll learn more about SimpleUrlHandlerMapping in chapter 13 when we see
how to build web applications with Spring MVC. For now, suffice it to say that the
mappings property takes a set of properties whose key is the URL pattern. Here it
has been given a single property with a key of /citation.service, which is the
URL pattern for the citation service. The value of the property is the name of a
Spring Controller bean that will handle requests to the URL pattern—in this
case, hessianCitationService.

 Because HessianServiceExporter is implemented as a controller in Spring
MVC, you must also configure Spring’s DispatcherServlet in web.xml:

<servlet>
 <servlet-name>citation</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

The name given to the servlet is significant because it is used by DispatcherServ-
let to locate the Spring configuration file. In this case, because the servlet is
named citation, the configuration file must be named citation-servlet.xml.

 One final step required to expose the Hessian service is to set up a servlet map-
ping:

<servlet-mapping>
 <servlet-name>citation</servlet-name>
 <url-pattern>*.service</url-pattern>
</servlet-mapping>

Configured this way, any request whose URL ends with .service will be given to
DispatcherServlet, which will in turn hand off the request to the Controller
that is mapped to the URL. Thus requests to /citation.service will ultimately be
handled by the hessianCitationService bean (which is actually just a proxy to
CitationServiceImpl).

 If Hessian’s binary messaging style is not to your liking, maybe you’d prefer to
export your service as an XML-based Burlap service. Let’s see how to do that with
BurlapServiceExporter.

Exporting a Burlap service
BurlapServiceExporter is virtually identical to HessianServiceExporter in
every way, except that it handles Burlap’s XML-based messages instead of Hessian
binary messages. The following bean definition shows how to expose the citation
service as a Burlap service using BurlapServiceExporter:

322 CHAPTER 8

Spring and POJO-based remote services
<bean name="burlapCitationService" class="org.springframework.
 ➥ remoting.caucho.BurlapServiceExporter">
 <property name="service">
 <ref bean="citationService"/>
 </property>
 <property name="serviceInterface">
 <value>com.tickettodrive.CitationService</value>
 </property>
</bean>

You’ll notice that aside from the bean’s name (which is purely arbitrary) and the
use of BurlapServiceExporter, this <bean> declaration is identical to the hes-
sianCitationService. Configuring a Burlap service is otherwise the same as con-
figuring a Hessian service. This includes the need to set up a URL handler and the
DispatcherServlet.

 Because both Hessian and Burlap are based on HTTP, they do not suffer from
the same firewall issues as RMI. And both are lightweight enough to be used in
constrained environments where memory and space are a premium, such as
applets and wireless devices.

 But RMI has both Hessian and Burlap beat when it comes to serializing objects
that are sent in RPC messages. Whereas Hessian and Burlap both use a proprietary
serialization mechanism, RMI uses Java’s own serialization mechanism. If your data
model is complex, the Hessian/Burlap serialization model may not be sufficient.

 There is, however, a best-of-both-worlds solution. Let’s take a look at Spring’s
HTTP invoker, which offers RPC over HTTP (like Hessian/Burlap) while at the
same time using Java serialization of objects (like RMI).

8.4 Using Spring’s HttpInvoker

The Spring team recognized a void between RMI services and HTTP-based services
like Hessian and Burlap. On one side, RMI uses Java’s standard object serialization
but is difficult to use across firewalls. On the other side, Hessian/Burlap work well
across firewalls but use a proprietary object serialization mechanism.

 Thus Spring’s HTTP invoker was born. The HTTP invoker is a new remoting
model created as part of the Spring Framework to perform remoting across HTTP
(to make the firewalls happy) and using Java’s serialization (to make program-
mers happy).

 Working with HTTP invoker-based services is quite similar to working with
Hessian/Burlap-based services. To get started with the HTTP invoker, let’s take
one more look at the citation service—this time implemented as an HTTP
invoker service.

Using Spring’s HttpInvoker 323
8.4.1 Accessing services via HTTP

To access an RMI service, you declared an RmiProxyFactoryBean that pointed to
the service. To access a Hessian service, you declared a HessianProxyFactory-
Bean. And to access a Burlap service, you used BurlapProxyFactoryBean. Carry-
ing this monotony over to the HTTP invoker, it should be of little surprise to you
that to access an HTTP invoker service, you’ll need to use HttpInvokerProxyFac-
toryBean.

 As you can see from figure 8.8, the HttpInvokerProxyFactoryBean fills the
same hole as the other remote service proxy factory beans we’ve seen in this
chapter.

 Had the citation service been exposed as an HTTP invoker–based service, you
could configure a bean that proxies it using HttpInvokerProxyFactoryBean as
follows:

<bean id="citationService" class="org.springframework.remoting.
 ➥ httpinvoker.HttpInvokerProxyFactoryBean">
 <property name="serviceUrl">
 <value>http://${serverName}/${contextPath}/
 ➥ citation.service</value>
 </property>
 <property name="serviceInterface">
 <value>com.tickettodrive.CitationService</value>
 </property>
</bean>

HttpInvoker
Proxy

FactoryBean

HttpInvoker
Proxy

C
ita

tio
nS

er
vi

ce

P
ro

du
ce

s

NetworkClient
Method Call Citation

Service

HTTP HTTP

Figure 8.8 HttpInvokerProxyFactoryBean is a proxy factory bean that produces
a proxy for remoting with a Spring-specific HTTP-based protocol.

324 CHAPTER 8

Spring and POJO-based remote services
Comparing this bean definition to those in sections 8.2.1 and 8.3.1, you’ll find
that little has changed. The serviceInterface property is still used to indicate
the interface implemented by the citation service. And the serviceUrl property
is still used to indicate the location of the remote citation service. Because HTTP
invoker is HTTP-based like Hessian and Burlap, the serviceUrl can contain the
same URL as with the Hessian and Burlap versions of the bean.

 Moving on to the other side of an HTTP invoker conversation, let’s now look at
how to export a bean’s functionality as an HTTP invoker-based service.

8.4.2 Exposing beans as HTTP Services

You’ve already seen how to expose the functionality of CitationServiceImpl as
an RMI service, as a Hessian service, and as a Burlap service. Next let’s rework the
citation service as an HTTP invoker service using Spring’s HttpInvokerService-
Exporter to export the citation service.

 At the risk of sounding like a broken record, I must tell you that exporting a
bean’s methods as remote method using HttpInvokerServiceExporter is very
much like what you’ve already seen with the other remote service exporters. In
fact, it’s virtually identical. For example, the following bean definition shows how
to export the citationService bean as a remote HTTP invoker-based service:

<bean id="httpCitationService" class="org.springframework.remoting.
 ➥ httpinvoker.HttpInvokerServiceExporter">
 <property name="service">
 <ref bean="citationService"/>
 </property>
 <property name="serviceInterface">
 <value>com.tickettodrive.CitationService</value>
 </property>
</bean>

Feeling a strange sense of déjà vu? You may be having a hard time spotting the dif-
ference between this bean declaration and the ones in section 8.3.2. In case the
bold text didn’t help you spot it, the only difference is the class name:
HttpInvokerServiceExporter. Otherwise, this exporter is not much different
from the other remote service exporters.

 As you can see in figure 8.9, HttpInvokerServiceExporter works very much
like HessianServiceExporter and BurlapServiceExporter. It is a Spring MVC
controller that receives requests from an HTTP invoker client through Dispatch-
erServlet and translates those requests into method calls on the service imple-
mentation POJO.

Using Spring’s HttpInvoker 325
Because HttpInvokerServiceExporter is a Spring MVC controller, you’ll need to
set up a URL handler to map an HTTP URL to the service:

<bean id="urlMapping" class="org.springframework.web.
 ➥ servlet.handler.SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>
 <prop key="/citation.service">httpCitationService</prop>
 </props>
 </property>
</bean>

And you’ll also need to deploy the citation service in a web application with
Spring’s DispatcherServlet configured in web.xml:

<servlet>
 <servlet-name>citation</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>citation</servlet-name>
 <url-pattern>*.service</url-pattern>
</servlet-mapping>

Configured this way, the citation service will be available at /citation.service,
the same URL as it was when exposed as either a Hessian or Burlap service.

 Spring’s HTTP invoker presents a best-of-both-worlds remoting solution com-
bining the simplicity of HTTP communication with Java’s built-in object serializa-
tion. This makes HTTP invoker services an appealing alternative to either RMI or
Hessian/Burlap.

CitationServiceImpl

HttpInvoker
ServiceExporter

Dispatcher
ServletRequest Dispatches to

Figure 8.9
HttpInvokerServiceExpor
ter works much like its Hessian
and Burlap cousins, receiving
requests from a Spring MVC
DispatcherServlet and
translating them into method
calls on a POJO.

326 CHAPTER 8

Spring and POJO-based remote services
 HttpInvoker has one significant limitation that you should keep in mind: it is a
remoting solution offered by the Spring Framework only. This means that both
the client and the service must be Spring-enabled applications. This also implies,
at least for now, that both the client and the service must be Java based. And
because Java serialization is being used, both sides must have the same version of
the classes (much like RMI).

 RMI, Hessian, Burlap, and HTTP invoker are great remoting options. But when
it comes to ubiquitous remoting, none hold a candle to web services. Next up,
we’ll look at how Spring supports remoting through SOAP-based web services.

8.5 Spring and web services

One of the most hyped TLAs (three-letter acronyms) in recent years is SOA (which
stands for “service-oriented architecture”). SOA means many things to different
people. But at the center of SOA is the idea that applications can and should be
designed to lean on a common set of core services instead of reimplementing the
same functionality for each application.

 For example, a financial institution may have several applications, many of
which need access to borrower account information. Rather than build account
access logic into each application (much of which would be duplicated), the appli-
cations could all rely on a common service to retrieve the account information.

 In this section, we’ll revisit the Ticket-to-Drive citation service one more time,
this time as a POJO-based web service in Spring. Let’s start by turning the citation
service bean into a web service.

8.5.1 Exporting beans as web services using XFire

Earlier in this chapter, we created remote services using Spring’s service export-
ers. These service exporters magically turn Spring-configured POJOs into remote
services. We saw how to create RMI services using RmiServiceExporter, Hessian
services using HessianServiceExporter, Burlap services using BurlapServiceEx-
porter, and HTTP invoker services using HttpInvokerServiceExporter.

 At this point, I’d like to show you how to create web services using Spring’s
SoapServiceExporter. Unfortunately, I won’t be able to do that because Spring
doesn’t come with a SoapServiceExporter. In fact, Spring doesn’t provide any
service exporter for exposing bean functionality as SOAP-based web services.

 No worries, however. Even though Spring doesn’t come with a service exporter
for creating web services, that doesn’t mean that such a service exporter doesn’t
exist. We’ll find the service exporter we need by looking at XFire.

Spring and web services 327
 XFire is an open source web services platform available through Codehaus
(http://xfire.codehaus.org). Among its many features, XFire comes with XFire-
Exporter, a Spring service exporter that turns POJOs into SOAP services.

 Figure 8.10 should look vaguely familiar to you by now. It’s roughly the same as
figures 8.7 and 8.9, except that the service exporter in question is XFireExporter.
In fact, XFireExporter works very much like HessianServiceExporter, Burlap-
ServiceExporter, and HttpInvokerServiceExporter, except that it deals with
incoming SOAP messages to export a POJO as a web service.

 For this example, I’m using XFire version 1.2.6. Adding XFire to a project is
easy if you’re using Maven 2 to build the application. Simply add the following
<dependency> to the project’s pom.xml file:

<dependency>
 <groupId>org.codehaus.xfire</groupId>
 <artifactId>xfire-spring</artifactId>
 <version>1.2.6</version>
 <scope>compile</scope>
</dependency>

This single <dependency> entry will load several JAR files into the application’s
classpath. But you won’t need to worry about what those JARs are—Maven 2’s tran-
sitive dependency resolution will figure out what’s needed for you. If you’re using
Ant or another mechanism for building your application, refer to XFire’s docu-
mentation for the JARs you’ll need.

 Once XFire is in your build’s classpath, creating a web service is as simple as
following these three steps:

1 Configure an XFireExporter bean to export a Spring bean as a web service.

2 Configure a Spring DispatcherServlet to handle incoming HTTP requests.

3 Configure a handler mapping so as to map DispatcherServlet-handled
requests to XFireExporter-exported services.

CitationServiceImpl

XFireExporter
Dispatcher

ServletSOAP message Dispatches to

Figure 8.10
XFireExporter is a service
exporter that exports a POJO as
a web service by translating
incoming SOAP messages into
method invocations.

328 CHAPTER 8

Spring and POJO-based remote services
You’ll recognize these steps as similar to those for configuring Hessian, Bur-
lap, and HTTP invoker services. You may want to take a moment to review
those sections from earlier in this chapter before diving into the configuration
steps that follow.

 We’ve already configured CitationServiceImpl as a bean in Spring, so we’re
ready to turn it into a web service using XFireExporter. Our first step: configur-
ing the XFireExporter bean.

Configuring XFireExporter
The following <bean> definition shows the simplest way to configure XFireEx-
porter to export our citationService bean as a web service:

<bean id="citationService.xfire"
 class="org.codehaus.xfire.spring.remoting.XFireExporter">
 <property name="serviceFactory"
 ref="xfire.serviceFactory" />
 <property name="xfire" ref="xfire" />

 <property name="serviceBean"
 ref="citationService" />
 <property name="serviceClass"
 value="com.tickettodrive.CitationService" />
</bean>

The first two properties, serviceFactory and xfire, are wired with references to
xfire.serviceFactory and xfire, respectively. XFireExporter needs these core
XFire beans to do its work. Fortunately, we don’t have to configure those beans
ourselves—they’re already declared in a Spring context contained in the XFire
JAR file. All we need to do is to import the XFire-defined Spring context. The fol-
lowing Spring <import> will do the trick:

<import resource="classpath:org/codehaus/xfire/spring/xfire.xml"/>

The two remaining properties are the ones that will vary for each web service we
create with XFireExporter. The serviceBean property is wired with a reference
to the Spring-configured bean that we want to export as a web service. Here it’s
wired with a reference to the citationService bean.

 Meanwhile, the serviceClass property is configured with the fully qualified
class name of the interface that will define the web service. The methods defined
in the service interface are the ones that will be exposed as SOAP operations.

 It’s worth noting that the service interface’s package name also determines the
target namespace of the service. Since the package of the CitationService inter-
face is com.tickettodrive, the exported service’s target namespace will be
http://tickettodrive.com (notice that the package name is reversed in the

Spring and web services 329
namespace). If you want to override this behavior and specify a different
namespace, you can configure XFireExporter’s namespace property:

<bean id="citationService.xfire"
 class="org.codehaus.xfire.spring.remoting.XFireExporter">
...
 <property name="namespace"
 value="http://www.springinaction.com/citation"/>
</bean>

Using this configuration, the new target namespace for the service will be http:/
/www.springinaction.com/citation.

Configuring DispatcherServlet
XFireExporter is implemented as a Spring MVC Controller. Therefore, HTTP
requests destined for our XFireExporter-exported service must go through
Spring’s DispatcherServlet. We’ll talk more about Spring MVC, controllers, and
DispatcherServlet when we get to chapter 13. But for now, just know that you’ll
need to put the following <servlet> and <servlet-mapping> entries in the appli-
cation’s web.xml file:

<servlet>
 <servlet-name>citation</servlet-name>
 <servlet-class>
 org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>citation</servlet-name>
 <url-pattern>/*</url-pattern>
</servlet-mapping>

This <servlet-mapping> will send all requests whose URL starts with http://
{host}/{app}/ to DispatcherServlet. From there, DispatcherServlet will send
the request to a Controller that will handle the request. So how do we get Dis-
patcherServlet to dispatch the request to XFireExporter?

Mapping requests to XFireExporter
In Spring MVC, handler mappings are used to map requests to their destination
Controller. One of the simplest handler mappings available is SimpleUrlHan-
dlerMapping. SimpleUrlHandlerMapping maps a URL pattern to a Controller
bean. The following declaration of SimpleUrlHandlerMapping will map a URL
pattern to XFireExporter:

<bean id="handlerMapping"
 class="org.springframework.web.servlet.handler.

330 CHAPTER 8

Spring and POJO-based remote services
 ➥ SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>
 <prop key="/citationService">citationService.xfire</prop>
 </props>
 </property>
</bean>

The mappings property takes a <props> of one or more <prop> elements. The
key of each <prop> element is a URL pattern and the value is a reference to a
Controller—in this case the XFireExporter. The URL pattern is relative to the
servlet request—it picks up where the <servlet-mapping> leaves off. Therefore,
given the <servlet-mapping> and mappings we’ve configured, we can expect our
exported citation lookup web service to respond to requests at http://{host}/
{app}/citationService.

 Deploy the application and ta-da! We now have a citation lookup web service.
And it all started from a simple POJO. What’s more, CitationServiceImpl is still
a POJO and has absolutely no idea that it is being used as a web service.

 As you can see, it’s quite easy to create a web service in Spring using XFire.
But as simple as XFireExporter is, XFire has something even simpler up its
sleeve. Let’s have a look at how to configure XFire to create web services from
annotated beans.

8.5.2 Declaring web services with JSR-181 annotations

As wonderful as XFireExporter is, it suffers from one small problem: you must
declare an XFireExporter bean for each bean you wish to export as a web service.
This may not be a big deal if you’re only exporting one or two services. But if
you’re planning to export several services, you’re going to be writing a lot of XML.

 JSR-181, also known as Web Services Metadata for the Java Platform, defines a
set of eight annotations that can be applied to POJOs to declare web services.
Those annotations are listed in table 8.2.

Table 8.2 Web service annotations defined by JSR-181.

Annotation Purpose

javax.jws.WebService Marks a Java class as implementing a web ser-
vice or a Java interface as defining a web service
interface.

javax.jws.WebMethod Customizes how a method is exposed as a web
service operation.

Spring and web services 331
To use JSR-181 annotations with XFire, we’ll need to add XFire’s JAX-WS support
to our application’s classpath. In Maven 2, that means adding the following
<dependency> to the pom.xml file:

<dependency>
 <groupId>org.codehaus.xfire</groupId>
 <artifactId>xfire-jaxws</artifactId>
 <version>1.2.6</version>
 <scope>compile</scope>
</dependency>

Not all web services need all the annotations from table 8.2. But we’ll use a few of
them to declare a citation lookup web service. To start, have a look at how we use
the @WebService annotation in CitationServiceImpl:

package com.tickettodrive;
import java.util.Date;
import javax.jws.WebService;

@WebService(serviceName="citationService",
 endpointInterface="com.tickettodrive.CitationService")
public class CitationServiceImpl
 implements CitationService {
 …
}

javax.jws.Oneway Indicates that a method has only an input mes-
sage and no output. One-way methods typically
return control to the calling application before
executing.

javax.jws.WebParam Customizes the mapping of an individual param-
eter of a web method.

javax.jws.WebResult Customizes the mapping of a web method’s
return value.

javax.jws.HandlerChain Associates a web service with an externally
defined handler chain.

javax.jws.soap.SOAPBinding Specifies the mapping of a web service onto the
SOAP message protocol.

javax.jws.soap.SOAPMessageHandlers Creates a JAX-RPC handler chain. Deprecated in
JSR-181 version 2.0.

Table 8.2 Web service annotations defined by JSR-181. (continued)

Annotation Purpose

332 CHAPTER 8

Spring and POJO-based remote services
Just by placing the @WebService annotation on the CitationServiceImpl class,
we’re declaring that we want CitationServiceImpl to be exported as a web ser-
vice. We’ve used the serviceName attribute to specify that the service should be
named citationService. As for the endpointInterface property, it specifies
that the CitationService interface will be used to define the service interface.

 In the CitationService interface, we simply tag the interface with the @Web-
Service annotation as follows:

package com.tickettodrive;
import javax.jws.WebService;

@WebService
public interface CitationService {
 @WebMethod(operationName="getCitations")
 Citation[] getCitationsForVehicle(
 String state, String plateNumber);
}

By default, all public methods of the service interface will be exposed as web
methods with operation names matching the Java method names. But here we’ve
used the @WebMethod attribute to customize how the getCitationsForVehicle()
method will be exposed. Instead of getCitationsForVehicle, the operation will
be named getCitations.

 All of these annotations are well and good, but annotations have no meaning
by themselves. Therefore, we’ll need to configure XFire to interpret these annota-
tions and to expose web services from them.

Mapping requests to JSR-181 annotated beans
The first thing we’ll need to do is to configure a handler mapping so that Dis-
patcherServlet will dispatch requests to beans that are annotated with JSR-181
annotations.

 Earlier, we configured a SimpleUrlHandlerMapping to map requests to XFire-
Exporter beans. SimpleUrlHandlerMapping knows how to map URL patterns to
Spring MVC controllers. But when it comes to mapping URL patterns with JSR-181-
annotated beans, SimpleUrlHandlerMapping isn’t up to the challenge.

 Instead of SimpleUrlHandlerMapping, we’ll need to use XFire’s
Jsr181HandlerMapping. As its name suggests, Jsr181HandlerMapping is savvy in
how to map requests to beans that are annotated with JSR-181 annotations. We’ll
configure Jsr181HandlerMapping in Spring like this:

<bean id="annotationHandlerMapping"
 class="org.codehaus.xfire.spring.remoting.Jsr181HandlerMapping">
 <property name="xfire" ref="xfire" />
 <property name="webAnnotations">

Spring and web services 333
 <bean class="org.codehaus.xfire.annotations.jsr181.
 ➥ Jsr181WebAnnotations"/>
 </property>
</bean>

The first property, xfire, is just a reference to the XFire handler, which is loaded
by the <import> we used earlier with XFireExporter.

 The webAnnotations property is of the most interest here. This property is
wired with a reference to a Jsr181WebAnnotations bean (configured here as an
inner bean). Jsr181WebAnnotations tells Jsr181HandlerMapping to use JSR-181
annotations in Spring beans to map to URL patterns.

 And that’s it. When we build and deploy the application, we’ll be able to see
the WSDL for our service at http://{host}/{app}/services/citationSer-
vice?wsdl.

 Now we’ve seen a few ways to create a web service using Spring. But creating
the web service is only half the story. A web service has no purpose if it is never
used. Let’s justify the existence of our service by looking at how to wire the client
side of a web service in Spring.

 It should be noted, however, that using annotations turns these objects that are
otherwise POJOs into classes that are aware (at some level) that they’re to be
exposed as web services. If that’s a concern for you then you may wish to stick to
configuring XFire strictly through XML. Otherwise, the JSR-181 annotations are a
handy way to turn POJOs into web services.

8.5.3 Consuming web services

When it comes to developing a web service client, there’s no shortage of options.
Several web service platforms and frameworks offer an API for accessing and
invoking methods on remote services.

 The problem with many of these web service platforms, however, is that your
client ends up being keenly aware of the fact that it is communicating with a web
service. For example, consider this code snippet that uses webMethods Glue to
access a web service:

CitationService cs =
 (CitationService) Registry.bind(
 "http://ws.springinaction.com/Citation/
 ➥ citationService.wsdl");

Or, how about this similar set of code that uses XFire’s client API:

Service serviceModel = new ObjectServiceFactory().create(
 CitationService.class);
CitationService cs =

334 CHAPTER 8

Spring and POJO-based remote services
 (CitationService) new XFireProxyFactory().create(
 serviceModel,
 "http://ws.springinaction.com/Citation/citationService");

There’s nothing terribly wrong with either of these examples. Both are straight-
forward and easy ways to access a web service. But in both cases, the client code
knows too much about the SOAP stack that it’s using. In the first example, the
code is coupled with Glue through Glue’s Registry class. In the second example,
it’s coupled with XFire’s ObjectServiceFactory and XFireProxyFactory. More-
over, in both examples the client knows that it’s dealing with a web service.

 By now, you should be able to guess what a better approach would be. Instead
of looking up the web service through an API, the service should be injected into
the client. The client would only know about the service through its interface. In
fact, the client wouldn’t even need to know that the service is a web service. It
could be an RMI service, a local POJO, or even a mock implementation used in a
unit test.

 We have already seen several ways to proxy remote RMI, Hessian, Burlap, and
HTTP invoker services so that they can be wired transparently into clients in
Spring. In this section, we’re going to see how the remote proxy concept is
extended to web services.

 Spring developers have two options for wiring remote references into Spring:

■ JaxRpcPortProxyFactoryBean is Spring’s own proxy factory bean for web
service access.

■ XFireClientFactoryBean is a web service proxy factory bean provided by
XFire.

Let’s start our exploration of web service proxying by looking at Spring’s own
JaxRpcPortProxyFactoryBean. (We’ll look at XFireClientFactoryBean in sec-
tion 8.5.4.)

Wiring JaxRpcPortProxyFactoryBean
Spring’s out-of-the-box support for web service proxying comes in the form of
JaxRpcPortProxyFactoryBean. Using JaxRpcPortProxyFactoryBean, we can
wire the citation lookup web service in Spring as if it were any other bean. Jax-
RpcPortProxyFactoryBean is a Spring FactoryBean that produces a proxy that
knows how to talk to a SOAP web service. The proxy itself is created to implement
the service’s interface (see figure 8.11). Consequently, JaxRpcPortProxyFactory-
Bean makes it possible to wire and use a remote web service as if it were just any
other local POJO.

Spring and web services 335
We’ll use the following XML in the Spring configuration file to declare the client
side of the citation lookup web service using JaxRpcPortProxyFactoryBean:

<bean id="citationService"
 class="org.springframework.remoting.jaxrpc.
 ➥ JaxRpcPortProxyFactoryBean">
 <property name="wsdlDocumentUrl"
 value="http://localhost:8081/Citation/services/
 ➥ citationService?wsdl" />
 <property name="serviceInterface"
 value="com.tickettodrive.CitationService"/>
 <property name="portName"
 value="citationServiceHttpPort" />
 <property name="serviceName"
 value="citationService" />
 <property name="namespaceUri"
 value="http://tickettodrive.com" />
</bean>

The wsdlDocumentUrl property identifies the location of the remote web service’s
definition file. JaxRpcPortProxyFactoryBean will use the WSDL available at that
URL to construct a proxy to the service. The proxy that’s produced by Jax-
RpcPortProxyFactoryBean will implement the CitationService interface, as
specified by the serviceInterface property.

 The values for the remaining three properties can usually be determined by
looking at the service’s WSDL. For illustration’s sake, here’s a snippet of the WSDL

JaxRpcPort
Proxy

FactoryBean

JAX-RPC
Proxy

C
ita

tio
nS

er
vi

ce

P
od

uc
es

NetworkClient
Method Call Citation

Service

SOAP
Message

SOAP
Message

Figure 8.11 JaxRpcPortProxyFactoryBean produces proxies that talk to
remote web services. These proxies can then be wired into other beans as if they were
local POJOs.

336 CHAPTER 8

Spring and POJO-based remote services
file produced by XFire that shows the pertinent information for our citation
lookup service:

<wsdl:definitions
 targetNamespace="http://tickettodrive.com">
…
 <wsdl:service name="citationService">
 <wsdl:port name="citationServiceHttpPort"
 binding="tns:citationServiceHttpBinding">
 …
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Although not likely, it is possible for multiple services and/or ports to be defined
in the service’s WSDL definition. For that reason, JaxRpcPortProxyFactoryBean
requires that we specify the port and service names in the portName and service-
Name properties. A quick glance at the name attribute of the <wsdl:port> and
<wsdl:service> elements in the WSDL will help you figure out what these proper-
ties should be set to.

 Finally, the namespaceUri property specifies the namespace of the service.
Among other things, the namespace will help JaxRpcPortProxyFactoryBean
locate the service definition in the WSDL. As with the port and service names, you
can find the correct value for this property by looking in the WSDL. It’s usually
available in the targetNamespace attribute of the <wsdl:definitions> element.

 If our service only communicated using primitive types (e.g., int, float,
String, etc.), this would be all we’d need to do to create a proxy to the remote ser-
vice. Most web services, however, aren’t so simple—and our citation lookup service
is no exception. The citation lookup service returns an array of Citation objects
from the call to the getCitationsForVehicle() method. Citation is, itself, a
complex type. What may not be obvious, however, is that an array of Citation
objects is also a complex type (known as ArrayOfCitation in the service’s WSDL).

 Chances are good that the JAX-RPC implementation under the covers of Jax-
RpcPortProxyFactoryBean won’t know how to deal with these types. Therefore,
we’ll need to tell it how to deal with them.

 The way we teach JaxRpcPortProxyFactoryBean about these types is by regis-
tering JAX-RPC post processors through the servicePostProcessors property:

<bean id="citationService"
 class="org.springframework.remoting.jaxrpc.
 ➥ JaxRpcPortProxyFactoryBean">
 <property name="wsdlDocumentUrl"
 value="http://localhost:8081/Citation/services/

Spring and web services 337
 ➥ citationService?wsdl" />
 <property name="serviceInterface"
 value="com.tickettodrive.CitationService"/>
 <property name="portName"
 value="citationServiceHttpPort" />
 <property name="serviceName"
 value="citationService" />
 <property name="namespaceUri"
 value="http://tickettodrive.com" />
 <property name="servicePostProcessors">
 <list>
 <ref bean="beanMappingPostProcessor" />
 <ref bean="arrayMappingPostProcessor" />
 </list>
 </property>
</bean>

The servicePostProcessors property takes a list of one or more implementa-
tions of Spring’s JaxRpcServicePostProcessor interface:

package org.springframework.remoting.jaxrpc;
import javax.xml.rpc.Service;

public interface JaxRpcServicePostProcessor {
 void postProcessJaxRpcService(Service service);
}

In the case of the citation service client, we’ve wired two ServicePostProcessors
into JaxRpcPortProxyFactoryBean. The first references a ServicePostProces-
sor that will serialize and deserialize Citation objects. The second handles serial-
ization and deserialization of arrays of Citation objects. Let’s first look at how
beanMappingPostProcessor is declared.

Mapping complex types
For dealing with complex types, Apache Axis (http://ws.apache.org/axis/) pro-
vides BeanSerializer and BeanDeserializer. These classes use reflection to
break complex bean types into their simpler parts. Without Spring, you’d have to
register a BeanSerializer/BeanDeserializer pair for each complex type used
by the web service. But Spring makes things easier with AxisBeanMapping-
ServicePostProcessor. The following declaration of AxisBeanMappingService-
PostProcessor tells JaxRpcPortProxyFactoryBean how to serialize and
deserialize Citations:

<bean id="beanMappingPostProcessor"
 class="org.springframework.remoting.jaxrpc.
 ➥ support.AxisBeanMappingServicePostProcessor">
 <property name="beanClasses">

338 CHAPTER 8

Spring and POJO-based remote services
 <list>
 <value>com.tickettodrive.Citation</value>
 </list>
 </property>

 <property name="typeNamespaceUri"
 value="http://tickettodrive.com" />
</bean>

AxisBeanMappingServicePostProcessor is an implementation of Spring’s Jax-
RpcServicePostProcessor interface that automatically registers a BeanSerial-
izer/BeanDeserializer pair for all classes listed in its beanClasses property.
Here we’ve asked AxisBeanMappingServicePostProcessor to handle the Cita-
tion complex type. The typeNamespaceUri property is used to specify the
namespace of the types, as is usually defined in the service’s WSDL.

 With the beanMappingPostProcessor bean registered as a service postproces-
sor with JaxRpcPortProxyFactoryBean, the Citation type is covered. But we
still have to contend with an array of Citations. For that, we’ll need to do a bit
more work.

Mapping arrays
Just as AxisBeanMappingServicePostProcessor is able to handle complex Java
types, we can count on AxisArrayMappingServicePostProcessor to easily deal
with arrays.

 There’s only one problem: Spring doesn’t provide an AxisArrayMappingSer-
vicePostProcessor. Therefore, we’ll need to write one for ourselves. That’s per-
fect, because we needed a good excuse to write our own implementation of
JaxRpcServicePostProcessor. You’ll find an array-handling service postproces-
sor in listing 8.2.

package com.tickettodrive.ws;
import javax.xml.namespace.QName;
import javax.xml.rpc.Service;
import javax.xml.rpc.encoding.TypeMapping;
import javax.xml.rpc.encoding.TypeMappingRegistry;
import org.apache.axis.encoding.ser.ArrayDeserializerFactory;
import org.apache.axis.encoding.ser.ArraySerializerFactory;
import org.springframework.remoting.jaxrpc.
 ➥ JaxRpcServicePostProcessor;

public class AxisArrayOfCitationMappingServicePostProcessor
 implements JaxRpcServicePostProcessor {

Listing 8.2 A JAX-RPC post processor that serializes and deserializes arrays of
Citation objects

Spring and web services 339
 public void postProcessJaxRpcService(Service service) {
 TypeMappingRegistry registry = service.getTypeMappingRegistry();
 TypeMapping mapping = registry.getDefaultTypeMapping();

 QName xmlType = new QName(
 "http://tickettodrive.com",
 "ArrayOfCitation");

 mapping.register(Citation[].class, xmlType,
 new ArraySerializerFactory(Citation[].class,
 xmlType),
 new ArrayDeserializerFactory()
);
 }
}

Aside from being a mouthful to say, AxisArrayOfCitationMappingServicePro-
cessor is exactly what we need for JaxRpcPortProxyFactoryBean to be able to
receive an array of Citations from the citation lookup service. As an implementa-
tion of JaxRpcServicePostProcessor, it only has to implement the postProcess-
JaxRpcService() method.

 postProcessJaxRpcService() starts by getting the type mapping registry from
the Service object that is passed in. From that it gets the default type mapping,
where it will ultimately register our custom ArrayOfCitation mapping.

 All types in SOAP are identified by their qualified name, or QName. So, the next
thing that postProcessJaxRpcService() does is create a QName object to identify
the ArrayOfCitation type. The QName is made up of two parts: a namespace and a
name. In this case, the namespace is http://tickettodrive.com and the name is
ArrayOfCitation. Both of these can be found by looking in the service’s WSDL.

 Finally, with a TypeMapping and a QName in hand, postProcessJaxRpcSer-
vice() registers a serializer factory and a deserializer factory for ArrayOfCita-
tion. Since we’re dealing with an array, Axis’s ArraySerializerFactory and
ArrayDeserializerFactory are perfect for the job. We use each of these to map
arrays of Citation to and from the ArrayOfCitation SOAP type.

 Note that AxisArrayOfCitationMappingServicePostProcessor is very spe-
cific to our example, as it only knows how to handle Citation to/from Array-
OfCitation mappings. With a little effort, however, you could create a more
general-purpose array mapping service postprocessor to handle any type of array.
But I’ll leave that as an exercise for you to figure out on your own.

 Now that we have an array mapping service postprocessor, we simply need to
declare it as a bean in Spring:

Creates QName for
ArrayOfCitation

Registers
ArraySerializerFactory

Registers
ArrayDeserializerFactory

340 CHAPTER 8

Spring and POJO-based remote services
<bean id="arrayMappingPostProcessor"
 class="com.tickettodrive.
 ➥ AxisArrayOfCitationMappingServicePostProcessor" />

Notice that I named this bean arrayMappingPostProcessor. That’s to match the
name of the bean reference wired into JaxRpcPortProxyFactoryBean’s service-
PostProcessors property.

 Whew! It sure seems like a lot of work to create a client for a web service with
JaxRpcPortProxyFactoryBean. And this is a relatively simple service with only a
couple of complex types. Imagine how much work we’d need to do if this service
were more interesting with more operations and more types. I’m not sure I’m up
to the challenge.

 Although JaxRpcPortProxyFactoryBean is the out-of-the-box solution for wir-
ing proxies to web services in Spring, it makes no assumptions about the services
it proxies and requires a lot of configuration. If you were hoping for something
simpler then read on… I’m now going to show you a similar, but much simpler,
way to proxy web services using XFire.

8.5.4 Proxying web services with an XFire client

In section 8.5.2, we saw several ways that XFire can be used to export POJOs as web
services. But did you know that it can also be used on the client side?

 Among its Spring remoting features, XFire comes with XFireClientFactory-
Bean, a factory bean similar in spirit to Spring’s own JaxRpcPortProxyFactory-
Bean, but without all of the hassle. In figure 8.12, XFireClientFactoryBean fits
into the same position in the web service client picture.

 The following XML shows how simple it is to configure a proxy to the citation
lookup service:

<bean id="citationService"
 class="org.codehaus.xfire.spring.remoting.
 ➥ XFireClientFactoryBean">
 <property name="wsdlDocumentUrl"
 value="http://localhost:8080/Citation/services/
 ➥ citationService?wsdl" />
 <property name="serviceInterface"
 value="com.tickettodrive.CitationService" />
</bean>

Just as with JaxRpcPortProxyFactoryBean, we need to tell XFireClientFactory-
Bean where the service’s WSDL is located through the wsdlDocumentUrl. And, just
like JaxRpcPortProxyFactoryBean, XFireClientFactoryBean will produce a

Summary 341
proxy to that service that implements the interface specified in the service-
Interface property.

 But very much unlike JaxRpcPortProxyFactoryBean, there’s no more configu-
ration required with XFireClientFactoryBean. In most cases, XFireClientFac-
toryBean doesn’t need to be told the service name, port name, or namespace to
use. It’s able to figure all of that out on its own by examining the service’s WSDL.
Moreover, XFire is a lot smarter with regard to complex types, so there’s no need
to register custom type mappings. XFire is able to handle all that drudgery for us.

8.6 Summary

Working with remote services is typically a tedious chore. But Spring provides
remoting support that makes working with remote services as simple as working
with any regular JavaBean.

 On the client side, Spring provides proxy factory beans that enable you to con-
figure remote services in your Spring application. Regardless of whether you are
using RMI, Hessian, Burlap, Spring’s own HTTP invoker, or SOAP for remoting,
you can wire remote services into your application as if they were POJOs. Spring
even catches any RemoteExceptions that are thrown and rethrows runtime
RemoteAccessExceptions in their place, freeing your code from having to deal
with an exception that it probably can’t recover from.

XFireClient
FactoryBean

XFire
Proxy

C
ita

tio
nS

er
vi

ce

P
ro

du
ce

s

NetworkClient
Method Call Citation

Service

SOAP
Message

SOAP
Message

Figure 8.12 XFireClientFactoryBean is XFire’s answer for SOAP clients in Spring. It
produces a proxy that knows how to talk to a remote web service.

342 CHAPTER 8

Spring and POJO-based remote services
 Even though Spring hides many of the details of remote services, making them
appear as though they are local JavaBeans, you should bear in mind the conse-
quences of remote services. Remote services, by their nature, are typically less effi-
cient than local services. You should consider this when writing code that accesses
remote services, limiting remote calls to avoid performance bottlenecks.

 In this chapter, you saw how Spring can be used to expose and consume ser-
vices based on some basic remoting technologies. Although these remoting
options are useful in distributing applications, this was just a taste of what is
involved in working within a service-oriented architecture (SOA).

 We also looked at how to use XFire to export beans as SOAP web services.
While this is certainly an easy way to develop web services, it may not be the best
choice from an architectural standpoint. Coming up in the next chapter, we look
at a different approach to building web services in Spring. Rather than simply
exposing POJOs as remote services, we’ll approach web services with a message-
oriented mind-set. In doing so, we’ll get our hands dirty with Spring-WS, an excit-
ing new web services framework that enables us to create loosely coupled service
endpoints to process XML messages.

Building contract-first
web services in Spring
This chapter covers
■ Defining XML service contracts
■ Creating document-centric web services
■ Marshaling and unmarshaling XML messages
■ Building template-based web service clients
343

344 CHAPTER 9

Building contract-first web services in Spring
Imagine that it’s the weekend and you’ve got a trip planned. Before you hit the
road, you stop by your bank to deposit your paycheck and to pick up some spend-
ing cash.

 This is not an unusual scenario, but what makes it interesting is that you bank
at an unusual bank. When you walk in the door, there are no tellers to help you.
Instead, you have full access to handle the transaction yourself. You have direct
access to the ledger and to the vault, allowing you to handle all of the minute
details of the transaction on your own. So, you perform the following tasks:

1 You place your signed paycheck in a box designated for deposited checks.

2 You edit your account’s ledger, incrementing the balance by the amount on
the check.

3 You take $200 from the vault and place it in your pocket.

4 You edit your account’s ledger, decrementing the balance by $200.

5 As a thank-you for all of the hard work you did, you pay yourself a service
fee by pocketing another $50 bill on the way out the door.

Whoa! Steps 1–4 seem to be on the up and up. But isn’t step 5 a bit odd?
 The problem (if that’s what you want to call it) with this bank is that they trust

their customers with too much direct access to the internal workings of the bank.
Instead of providing an appropriate interface to the inner workings of the bank
(commonly known as a “teller”), they give you full access to the inner workings to
do as you please. Consequently, you are able to perform an unrecorded and ques-
tionable withdrawal.

 As nice as this is for the customer, most banks don’t work that way (if your bank
really does allow you this kind of access, please email me—I’d really like to start
banking there!). Most banks have tellers, ATM machines, and websites to allow
you to manipulate your account. These interfaces to the bank are customer-facing
abstractions to the vault and the ledger. While they may provide service with a
smile, they only allow you to perform activities that fit within the bank’s business
model.

 Likewise, most applications do not allow direct access to the internal objects
that make up the application. Take web applications, for instance. In a Spring
MVC-based web application (which we’ll look at when we get to chapter 13), users
interact with the application through controllers. Behind the scenes, there may
be dozens or even hundreds of objects that perform the core tasks of the applica-
tion. But the user is only allowed to interact with the controllers, which, in turn,
interact with the back-end objects.

Introducing Spring-WS 345
 In the previous chapter, we saw that XFire is a quick and easy way to develop
web services using remote exporters. But when we export an application bean as a
web service, we’re exposing the application’s internal API, which carries with it
some consequences: as I alluded to in the banking scenario, you must be careful
not to accidentally expose too much of your application’s internal API. Doing so
may give your web service clients more access to the inner workings of your appli-
cation than they need.

 In this chapter, you’ll learn an alternative way of building web services using
the Spring-WS framework. We’ll separate the service’s external contract from the
application’s internal API, and we’ll focus on sending messages between clients
and the service, not on invoking remote methods.

 I won’t deceive you: building web services with Spring-WS is not as simple as
exporting them with XFire. However, I think you’ll find that it isn’t that much
more difficult and that the architectural advantages that Spring-WS affords make
it well worth considering.

9.1 Introducing Spring-WS

Spring Web Services (or Spring-WS, for short) is an exciting new subproject of
Spring that is focused on building contract-first web services. What are contract-first
web services? It might be easier to answer that question by first talking about their
antithesis: contact-last web services.

 In chapter 8 (see section 8.5.1), we used XFire to export bean functionality as
a remote web service. We started by writing some Java code (the service imple-
mentation). Then we configured it as a <bean> in Spring. Finally, we used XFire’s
XFireExporter to turn it into a web service. We never had to explicitly define the
service’s contract (WSDL and XSD). Instead, XFire automatically generated the
contract after the service was deployed. In short, the contract was the last thing
defined, thus the designation of “contract-last.”

 Contract-last web services are a popular approach to web service development
for one basic reason: they’re easy. Most developers don’t have the intestinal forti-
tude required to understand WSDL, SOAP, and XML Schema (XSD). In the con-
tract-last approach, there’s no need to manipulate complex WSDL and XSD files.
You simply write a service class in Java and ask the web service framework to
“SOAP-ify” it. If a web services platform such as XFire is willing to cope with the
web services acronyms then why should we worry ourselves with it?

 But there’s one small gotcha: when a web service is developed contract last, its
contract ends up being a reflection of the application’s internal API. Odds are that

346 CHAPTER 9

Building contract-first web services in Spring
your application’s internal API is far more volatile than you (or your service’s cli-
ents) would like the external API to be. Changes to the internal API will mean
changes to your service’s contract, which will ultimately require changes in the cli-
ents that are consuming your service. A clever refactoring today may result in a
new service contract tomorrow.

 This leads to the classic web services versioning problem. It’s much easier to
change a web service’s contract than to change the clients that consume that ser-
vice. If your web service has 1,000 clients and you change your service’s contract
then 1,000 clients will be broken until they are changed to adhere to the new
contract. A common solution to this problem is to maintain multiple versions of
a service until all clients have upgraded. This, however, would multiply mainte-
nance and support costs, as you would have to support multiple versions of the
same service.

 A better solution is to avoid changing the service’s contract. And when the
contract must be changed, the changes shouldn’t break compatibility with previ-
ous versions. But this can be difficult to do when the service’s contract is automat-
ically generated.

 In short, the problem with contract-last web services is that the service’s most
important artifact, the contract, is treated as an afterthought. The focus of a con-
tract-last web service is on how the service should be implemented and not on what
it should do.

 The solution to contract-last’s problems is to flip it on its head—create the
contract first and then decide how it should be implemented. When you do, you
end up with contract-first web services. The contract is written with little regard
for what the underlying application will look like. This is a pragmatic approach,
because it emphasizes what is expected of the service and not how it will be
implemented.

 You’re probably getting an uneasy feeling about now. It could be that unusu-
ally large burrito that you had for lunch... or it could be that you’re terrified that
we’re going to have to create a WSDL file by hand.

 Don’t worry. It’s not going to be as bad as you think. Along the way, I’ll show
you several tricks that make it easy to create the service contract. (If that doesn’t
make you feel better, I suggest you take an antacid and cut back on the spicy food
at lunch.)

 The basic recipe for developing a contract-first web service with Spring-WS
appears in table 9.1.

Defining the contract (first!) 347
To demonstrate Spring-based web services, we’re going to build a poker hand
evaluation service. Figure 9.1 illustrates the requirements for this web service:
given five cards, identify the poker hand in question.

 Since we’re creating a contract-first web service, it’s only logical that the first
thing we should do is define the service contract. Let’s get started.

9.2 Defining the contract (first!)

The single most important activity in developing a contract-first web service is
defining the contract itself. When defining the contract, we’ll define the messages
that are sent to and received from the service, with no regard for how the service
is implemented or how the messages will be handled.

 Even though the topic of this chapter is Spring-WS, you’ll find that this section
is remarkably Spring free. That’s because the contract of a web service should be

Table 9.1 The steps for developing a contract-first web service.

Step Action What we’ll do

1 Define the service contract. This involves designing sample XML messages that will
be processed by our web service. We’ll use these sample
messages to create XML Schema that will later be used
to create WSDL.

2 Write a service endpoint. We’ll create classes that will receive and process the
messages sent to the web service.

3 Configure the endpoint and
Spring-WS infrastructure.

We’ll wire up our service endpoint along with a handful of
Spring-WS beans that will tie everything together.

Figure 9.1
We’ll build a poker hand evaluation
web service. Given a poker hand
made up of five cards, the web
service will determine what kind of
poker hand was dealt.

348 CHAPTER 9

Building contract-first web services in Spring
defined independent of the implementation of the service. The focus is on what
needs to be said, not how it needs to be done. We’ll tie this all into Spring-WS start-
ing in section 9.3. But for now, the techniques described in this section are appli-
cable to contract-first services in general, regardless of the underlying framework.

 A contract-first view of web services places emphasis on the messages that are
sent to and received from services. Therefore, the first step in defining a ser-
vice’s contract is determining what the messages will look like. We’ll start by cre-
ating sample XML messages for our web services that we’ll use to define the
service contract.

9.2.1 Creating sample XML messages

In simple terms, our poker hand evaluation service takes a poker hand made up
of five cards as input and produces a poker hand designation (e.g., Full House,
Flush, etc.) as output. Writing a sample input message for the service as XML
might look a little like this:

<EvaluateHandRequest
 xmlns="http://www.springinaction.com/poker/schemas">
 <card>
 <suit>HEARTS</suit>
 <face>TEN</face>
 </card>
 <card>
 <suit>SPADES</suit>
 <face>KING</face>
 </card>
 <card>
 <suit>HEARTS</suit>
 <face>KING</face>
 </card>
 <card>
 <suit>DIAMONDS</suit>
 <face>TEN</face>
 </card>
 <card>
 <suit>CLUBS</suit>
 <face>TEN</face>
 </card>
</EvaluateHandRequest>

That’s fairly straightforward, isn’t it? There are five <card> elements, each with a
<suit> and a <face>. That pretty much describes a poker hand. All of the <card>
elements are contained within an <EvaluateHandRequest> element, which is the
message we’ll be sending to the service.

 As simple as the input message was, the output message is even simpler:

Defining the contract (first!) 349
<EvaluateHandResponse
 xmlns="http://www.springinaction.com/poker/schemas">
 <handName>Full House</handName>
</EvaluateHandResponse>

The <EvaluateHandResponse> message simply contains a single <handName> ele-
ment that holds the designation of the poker hand.

 These sample messages will serve as the basis for our service’s contract. And,
although this may bring about some disbelief on your part, you should know that
by defining these sample messages, we’ve already finished the hardest part of
designing the service contract. No kidding.

Forging the data contract
Now we’re ready to create the service contract. Before we do that, however, let’s
conceptually break the contact into two parts:

■ The data contract will define the messages going in and out of the service. In
our example, this will include the schema definition of the <EvaluateHan-
dRequest> and <EvaluateHandResponse> messages.

■ The operational contract will define the operations that our service will per-
form. Note that a SOAP operation does not necessarily correspond to a
method in the service’s API.

Both of these contract parts are typically (but not necessarily) defined in a single
WSDL file. The WSDL file usually contains an embedded XML Schema that
defines the data contract. The rest of the WSDL file defines the operational con-
tract, including one or more <wsdl:operation> elements within the
<wsdl:binding> element.

 Don’t worry yourself too much with the details of that last paragraph. I prom-
ised that creating the contract would be easy, so there’s no need for you to know
the details of what goes into a WSDL file. The key point is that there are two dis-
tinct parts of the contract.

 The data contract is defined using XML Schema (XSD). XSD allows us to pre-
cisely define what should go into a message. Not only can we define what ele-
ments are in the message, but we can also specify the types of those messages and
place constraints on what data goes into the message.

 Although it’s not terribly difficult to write an XSD file by hand, it’s more work
than I care to do. So, I’m going to cheat a little by using an XSD inference tool. An
XSD inference tool examines one or more XML files and, based on their contents,
produces an XML schema that the XML files can be validated against.

350 CHAPTER 9

Building contract-first web services in Spring
Several XSD inference tools are available, but one that I like is called Trang. Trang
is a command-line tool (available from www.thaiopensource.com/relaxng/
trang.html) that takes XML as input and produces an XSD file as output (see fig-
ure 9.2). Trang is Java based and thus can be used anywhere there’s a JVM. As the
URL implies, Trang is useful for generating RELAX NG schemas (an alternative
schema style), but is also useful for creating XML Schema files. For Spring-WS,
we’ll be using Trang to generate XML Schema.

 Once you’ve downloaded and unzipped Trang, you’ll find trang.jar in the dis-
tribution. This is an executable JAR file, so running Trang is simple from the com-
mand line:

% java -jar trang.jar EvaluateHandRequest.xml
 ➥ EvaluateHandResponse.xml PokerTypes.xsd

When running Trang, I’ve specified three command-line arguments. The first two
are the sample message XML files that we created earlier. Because we’ve specified
both message files, Trang is able to produce an XSD file that can validate the mes-
sages in both files. The last argument is the name of the file we want Trang to
write the XSD to.

 When run with these arguments, Trang will generate the data contract for our
service in PokerTypes.xsd (listing 9.1).

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 targetNamespace=
 "http://www.springinaction.com/poker/schemas"

Listing 9.1 PokerTypes.xsd, which defines the data contract for the web service

<EvaluateHandRequest>
 <card>
 <suit>HEARTS</suit>
 <face>TEN</face>
 </card
...
</EvaluateHandRequest>

Sample XML

<xs:schema ...>
 <xs:element name=
 "EvaluateHandRequest">
 ...
 </xs:element>
...
</xs:schema>

Trang

XML Schema

Figure 9.2 Trang is an XSD inference tool that makes simple work of producing XML Schema
from sample XML files.

Defining the contract (first!) 351
 xmlns:schemas=
 "http://www.springinaction.com/poker/schemas">
 <xs:element name="EvaluateHandRequest">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded"
 ref="schemas:card"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="card">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="schemas:suit"/>
 <xs:element ref="schemas:face"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="suit" type="xs:NCName"/>
 <xs:element name="face" type="xs:NCName"/>
 <xs:element name="EvaluateHandResponse">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="schemas:handName"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="handName" type="xs:string"/>
</xs:schema>

Trang saved us a lot of trouble by inferring the XSD for our messages. We’re not
completely off the hook, though. XSD isn’t perfect. As it infers the XSD, Trang
makes some assumptions about what kind of data will be in your XML. Most of the
time, those assumptions are okay. But often, we’ll need to fine-tune the generated
XSD to be more precise.

 For example, Trang assumed that the values of the <suit> and <face> ele-
ments should be defined as noncolonized1 names (xs:NCName). What we actually
want is for those elements to be simple strings (xs:string). So, let’s tweak the
definitions of <suit> and <face> to be strings:

<xs:element name="suit" type="xs:string"/>
<xs:element name="face" type="xs:string"/>

1 A noncolonized name is a name that isn’t qualified with a namespace related prefix. Therefore, it does
not have a colon (:)—it isn’t “colonized.”

352 CHAPTER 9

Building contract-first web services in Spring
We also know that there are only four possible values for the <suit> element, so
we could constrain the message a bit further:

<xs:element name="suit" type="schemas:Suit" />
<xs:simpleType name="Suit">
 <xsd:restriction base="xs:string">
 <xsd:enumeration value="SPADES" />
 <xsd:enumeration value="CLUBS" />
 <xsd:enumeration value="HEARTS" />
 <xsd:enumeration value="DIAMONDS" />
 </xsd:restriction>
</xs:simpleType>

Likewise, there are only 13 legal values for the <face> element, so let’s define
those limits in XSD:

<xs:element name="face" type="schemas:Face" />
<xs:simpleType name="Face">
 <xsd:restriction base="xs:string">
 <xsd:enumeration value="ACE" />
 <xsd:enumeration value="TWO" />
 <xsd:enumeration value="THREE" />
 <xsd:enumeration value="FOUR" />
 <xsd:enumeration value="FIVE" />
 <xsd:enumeration value="SIX" />
 <xsd:enumeration value="SEVEN" />
 <xsd:enumeration value="EIGHT" />
 <xsd:enumeration value="NINE" />
 <xsd:enumeration value="TEN" />
 <xsd:enumeration value="JACK" />
 <xsd:enumeration value="QUEEN" />
 <xsd:enumeration value="KING" />
 </xsd:restriction>
</xs:simpleType>

Also, notice that Trang incorrectly assumes that the <EvaluateHandRequest> may
contain an unlimited number of <card> elements (maxOccurs="unbounded"). But
a poker hand contains exactly five cards. Therefore, we’ll need to adjust the defi-
nition of <EvaluateHandRequest> accordingly:

<xs:element name="EvaluateHandRequest">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="5" maxOccurs="5"
 ref="schemas:card"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Handling messages with service endpoints 353
As for <EvaluateHandResponse>, it’s fine as is. We could constrain the possible
values returned in the <handName> element, but it’s not necessary. So, we’ll leave it
unchanged.

 Now we have the data contract for the poker hand evaluation service, but what
about the operational contract? Aren’t we going to need some WSDL to com-
pletely define the web service?

 Yes, we’ll absolutely need WSDL—after all, WSDL is the standard for defining
web services. We could write the WSDL by hand, but that’s no fun. And, again, I
promised you that this would be easy. But I’m going to have to ask you to wait
awhile to see where the operational contract comes into play. I’ll show you how the
WSDL gets created in section 9.4.6 when we wire a WSDL definition bean in Spring.

 But first, we need to create a service endpoint. The contract only defines the
messages sent to and from the service, not how they’re handled. Let’s see how to
create message endpoints in Spring-WS that will process messages from a web ser-
vice client.

9.3 Handling messages with service endpoints

As you’ll recall from the opening of this chapter, a well-designed application
doesn’t allow direct access to the internal objects that do the fine-grained tasks of
a system. In Spring MVC, for example, a user interacts with the application
through controllers, which in turn translate the user’s requests into calls to inter-
nal objects.

 It may be helpful to know that Spring MVC and Spring-WS are a lot alike.
Whereas a user interacts with a Spring MVC application through one of several
controllers, a web service client interacts with a Spring-WS application through
one of several message endpoints.

 Figure 9.3 illustrates how message endpoints interact with their client. A mes-
sage endpoint is a class that receives an XML message from the client and, based
on the content of the message, makes calls to internal application objects to per-
form the actual work. For the poker hand evaluation service, the message end-
point will process <EvaluateHandRequest> messages.

 Once the endpoint has completed processing, it will return its response in yet
another XML message. In the case of the poker hand evaluation service, the
response XML is an <EvaluateHandResponse> document.

 Spring-WS defines several abstract classes from which message endpoints can
be created, as listed in table 9.2.

354 CHAPTER 9

Building contract-first web services in Spring
For the most part, all of the abstract endpoint classes in table 9.2 are similar.
Which one you choose is mostly a matter of taste and which XML parsing technol-
ogy you prefer (e.g., SAX versus DOM versus StAX, etc.). But AbstractMarshal-
lingPayloadEndpoint is a bit different from the rest of the pack in that it
supports automatic marshaling and unmarshaling of XML messages to and from
Java objects.

Table 9.2 The message endpoint options available with Spring-WS.

 Abstract endpoint class in package
org.springframework.ws.server.endpoint

Description

AbstractDom4jPayloadEndpoint Endpoint that handles message pay-
loads as dom4j Elements

AbstractDomPayloadEndpoint Endpoint that handles message pay-
loads as DOM Elements

AbstractJDomPayloadEndpoint Endpoint that handles message pay-
loads as JDOM Elements

AbstractMarshallingPayloadEndpoint Endpoint that unmarshals the request
payload into an object and marshals the
response object into XML

AbstractSaxPayloadEndpoint Endpoint that handles message pay-
loads through a SAX
ContentHandler implementation

AbstractStaxEventPayloadEndpoint Endpoint that handles message pay-
loads using event-based StAX

AbstractStaxStreamPayloadEndpoint Endpoint that handles message pay-
loads using streaming StAX

AbstractXomPayloadEndpoint Endpoint that handles message pay-
loads as XOM Elements

Message
Endpoint

Client

XML

XML

Figure 9.3 Message endpoints are the implementation of a web service in
Spring-WS. Taking a message-centric approach, message endpoints process
incoming XML messages and produce XML responses.

Handling messages with service endpoints 355
 We’ll have a look at AbstractMarshallingPayloadEndpoint a little later in
this chapter (in section 9.3.2). First, though, let’s see how to build an endpoint
that processes XML messages directly.

9.3.1 Building a JDOM-based message endpoint

Our poker hand evaluation web service takes an <EvaluateHandRequest> mes-
sage as input and produces an <EvaluateHandResponse> as output. Therefore,
we’ll need to create a service endpoint that processes an <EvaluateHandRequest>
element and produces an <EvaluateHandResponse> element.

 Any of the abstract endpoint classes in table 9.2 will do, but we’ve chosen to
base our endpoint on AbstractJDomPayloadEndpoint. This choice was mostly
arbitrary, but I also like JDOM’s XPath support, which is a simple way to extract
information out of a JDOM Element. (For more information on JDOM, visit the
JDOM homepage at http://www.jdom.org.)

 EvaluateHandJDomEndpoint (listing 9.2) extends AbstractJDomPayloadEnd-
point to provide the functionality required to process the <EvaluateHand-
Request> message.

package com.springinaction.poker.webservice;
import java.util.Iterator;
import java.util.List;
import org.jdom.Element;
import org.jdom.JDOMException;
import org.jdom.Namespace;
import org.jdom.xpath.XPath;
import org.springframework.beans.factory.InitializingBean;
import org.springframework.ws.server.endpoint.
 ➥ AbstractJDomPayloadEndpoint;
import com.springinaction.poker.Card;
import com.springinaction.poker.Face;
import com.springinaction.poker.PokerHand;
import com.springinaction.poker.PokerHandEvaluator;
import com.springinaction.poker.PokerHandType;
import com.springinaction.poker.Suit;

public class EvaluateHandJDomEndpoint
 extends AbstractJDomPayloadEndpoint
 implements InitializingBean {

 private Namespace namespace;
 private XPath cardsXPath;
 private XPath suitXPath;
 private XPath faceXPath;

Listing 9.2 An endpoint that will process the <EvaluateHandRequest> message

356 CHAPTER 9

Building contract-first web services in Spring
 protected Element invokeInternal(Element element)
 throws Exception {

 Card cards[] = extractCardsFromRequest(element);
 PokerHand pokerHand = new PokerHand();
 pokerHand.setCards(cards);

 PokerHandType handType =
 pokerHandEvaluator.evaluateHand(pokerHand);

 return createResponse(handType);
 }

 private Element createResponse(PokerHandType handType) {
 Element responseElement =
 new Element("EvaluateHandResponse", namespace);
 responseElement.addContent(
 new Element("handName", namespace).setText(
 handType.toString()));
 return responseElement;
 }

 private Card[] extractCardsFromRequest(Element element)
 throws JDOMException {
 Card[] cards = new Card[5];

 List cardElements = cardsXPath.selectNodes(element);
 for(int i=0; i < cardElements.size(); i++) {
 Element cardElement = (Element) cardElements.get(i);
 Suit suit = Suit.valueOf(
 suitXPath.valueOf(cardElement));
 Face face = Face.valueOf(
 faceXPath.valueOf(cardElement));
 cards[i] = new Card();
 cards[i].setFace(face);
 cards[i].setSuit(suit);
 }

 return cards;
 }

 public void afterPropertiesSet() throws Exception {
 namespace = Namespace.getNamespace("poker",
 "http://www.springinaction.com/poker/schemas");
 cardsXPath =
 XPath.newInstance("/poker:EvaluateHandRequest/poker.card");
 cardsXPath.addNamespace(namespace);
 faceXPath = XPath.newInstance("poker:face");
 faceXPath.addNamespace(namespace);
 suitXPath = XPath.newInstance("poker:suit");
 suitXPath.addNamespace(namespace);
 }

 // injected

Evaluates poker
hand

Creates response

Extracts cards
from message

Sets up XPath
queries

Handling messages with service endpoints 357
 private PokerHandEvaluator pokerHandEvaluator;
 public void setPokerHandEvaluator(
 PokerHandEvaluator pokerHandEvaluator) {
 this.pokerHandEvaluator = pokerHandEvaluator;
 }
}

The invokeInternal() method is the entry point into this endpoint. When
called, it is passed a JDOM Element object that contains the incoming message—in
this case, an <EvaluateHandRequest>. invokeInternal() hands off the Element
to the extractCardsFromRequest() method, which uses JDOM XPath objects to
pull card information out of the <EvaluateHandRequest> element.

 After an array of Card objects is returned, invokeInternal() then does the
right thing and passes those Cards to an injected PokerHandEvaluator to evaluate
the poker hand. PokerHandEvaluator is defined by the following interface:

package com.springinaction.poker;

public interface PokerHandEvaluator {
 PokerHandType evaluateHand(PokerHand hand);
}

The actual implementation of PokerHandEvaluator isn’t relevant to the discus-
sion of building web services with Spring-WS, so I’ll leave it out (but you can find
it in the downloadable examples).

 The fact that the endpoint calls PokerHandEvaluator’s evaluateHand()
method is significant. A properly written Spring-WS endpoint shouldn’t perform
any business logic of its own. It should only mediate between the client and the
internal API. The actual business logic is performed in the PokerHandEvaluator
implementation. Later, in chapter 13, we’ll see a similar pattern applied to Spring
MVC controllers where a controller merely sits between a web user and a server-
side object.

 Once the PokerHandEvaluator has determined the type of poker hand it was
given, invokeInternal() passes the PokerHandType object off to createRe-
sponse() to produce an <EvaluateHandResponse> element using JDOM. The
resulting JDOM Element is returned and EvaluateHandJDomEndpoint’s job is done.

 EvaluateHandJDomEndpoint is a fine example of how to implement a Spring-
WS endpoint. But there are an awful lot of XML specifics in there. Although the
messages handled by Spring-WS endpoints are XML, there’s usually no reason why
your endpoint needs to be written to know that. Let’s see how a marshaling end-
point can help us eliminate all of that XML parsing code.

358 CHAPTER 9

Building contract-first web services in Spring
9.3.2 Marshaling message payloads

As we mentioned before, AbstractMarshallingPayloadEndpoint is a little differ-
ent from all of the other Spring-WS abstract endpoint classes. Instead of being
given an XML Element to pull apart for information, AbstractMarshallingPay-
loadEndpoint is given an object to process.

 Actually, as illustrated in figure 9.4, a marshaling endpoint works with an
unmarshaler that converts an incoming XML message into a POJO. Once the end-
point is finished, it simply returns a POJO and a marshaler converts it into an XML
message to be returned to the client. This greatly simplifies the endpoint imple-
mentation, as it no longer has to include any XML-processing code.

For example, consider listing 9.3, which shows EvaluateHandMarshal-

lingEndpoint, a new implementation of our poker hand evaluation endpoint
that extends AbstractMarshallingPayloadEndpoint.

package com.springinaction.poker.webservice;
import org.springframework.ws.server.endpoint.
 ➥ AbstractMarshallingPayloadEndpoint;
import com.springinaction.poker.PokerHand;
import com.springinaction.poker.PokerHandEvaluator;
import com.springinaction.poker.PokerHandType;

public class EvaluateHandMarshallingEndpoint
 extends AbstractMarshallingPayloadEndpoint {

 protected Object invokeInternal(Object object)
 throws Exception {
 EvaluateHandRequest request =
 (EvaluateHandRequest) object;

 PokerHand pokerHand = new PokerHand();
 pokerHand.setCards(request.getHand());

Listing 9.3 The endpoint that will process the <EvaluateHandRequest> message

Message
Endpoint

M
ar

sh
al

er
/

U
nm

ar
sh

al
er

XML

XML

Java
Object

Java
Object

Client

Figure 9.4 Marshaling endpoints leverage a marshaler/unmarshaler to handle XML
messages so that the endpoint only has to deal with POJOs.

Gives EvaluateHandRequest
to endpoint

Handling messages with service endpoints 359
 PokerHandType pokerHandType =
 pokerHandEvaluator.evaluateHand(pokerHand);

 return new EvaluateHandResponse(pokerHandType);
 }

 // injected
 private PokerHandEvaluator pokerHandEvaluator;
 public void setPokerHandEvaluator(
 PokerHandEvaluator pokerHandEvaluator) {
 this.pokerHandEvaluator = pokerHandEvaluator;
 }
}

The first thing that you probably noticed about EvaluateHandMarshal-

lingEndpoint is that it is much shorter than EvaluateHandJDomEndpoint. That’s
because EvaluateHandMarshallingEndpoint doesn’t have any of the XML pars-
ing code that was necessary in EvaluateHandJDomEndpoint.

 Instead, the invokeInternal() method is given an Object to process. In this
case, the Object is an EvaluateHandRequest:

package com.springinaction.poker.webservice;
import com.springinaction.poker.Card;

public class EvaluateHandRequest {
 private Card[] hand;

 public EvaluateHandRequest() {}

 public Card[] getHand() {
 return hand;
 }

 public void setHand(Card[] cards) {
 this.hand = cards;
 }
}

On the other end of invokeInternal(), an EvaluateHandResponse object is
returned. EvaluateHandResponse looks like this:

package com.springinaction.poker.webservice;
import com.springinaction.poker.PokerHandType;

public class EvaluateHandResponse {
 private PokerHandType pokerHand;

 public EvaluateHandResponse() {
 this(PokerHandType.NONE);
 }

Evaluates poker hand

360 CHAPTER 9

Building contract-first web services in Spring
 public EvaluateHandResponse(PokerHandType pokerHand) {
 this.pokerHand = pokerHand;
 }

 public PokerHandType getPokerHand() {
 return this.pokerHand;
 }

 public void setPokerHand(PokerHandType pokerHand) {
 this.pokerHand = pokerHand;
 }
}

So how is an incoming <EvaluateHandRequest> XML message transformed into
an EvaluateHandRequest object? And, while we’re on the subject, how does an
EvaluateHandResponse object end up being an <EvaluateHandResponse> mes-
sage that gets sent to the client?

 What you don’t see here is that AbstractMarshallingPayloadEndpoint has a
reference to an XML marshaler. When it receives an XML message, it uses the mar-
shaler to turn the XML message into an object before calling invokeInternal().
Then, when invokeInternal() is finished, the marshaler turns the object
returned into an XML message.

 A large part of Spring-WS is an object-XML mapping (OXM) abstraction. Spring-
WS’s OXM comes with support for several OXM implementations, including:

■ JAXB (versions 1 and 2)

■ Castor XML

■ JiBX

■ XMLBeans

■ XStream

You may be wondering which OXM I chose for EvaluateHandMarshal-

lingEndpoint. I’ll tell you, but not yet. The important thing to note here is that
EvaluateHandMarshallingEndpoint has no idea where the Object that is passed
to invokeInternal() came from. In fact, there’s no reason why the Object even
has to have been created from unmarshaled XML.

 This highlights a key benefit of using a marshaling endpoint. Because it takes a
simple object as a parameter, EvaluateHandMarshallingEndpoint can be unit-
tested just like any other POJO. The test case can simply pass in an EvaluateHan-
dRequest object and make assertions on the returned EvaluateHandResponse.

 Now that we’ve written our service endpoint, we’re ready to wire it up in
Spring.

Wiring it all together 361
9.4 Wiring it all together

We’re finally down to the final stage of developing a Spring-WS service. We need
to configure the Spring application context with our endpoint bean and a hand-
ful of infrastructure beans required by Spring-WS.

 Spring-WS is based on Spring MVC (which we’ll see more of in chapter 13). In
Spring MVC, all requests are handled by DispatcherServlet, a special servlet that
dispatches requests to controller classes that process the requests. Similarly,
Spring-WS can be fronted by MessageDispatcherServlet, a subclass of Dispatch-
erServlet that knows how to dispatch SOAP requests to Spring-WS endpoints.2

 MessageDispatcherServlet is a fairly simple servlet and can be configured in
a web application’s web.xml with the following <servlet> and <servlet-
mapping> elements:

<servlet>
 <servlet-name>poker</servlet-name>
 <servlet-class>org.springframework.ws.transport.http.
 ➥ MessageDispatcherServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>poker</servlet-name>
 <url-pattern>/services/*</url-pattern>
</servlet-mapping>

We’ll tweak this MessageDispatcherServlet’s configuration a little later, but this
will get us started for now.

 MessageDispatcherServlet is only the front end of Spring-WS. There are a
handful of beans that we’ll need to wire in the Spring application context. Let’s
see what those beans are and what they do.

9.4.1 Spring-WS: The big picture

Over the next several pages, we’re going to configure several beans in the Spring
context. Before we get too deep in the XML, it is probably worthwhile to have a
look at the big picture to see what we’re about to do. Figure 9.5 shows the beans
we’ll define and how they relate to one another.

2 The “web” in web services seems to imply that all web services are served over HTTP. But that’s not nec-
essarily true. Spring-WS has support for JMS, email, and raw TCP/IP-based web services. Nevertheless,
since most web services are, in fact, served over HTTP, that’s the configuration I’ll talk about here.

362 CHAPTER 9

Building contract-first web services in Spring
Figure 9.5 shows the beans that we’ll configure for the poker hand evaluation ser-
vice and how they relate to one another. But what are these beans and what do
they do? To summarize these six beans:

■ payloadMapping—Maps incoming XML messages to an appropriate end-
point. In this case, we’ll use a mapping that looks up endpoints using the
incoming XML’s root element (by its qualified name).

■ evaluateHandEndpoint—This is the endpoint that will process the incom-
ing XML message for the poker hand evaluation service.

■ marshaller—The evaluateHandEndpoint could be written to process the
incoming XML as a DOM or JDOM element, or even as a SAX event handler.
Instead, the marshaller bean will automatically convert XML to and from
Java objects.

■ pokerHandEvaluator—This is a POJO that performs the actual poker hand
processing. evaluateHandEndpoint will use this bean to do its work.

■ endpointExceptionResolver—This is a Spring-WS bean that will automati-
cally convert any Java exceptions thrown while processing a request into
appropriate SOAP faults.

Figure 9.5
Spring-WS service configuration
consists of several beans, including

Figure 9.5
Spring-WS service configuration
consists of several beans, including
mappings, endpoints, marshalers, and
other utility beans.

Wiring it all together 363
■ poker—Although it’s not obvious from its name, this bean will serve the
WSDL for the poker hand web service to the client. Either it can serve hand-
created WSDL or it can be wired to automatically generate WSDL from the
message’s XML Schema.

Now that we have a roadmap of where we’re going, let’s dive right into configur-
ing Spring-WS, starting with the message handler adapter.

9.4.2 Mapping messages to endpoints

When a client sends a message, how does MessageDispatcherServlet know
which endpoint should process it? Even though we’re only building one endpoint
in this chapter’s example (the evaluate hand endpoint), it’s quite possible that
MessageDispatcherServlet could be configured with several endpoints. We
need a way to map incoming messages to the endpoints that process them.

 In chapter 13, we’ll see how Spring MVC’s DispatcherServlet maps browser
requests to Spring MVC controllers using handler mappings. In a similar way, Mes-
sageDispatcherServlet uses an endpoint mapping to decide which endpoint
should receive an incoming XML message.

 For the poker hand evaluation service, we’ll use Spring-WS’s Pay-

loadRootQNameEndpointMapping, which is configured in Spring like this:

<bean id="payloadMapping"
 class="org.springframework.ws.server.endpoint.mapping.
 ➥ PayloadRootQNameEndpointMapping">
 <property name="endpointMap">
 <map>
 <entry key=
 "{http://www.springinaction.com/poker/schemas}
 ➥ EvaluateHandRequest"
 value-ref="evaluateHandEndpoint" />
 </map>
 </property>
</bean>

PayloadRootQNameEndpointMapping maps incoming SOAP messages to end-
points by examining the qualified name (QName) of the message’s payload and
looking up the endpoint from its list of mappings (configured through the end-
pointMap property).

 In our example, the root element of the message is <EvaluateHandRequest>
with a namespace URI of http://www.springinaction.com/poker/schemas. This
makes the QName of the message {http://www.springinaction.com/poker/
schemas}EvaluateHandRequest. We’ve mapped this QName to a bean named

364 CHAPTER 9

Building contract-first web services in Spring
evaluateHandEndpoint, which is our endpoint implementation that we created in
section 9.3.2.

9.4.3 Wiring the service endpoint

Now we’re finally down to wiring the endpoint that will process our message. If you
chose to use the JDOM-based endpoint then it is configured in Spring like this:

<bean id="evaluateHandEndpoint"
 class="com.springinaction.poker.webservice.
 ➥ EvaluateHandJDomEndpoint">
 <property name="pokerHandEvaluator"
 ref="pokerHandEvaluator" />
</bean>

The only property that must be injected is the pokerHandEvaluator property.
Remember that EvaluateHandJDomEndpoint doesn’t actually evaluate the poker
hand, but delegates to an implementation of PokerHandEvaluator to do the dirty
work. Thus, the pokerHandEvaluator bean should be configured like this:

<bean id="pokerHandEvaluator"
 class="com.springinaction.poker.PokerHandEvaluatorImpl"/>

If the JDOM-based endpoint didn’t suit you and instead you chose to use Evalu-
ateHandMarshallingEndpoint, a bit of extra configuration is involved:

<bean id="evaluateHandEndpoint"
 class="com.springinaction.poker.webservice.
 ➥ EvaluateHandMarshallingEndpoint">
 <property name="marshaller" ref="marshaller" />
 <property name="unmarshaller" ref="marshaller" />
 <property name="pokerHandEvaluator"
 ref="pokerHandEvaluator" />
</bean>

Again, the pokerHandEvaluator property is injected with a reference to a Poker-
HandEvaluatorImpl. But the marshaling endpoint must have its marshaller and
unmarshaller properties set as well. Here we’ve wired them with references to the
same marshaller bean, which we’ll configure next.

9.4.4 Configuring a message marshaler

The key to translating objects to and from XML messages is object-XML mapping
(OXM). Spring-OXM is a subproject of Spring-WS that provides an abstraction
layer over several popular OXM solutions, including JAXB and Castor XML.

 The central elements of Spring-OXM are its Marshaller and Unmarshaller
interfaces. Implementations of Marshaller are expected to generate XML

Wiring it all together 365
elements from Java objects. Conversely, Unmarshaller implementations are used
to construct Java objects from XML elements.

 AbstractMarshallingPayloadEndpoint takes advantage of the Spring-OXM
marshalers and unmarshalers when processing messages. When AbstractMar-
shallingPayloadEndpoint receives a message, it hands it off to an Unmarshaller
to unmarshal the XML message into an object that is passed to invokeInternal().
Then, when invokeInternal() is finished, the object returned is given to a Mar-
shaller to marshal the object into XML that will be returned to the client.

 Fortunately, you won’t have to create your own implementations of Mar-
shaller and Unmarshaller. Spring-OXM comes with several implementations, as
listed in table 9.3.

As you can see, table 9.3 only lists marshaler classes. That’s not an oversight,
though. Conveniently, all of the marshaler classes in table 9.3 implement both the
Marshaller and the Unmarshaller interfaces to provide one-stop solutions for
OXM marshaling.

 The choice of OXM solution is largely a matter of taste. Each of the OXM
options offered by Spring-WS has its good and bad points. XStream, however, has
limited support for XML namespaces, which are necessary in defining the types for
web services. Therefore, while Spring-OXM’s XStream may prove useful for gen-
eral-purpose XML serialization, it should be disregarded for use with web services.

 For the poker hand evaluator service, we chose to use Castor XML. Therefore,
we’ll need to configure a CastorMarshaller in Spring:

<bean id="marshaller"
 class="org.springframework.oxm.castor.CastorMarshaller">
 <property name="mappingLocation"

Table 9.3 Marshalers transform objects to and from XML. Spring-OXM provides several marshaling
options that can be used with Spring-WS.

OXM solution Spring-OXM marshaler

Castor XML org.springframework.oxm.castor.CastorMarshaller

JAXB v1 org.springframework.oxm.jaxb.Jaxb1Marshaller

JAXB v2 org.springframework.oxm.jaxb.Jaxb2Marshaller

JiBX org.springframework.oxm.jibx.JibxMarshaller

XMLBeans org.springframework.oxm.xmlbeans.XmlBeansMarshaller

XStream org.springframework.oxm.xstream.XStreamMarshaller

366 CHAPTER 9

Building contract-first web services in Spring
 value="classpath:mapping.xml" />
</bean>

Castor XML can do some basic XML marshaling without any additional configu-
ration. But our OXM needs are a bit more complex than what default Castor
XML can handle. Consequently, we’ll need to configure CastorMarshaller to
use a Castor XML mapping file. The mappingLocation property specifies the
location of a Castor XML mapping file. Here we’ve configured mappingLocation
to look for a mapping file with the name mapping.xml in the root of the applica-
tion’s classpath.

 As for the mapping.xml file itself, it is shown in listing 9.4.

<?xml version="1.0"?>
<!DOCTYPE mapping PUBLIC
 "-//EXOLAB/Castor Object Mapping DTD Version 1.0//EN"
 "http://castor.exolab.org/mapping.dtd">

 <mapping xmlns="http://castor.exolab.org/">
 <class name="com.springinaction.poker.webservice.
 ➥ EvaluateHandRequest">
 <map-to xml="EvaluateHandRequest" />
 <field name="hand"
 collection="array"
 type="com.springinaction.poker.Card"
 required="true">
 <bind-xml name="card" node="element" />
 </field>
 </class>

 <class name="com.springinaction.poker.Card">
 <map-to xml="card" />

 <field name="suit"
 type="com.springinaction.poker.Suit"
 required="true">
 <bind-xml name="suit" node="element" />
 </field>

 <field name="face"
 type="com.springinaction.poker.Face"
 required="true">
 <bind-xml name="face" node="element" />
 </field>
 </class>

 <class name="com.springinaction.poker.webservice.
 ➥ EvaluateHandResponse">
 <map-to xml="EvaluateHandResponse"

Listing 9.4 Castor XML mapping file for poker hand service types

Maps
<EvaluateHandRequest>
to EvaluateHandRequest

Maps <hand> to
array of Card

Maps <card> to Card

Maps <suit> to Suit

Maps <face> to Face

Maps <EvaluateHandResponse>
to EvaluateHandResponse

Wiring it all together 367
 ns-uri=
 "http://www.springinaction.com/poker/schemas"
 ns-prefix="tns" />
 <field name="pokerHand"
 type="com.springinaction.poker.PokerHandType"
 required="true">
 <bind-xml name="tns:handName" node="element"
 QName-prefix="tns"
 xmlns:tns=
 "http://www.springinaction.com/poker/schemas"/>
 </field>
 </class>
</mapping>

Now we have configured an endpoint mapping bean, the endpoint implementa-
tion bean, and an XML marshaling bean. At this point the poker hand evaluator
web service is mostly done. We could deploy it and stop for the day. But there are
still a couple of beans left that will make the web service more complete. Let’s see
how to make our web service more robust by declaring a bean that maps Java
exceptions to SOAP faults.

9.4.5 Handling endpoint exceptions

Things don’t always work out as expected. What will happen if a message can’t be
marshaled to a Java object? What if the message isn’t even valid XML? Maybe the
service endpoint or one of its dependencies throws an exception—then what
should we do?

 If an exception is thrown in the course of processing a message, a SOAP fault
will need to be sent back to the client. Unfortunately, SOAP doesn’t know or care
anything about Java exceptions. SOAP-based web services communicate failure
using SOAP faults. We need a way to convert any Java exceptions thrown by our
web service or by Spring-WS into SOAP faults.

 For that purpose, Spring-WS provides SoapFaultMappingExceptionResolver.
As shown in figure 9.6, SoapFaultMappingExceptionResolver will handle any
uncaught exceptions that occur in the course of handling a message and produce
an appropriate SOAP fault that will be sent back to the client.

 For our service, we’ve configured a SoapFaultMappingExceptionResolver in
Spring that looks like this:

368 CHAPTER 9

Building contract-first web services in Spring
<bean id="endpointExceptionResolver"
 class="org.springframework.ws.soap.server.endpoint.
 ➥ SoapFaultMappingExceptionResolver">
 <property name="exceptionMappings">
 <props>
 <prop key="org.springframework.oxm.
 ➥ UnmarshallingFailureException">
 SENDER,Invalid message received</prop>
 <prop key="org.springframework.oxm.
 ➥ ValidationFailureException">
 SENDER,Invalid message received</prop>
 </props>
 </property>
 <property name="defaultFault"
 value="RECEIVER,Server error" />
</bean>

The exceptionMappings property is configured with one or more SOAP fault defi-
nitions mapped to Java exceptions. The key of each <prop> is a Java exception
that needs to be translated to a SOAP fault. The value of the <prop> is a two-part
value where the first part is the type of fault that is to be created and the second
part is a string that describes the fault.

 SOAP faults come in two types: sender and receiver faults. Sender faults typi-
cally indicate that the problem is on the client (e.g., the sender) side. Receiver
faults indicate that the web service (e.g., the receiver) received a message from
the client but is having some problem processing the message.

 For example, if a service receives an XML message that can’t be unmarshaled,
the marshaler will throw an org.springframework.oxm.UnmarshallingFailure-
Exception. Because the sender created the useless XML, this is a sender fault. As
for the message, it is simply set to “Invalid message received” to indicate the
nature of the problem. An org.springframework.oxm.ValidationFailureEx-
ception is handled the same way.

Message
Endpoint

SoapFaultMapping
ExceptionResolver

Client
SOAP
Fault

Java
Exception

Figure 9.6 SoapFaultMappingExceptionResolver maps any Java exceptions
thrown from a message endpoint into a SOAP fault to be returned to the client.

Wiring it all together 369
 Any exceptions not explicitly mapped in the exceptionMappings property will
be handled by the fault definition in the defaultFault property. In this case,
we’re assuming that if the exception thrown doesn’t match any of the mapped
exceptions, it must be a problem on the receiving side. Thus, it is a receiver fault
and the message simply states “Server error.”

9.4.6 Serving WSDL files

Finally, I’m going to make good on my promise to show you where the WSDL file
for the poker hand evaluation web service comes from. As you recall from
section 9.2.1, we’ve already created the data portion of the contract as XML
Schema in PokerTypes.xsd. Before we go any further, you may want to turn back
to listing 9.1 to review the details of the data service.

 Pay particular attention to the names I chose for the XML elements that make
up our web service messages: EvaluateHandRequest and EvaluateHandResponse.
These names weren’t chosen arbitrarily. I chose them purposefully to take advan-
tage of a convention-over-configuration feature in Spring-WS that will automati-
cally create WSDL for the poker hand evaluation service.

 To make this work, we’ll need to configure Spring-WS’s Dynamic-

Wsdl11Definition. DynamicWsdl11Definition is a special bean that MessageDis-
patcherServlet works with to generate WSDL from XML Schema. This will come
in handy, as we already have some XML Schema defined for the data portion of the
contract. Here’s how I’ve configured DynamicWsdl11Definition in Spring:

<bean id="poker"
 class="org.springframework.ws.wsdl.wsdl11.
 ➥ DynamicWsdl11Definition">
 <property name="builder">
 <bean class="org.springframework.ws.wsdl.wsdl11.builder.
 ➥ XsdBasedSoap11Wsdl4jDefinitionBuilder">
 <property name="schema" value="/PokerTypes.xsd"/>
 <property name="portTypeName" value="Poker"/>
 <property name="locationUri"
 value="http://localhost:8080/Poker-WS/services"/>
 </bean>
 </property>
</bean>

DynamicWsdl11Definition works by reading an XML Schema definition, speci-
fied here as PokerTypes.xsd by the schema property. It looks through the schema
file for any element definitions whose names end with Request and Response. It
assumes that those suffixes indicate a message that is to be sent to or from a web
service operation and creates a corresponding <wsdl:operation> element in the
WSDL it produces, as shown in figure 9.7.

370 CHAPTER 9

Building contract-first web services in Spring
For example, when DynamicWsdl11Definition processes the PokerTypes.xsd file,
it assumes that the EvaluateHandRequest and EvaluateHandResponse elements
are input and output messages for an operation called EvaluateHand. Conse-
quently, the following definition is placed in the generated WSDL:

<wsdl:portType name="Poker">
 <wsdl:operation name="EvaluateHand">
 <wsdl:input message="schema:EvaluateHandRequest"
 name="EvaluateHandRequest">
 </wsdl:input>
 <wsdl:output message="schema:EvaluateHandResponse"
 name="EvaluateHandResponse">
 </wsdl:output>
 </wsdl:operation>
</wsdl:portType>

Notice that DynamicWsdl11Definition placed the EvaluateHand <wsdl:opera-
tion> within a <wsdl:portType> with the name Poker. It named the <wsdl:port-
Type> using the value wired into its portTypeName property.

 The last of DynamicWsdl11Definition’s properties that we’ve configured is
locationUri. This property tells the client where the service can be found. The
diagram in figure 9.8 breaks down the URL configured in the locationUri
property.

 In this case, I’m assuming that it will be running on the local machine, but
you’ll want to change the URL if you’ll be running it on a different machine.
Notice that the URL ends with /services, which matches the <servlet-mapping>
that we created for MessageDispatcherServlet.

 Speaking of <servlet-mapping>s, we’ll also need to add a new <servlet-
mapping> to web.xml so that MessageDispatcherServlet will serve WSDL defini-
tions. The following <servlet-mapping> definition should do the trick:

Message
Dispatcher

Servlet

Dynamic
Wsdl11

Definition
XSD

WSDL

WSDLClient
Figure 9.7
DynamicWsdl11Definition automatically
produces WSDL for a web service based on the XML
Schema that validates the service’s messages.

Wiring it all together 371
<servlet-mapping>
 <servlet-name>poker</servlet-name>
 <url-pattern>*.wsdl</url-pattern>
</servlet-mapping>

Now MessageDispatcherServlet has been configured (through Dynamic-

Wsdl11Definition) to automatically produce WSDL for the poker hand evalua-
tion service. The only question left unanswered at this point is where to find the
generated WSDL.

 The generated WSDL can be found at http://localhost:8080/Poker-WS/
poker.wsdl. How did I know that? I know that MessageDispatcherServlet is
mapped to *.wsdl, so it will attempt to create WSDL for any request that matches
that pattern. But how did it know to produce WSDL for our poker service at
poker.wsdl?

 The answer to that question lies in one last bit of convention followed by Mes-
sageDispatcherServlet. Notice that I declared the DynamicWsdl11Definition
bean to have an ID of poker. When MessageDispatcherServlet receives a request
for /poker.wsdl, it will look in the Spring context for a WSDL definition bean
named poker. In this case, it will find the DynamicWsdl11Definition bean that I
configured.

Using predefined WSDL
DynamicWsdl11Definition is perfect for most situations, as it keeps you from hav-
ing to write the WSDL by hand. But you may have special circumstances that
require you to have more control over what goes into the service’s WSDL defini-
tion. In that case you’ll need to create the WSDL yourself and then wire it into
Spring using SimpleWsdl11Definition:

<bean id="poker"
 class="org.springframework.ws.wsdl.wsdl11.
 ➥ SimpleWsdl11Definition">
 <property name="wsdl" value="/PokerService.wsdl"/>
</bean>

http://localhost:8080/Poker-WS/services

Server Host
and Port

MessageDispatcherServlet
<servlet-mapping>

Servlet
Context Name

Figure 9.8
The URL configured in the
locationUri property.

372 CHAPTER 9

Building contract-first web services in Spring
SimpleWsdl11Definition doesn’t generate WSDL (see figure 9.9); it just serves
WSDL that you’ve provided through the wsdl property.

 The only problem with predefined WSDL (aside from the trouble that it takes
to create it) is that it is statically defined. This creates a problem for the part of the
WSDL that specifies the service’s location. For example, consider the following
(statically defined) chunk of WSDL:

<wsdl:service name="PokerService">
 <wsdl:port binding="tns:PokerBinding" name="PokerPort">
 <wsdlsoap:address
 location="http://localhost:8080/Poker-WS/services"/>
 </wsdl:port>
</wsdl:service>

Here the service is defined as being available at http://localhost:8080/Poker-
WS/services. That is probably okay for development purposes, but it will need to
be changed when you deploy it to another server. You could manually change the
WSDL file every time you deploy it to another server, but that’s cumbersome and is
susceptible to mistakes.

 But MessageDispatcherServlet knows where it’s deployed and it knows the
URL of requests used to access it. So, instead of tweaking the WSDL every time
you deploy it to another server, why not let MessageDispatcherServlet rewrite it
for you?

 All you need to do is to set an <init-param> named transformWsdlLocations
to true and MessageDispatcherServlet will take it from there:

<servlet>
 <servlet-name>poker</servlet-name>

Message
Dispatcher

Servlet

Simple
Wsdl11

Definition

WSDL

WSDLClient

WSDL

Figure 9.9 SimpleWsdl11Definition simply serves a predefined WSDL file through the
MessageDispatcherServlet. It can optionally be configured to transform the service’s
address location to match the location of MessageDispatcherServlet.

Consuming Spring-WS web services 373
 <servlet-class>org.springframework.ws.transport.http.
 ➥ MessageDispatcherServlet</servlet-class>
 <init-param>
 <param-name>transformWsdlLocations</param-name>
 <param-value>true</param-value>
 </init-param>
</servlet>

When transformWsdlLocations is set to true, MessageDispatcherServlet will
rewrite the WSDL served by SimpleWsdl11Definition to match the request’s URL.

9.4.7 Deploying the service

We’ve defined our contract, the endpoint has been written, and all of the Spring-
WS beans are in place. At this point, we’re ready to package up the web service
application and deploy it. Since I chose to use Maven 2 for this project, creating a
deployable WAR file is as simple as typing the following at the command line:

% mvn package deploy

Once Maven’s finished, there will be a Poker-WS.war file in the target directory,
suitable for deployment in most web application servers.

 Using Spring-WS to build a web service only demonstrates half of its capabili-
ties. Spring-WS also comes with a client API based on the same message-centric
paradigm that Spring-WS promotes on the service side. Let’s see how to build a
client to consume the poker hand evaluation service using Spring-WS client tem-
plates.

9.5 Consuming Spring-WS web services

In chapter 8, you saw how to use JaxRpcPortProxyFactoryBean and XFireCli-
entFactoryBean to build clients that communicate with remote web services. But
both of those take a remote object view of web services, treating web services as
remote objects whose methods can be invoked locally. Throughout this chapter,
we’ve been talking about a message-centric approach to web services where clients
send XML messages to a web service and receive XML messages back in response.
A different paradigm on the service side demands a different paradigm on the cli-
ent side as well. That’s where Spring-WS’s WebServiceTemplate comes in.

 WebServiceTemplate is the centerpiece of Spring-WS’s client API. As shown in
figure 9.10, it employs the Template design pattern to provide the ability to send
and receive XML messages from message-centric web services. We’ve already seen
how Spring uses the Template pattern for its data access abstractions in chapter 5.

374 CHAPTER 9

Building contract-first web services in Spring
As we look at Spring-WS’s client API, you’ll find that it resembles the data access
API in many ways.

 To demonstrate WebServiceTemplate, we’ll create several different implemen-
tations of the PokerClient interface, which is defined as follows:

package com.springinaction.ws.client;
import java.io.IOException;
import com.springinaction.poker.Card;
import com.springinaction.poker.PokerHandType;

public interface PokerClient {
 PokerHandType evaluateHand(Card[] cards)
 throws IOException;
}

Each implementation will show a different way of using WebServiceTemplate to
send messages to the poker hand evaluation web service.

 But first things first… Let’s configure WebServiceTemplate as a bean in
Spring.

9.5.1 Working with web service templates

As I’ve already mentioned, WebServiceTemplate is the central class in the Spring-
WS client API. Sending messages to a web service involves producing SOAP enve-
lopes and communications boilerplate code that is pretty much the same for every
web service client. When sending messages to a Spring-WS client, you’ll certainly
want to rely on WebServiceTemplate to handle the grunt work so that you can
focus your efforts on the business logic surrounding your client.

 Configuring WebServiceTemplate in Spring is rather straightforward, as
shown in this typical <bean> declaration:

<bean id="webServiceTemplate"
 class="org.springframework.ws.client.core.WebServiceTemplate">
 <property name="messageFactory">
 <bean class="org.springframework.ws.soap.saaj.
 ➥ SaajSoapMessageFactory"/>
 </property>

Client
WebService

Template
Network

Web
Service

XML SOAP SOAP

Figure 9.10 WebServiceTemplate is the central class in Spring-WS’s client API. It
sends and receives XML messages to and from web services on behalf of a client.

Consuming Spring-WS web services 375
 <property name="messageSender" ref="messageSender"/>
</bean>

WebServiceTemplate needs to know how to construct the message that will be
sent to the service and how to send the message. The object wired into the mes-
sageFactory property handles the task of constructing the message. It should be
wired with an implementation of Spring-WS’s WebServiceMessageFactory inter-
face. Fortunately, you won’t have to worry about implementing WebServiceMes-
sageFactory, as Spring-WS comes with three suitable choices (shown in table 9.4).

Since the messages sent to and from the poker hand evaluation service are rather
simple, I’ve chosen to wire a SaajSoapMessageFactory into WebServiceTem-
plate’s messageFactory property. (This is also the default message factory used
by MessageDispatcherServlet.) If I were to decide later that performance is an

Table 9.4 WebServiceTemplate relies on a message factory to construct the message sent to a
web service. Spring-WS provides three message factory implementations to choose from.

Message factory What it does

AxiomSoapMessageFactory Produces SOAP messages using the AXIs Object Model
(AXIOM). Based on the StAX streaming XML API. Useful
when working with large messages and performance is a
problem.

DomPoxMessageFactory Produces Plain Old XML (POX) messages using a DOM. Use
this message factory when neither the client nor the service
cares to deal with SOAP.

SaajSoapMessageFactory Produces SOAP messages using the SOAP with Attach-
ments API for Java (SAAJ). Because SAAJ uses a DOM, large
messages could consume a lot of memory. If performance
becomes an issue, consider using
AxiomSoapMessageFactory instead.

It’s not all SOAP
Figure 9.10 is a bit misleading. It implies that Spring-WS only deals with SOAP-
based web services. In fact, Spring-WS only uses SOAP if it is wired with an Ax-
iomSoapMessageFactory or SaajSoapMessageFactory. The DomPoxMessage-
Factory supports POX messages that aren’t sent in a SOAP envelope. If you
have an aversion to using SOAP, maybe DomPoxMessageFactory is for you. You
may be interested in knowing that the upcoming Spring-WS 1.1 release will also
include support for REST.

376 CHAPTER 9

Building contract-first web services in Spring
issue, switching to AXIOM-based messages would be a simple matter of rewiring
the messageFactory property.

 The messageSender property should be wired with a reference to an imple-
mentation of a WebServiceMessageSender. Again, Spring-WS provides a couple of
appropriate implementations, as listed in table 9.5.

The choice between CommonsHttpMessageSender and HttpUrlConnectionMes-
sageSender boils down to a trade-off between functionality and another JAR
dependency. If you won’t be needing the advanced features supported by Common-
sHttpMessageSender (such as HTTP authentication), HttpUrlConnectionMes-
sageSender will suffice. But if you will need those features then
CommonsHttpMessageSender is a must—but you’ll have to be sure to include
Jakarta Commons HTTP in your client’s classpath.

 As the advanced features aren’t an issue for the poker hand evaluation web ser-
vice, I’ve chosen HttpUrlConnectionMessageSender, which is configured like this
in Spring:

<bean id="messageSender"
 class="org.springframework.ws.transport.http.
 ➥ HttpUrlConnectionMessageSender">
 <property name="url"
 value="http://localhost:8080/Poker-WS/services"/>
</bean>

The url property specifies the location of the service. Notice that it matches the
URL in the service’s WSDL definition.

 If I decide later that I’ll need to authenticate to use the poker hand evaluation
web service, switching to CommonsHttpMessageSender is a simple matter of chang-
ing the messageSender bean’s class specification.

Table 9.5 Message senders send the messages to a web service. Spring-WS comes with two message
senders.

Message sender What it does

CommonsHttpMessageSender Sends the message using Jakarta Commons HTTP
Client. Supports a preconfigured HTTP client, allow-
ing advanced features such as HTTP authentication
and HTTP connection pooling.

HttpUrlConnectionMessageSender Sends the message using Java’s basic facilities for
HTTP connections. Provides limited functionality.

Consuming Spring-WS web services 377
Sending a message
Once the WebServiceTemplate has been configured, it’s ready to use to send and
receive XML to and from the poker hand evaluation service. WebServiceTemplate
provides several methods for sending and receiving messages. This one, however,
stands out as the most basic and easiest to understand:

public boolean sendAndReceive(Source requestPayload,
 Result responseResult)
 throws IOException

The sendAndReceive() method takes a java.xml.transform.Source and a
java.xml.transform.Result as parameters. The Source object represents the
message payload to send to the web service, while the Result object is to be popu-
lated with the message payload returned from the service.

 Listing 9.5 shows TemplateBasedPokerClient, an implementation of the
PokerClient interface that uses WebServiceTemplate’s sendAndReceive()

method to communicate with the poker hand evaluation service.

package com.springinaction.ws.client;
import java.io.IOException;
import org.jdom.Document;
import org.jdom.Element;
import org.jdom.Namespace;
import org.jdom.transform.JDOMResult;
import org.jdom.transform.JDOMSource;
import org.springframework.ws.client.core.WebServiceTemplate;
import com.springinaction.poker.Card;
import com.springinaction.poker.PokerHandType;

public class TemplateBasedPokerClient
 implements PokerClient {

 public PokerHandType evaluateHand(Card[] cards)
 throws IOException {

 Element requestElement =
 new Element("EvaluateHandRequest");
 Namespace ns = Namespace.getNamespace(
 "http://www.springinaction.com/poker/schemas");
 requestElement.setNamespace(ns);
 Document doc = new Document(requestElement);

 for(int i=0; i<cards.length; i++) {
 Element cardElement = new Element("card");
 Element suitElement = new Element("suit");

Listing 9.5 Client that uses an injected WebServiceTemplate to send and receive
XML messages from the poker hand evaluation service

Constructs XML
message

378 CHAPTER 9

Building contract-first web services in Spring
 suitElement.setText(cards[i].getSuit().toString());
 Element faceElement = new Element("face");
 faceElement.setText(cards[i].getFace().toString());
 cardElement.addContent(suitElement);
 cardElement.addContent(faceElement);
 doc.getRootElement().addContent(cardElement);
 }

 JDOMSource requestSource = new JDOMSource(doc);
 JDOMResult result = new JDOMResult();
 webServiceTemplate.sendAndReceive(requestSource, result);

 Document resultDocument = result.getDocument();
 Element responseElement = resultDocument.getRootElement();
 Element handNameElement =
 responseElement.getChild("handName", ns);
 return PokerHandType.valueOf(handNameElement.getText());
 }

 private WebServiceTemplate webServiceTemplate;
 public void setWebServiceTemplate(
 WebServiceTemplate webServiceTemplate) {
 this.webServiceTemplate = webServiceTemplate;
 }
}

Both Source and Result are interfaces that are a standard part of Java’s XML API
and are available in the Java SDK. There are countless implementations of these
interfaces to choose from, but as you can see in listing 9.5, I chose to use the JDOM
implementations. This choice was mostly arbitrary but influenced by the fact that
I am familiar with JDOM and know how to use it to construct XML messages.

 TemplateBasedPokerClient’s evaluateHand() method starts by using JDOM
to construct an <EvaluateHandRequest> message from the array of Card elements
passed in. Once it has the request message, it calls sendAndReceive() on the Web-
ServiceTemplate. It then uses JDOM to parse the result and find the PokerHand-
Type that should be returned.

 Notice that the WebServiceTemplate is injected through a setter method.
Therefore, TemplateBasedPokerClient must be configured in Spring as follows:

<bean id="templateBasedClient"
 class="com.springinaction.ws.client.TemplateBasedPokerClient">
 <property name="webServiceTemplate" ref="webServiceTemplate" />
</bean>

The webServiceTemplate property is wired with a reference to the webService-
Template bean that we configured earlier.

Constructs XML
message

Sends message
using template

Parses XML
response

Injects
template

Consuming Spring-WS web services 379
 While reading through listing 9.5, you may have noticed that the bulk of the
evaluateHand() method involves creating and parsing XML. In fact, only one line
deals specifically with sending a message. Manually creating and parsing XML
messages may be okay when the messages are very simple, but you can probably
imagine the amount of code that would be required to construct complex mes-
sage payloads. Even with the poker hand evaluation service, where the message
payload is far from complex, the amount of XML processing code is staggering.

 Fortunately, you don’t have to deal with all of that XML on your own. In
section 9.4.4 you saw how an endpoint can use a marshaler to transform objects
to and from XML. Now I’ll show you how WebServiceTemplate can also take
advantage of marshalers to eliminate the need for XML processing code on the
client side.

Using marshalers on the client side
In addition to the simple sendAndReceive() method we used in listing 9.5, Web-
ServiceTemplate also provides marshalSendAndReceive(), a method for sending
and receiving XML messages that are marshaled to and from Java objects.

 Using marshalSendAndReceive() is a simple matter of passing in a request
object as a parameter and receiving a response object as the returned value. In
the case of the poker hand evaluation service, these objects are EvaluateHand-
Request and EvaluateHandResponse, respectively.

 Listing 9.6 shows MarshallingPokerClient, an implementation of PokerCli-
ent that uses marshalSendAndReceive() to communicate with the poker hand
evaluation service.

package com.springinaction.ws.client;
import java.io.IOException;
import org.springframework.ws.client.core.WebServiceTemplate;
import com.springinaction.poker.Card;
import com.springinaction.poker.PokerHandType;
import com.springinaction.poker.webservice.EvaluateHandRequest;
import com.springinaction.poker.webservice.EvaluateHandResponse;

public class MarshallingPokerClient
 implements PokerClient {

 public PokerHandType evaluateHand(Card[] cards)
 throws IOException {

 EvaluateHandRequest request = new EvaluateHandRequest();
 request.setHand(cards);

Listing 9.6 MarshallingPokerClient, which takes advantage of a marshaler to
convert objects to and from XML

Creates request object

380 CHAPTER 9

Building contract-first web services in Spring
 EvaluateHandResponse response = (EvaluateHandResponse)
 webServiceTemplate.marshalSendAndReceive(request);

 return response.getPokerHand();
 }

 private WebServiceTemplate webServiceTemplate;
 public void setWebServiceTemplate(
 WebServiceTemplate webServiceTemplate) {
 this.webServiceTemplate = webServiceTemplate;
 }
}

Wow! MarshallingPokerClient’s evaluateHand() method is much simpler and
no longer involves any XML processing. Instead, it constructs an EvaluateHan-
dRequest object and populates it with the Card array that was passed in. After call-
ing marshalSendAndReceive(), passing in the EvaluateHandRequest object,
evaluateHand() receives an EvaluateHandResponse, which it uses to retrieve the
PokerHandType that it returns.

 So, how does WebServiceTemplate know how to marshal/unmarshal Evalu-
ateHandRequest and EvaluateHandResponse objects? Is it really that smart?

 Well, no… not really. Actually, it doesn’t know anything about marshaling and
unmarshaling those objects. However, as shown in figure 9.11, it can be wired with
a marshaler and an unmarshaler that know how to handle the marshaling:

<bean id="webServiceTemplate"
 class="org.springframework.ws.client.core.WebServiceTemplate">
 <property name="messageFactory">
 <bean class="org.springframework.ws.soap.saaj.
 ➥ SaajSoapMessageFactory"/>
 </property>
 <property name="messageSender" ref="urlMessageSender"/>

 <property name="marshaller" ref="marshaller" />
 <property name="unmarshaller" ref="marshaller" />
</bean>

Here I’ve wired both the marshaller and unmarshaller properties with a refer-
ence to a marshaller bean, which is the same CastorMarshaller configured in
section 9.4.4. But it could just as easily have been any of the marshalers listed in
table 9.3.

 MarshallingPokerClient is much cleaner than TemplateBasedPokerClient.
But there’s still a little bit more we can do to trim the fat. Let’s see how to use
Spring-WS’s WebServiceGatewaySupport class to eliminate the need to explicitly
wire in a WebServiceTemplate.

Sends
request

Returns poker hand response

Consuming Spring-WS web services 381
9.5.2 Using web service gateway support

As you’ll recall from chapter 5 (see sections 5.3.3, 5.4.3, 5.5.3, and 5.6.2), Spring’s
data access API includes convenient support classes that provide templates so that
the templates themselves do not need to be configured. In a similar way, Spring-
WS provides WebServiceGatewaySupport, a convenient support class that auto-
matically provides a WebServiceTemplate to client classes that subclass it.

 Listing 9.7 shows one final implementation of PokerClient, PokerService-
Gateway, that extends WebServiceGatewaySupport.

package com.springinaction.ws.client;
import java.io.IOException;
import org.springframework.ws.client.core.support.
 ➥ WebServiceGatewaySupport;
import com.springinaction.poker.Card;
import com.springinaction.poker.PokerHandType;
import com.springinaction.poker.webservice.EvaluateHandRequest;
import com.springinaction.poker.webservice.EvaluateHandResponse;

public class PokerServiceGateway
 extends WebServiceGatewaySupport

Listing 9.7 WebServiceGatewaySupport, which provides a
WebServiceTemplate through getWebServiceTemplate()

Client
WebService

Template
Network

Web
Service

Java SOAP SOAP

Unmarshaler

Marshaler

Java XML

XML Java

Figure 9.11 When wired with a marshaler and unmarshaler, a client can send and
receive Java objects from WebServiceTemplate. WebServiceTemplate will use
the marshaler and unmarshaler to transform the Java objects to and from XML.

Subclasses
WebServiceGatewaySupport

382 CHAPTER 9

Building contract-first web services in Spring
 implements PokerClient {

 public PokerHandType evaluateHand(Card[] cards)
 throws IOException {
 EvaluateHandRequest request = new EvaluateHandRequest();

 request.setHand(cards);

 EvaluateHandResponse response = (EvaluateHandResponse)
 getWebServiceTemplate().marshalSendAndReceive(request);

 return response.getPokerHand();
 }
}

As you can see, PokerServiceGateway isn’t much different from Marshalling-
PokerClient. The key difference is that PokerServiceGateway isn’t injected with
a WebServiceTemplate. Instead, it gets its WebServiceTemplate by calling getWeb-
ServiceTemplate(). Under the covers, WebServiceGatewaySupport will create a
WebServiceTemplate object without one being explicitly defined in Spring.

 Even though WebServiceTemplate no longer needs to be defined in Spring,
the details of how to create a WebServiceTemplate must still be configured
through WebServiceGatewaySupport’s properties. For PokerServiceGateway,
this means configuring the messageFactory, messageSender, marshaller, and
unmarshaller properties:

<bean id="pokerClientGateway"
 class="com.springinaction.ws.client.PokerServiceGateway">
 <property name="messageFactory">
 <bean class="org.springframework.ws.soap.saaj.
 ➥ SaajSoapMessageFactory"/>
 </property>
 <property name="messageSender" ref="messageSender"/>

 <property name="marshaller" ref="marshaller" />
 <property name="unmarshaller" ref="marshaller" />
</bean>

Notice that the properties are configured exactly as they were with WebService-
Template.

9.6 Summary

Traditionally, web services have been viewed as just another remoting option. In
fact, some developers lovingly refer to SOAP as “CORBA with XML.”

Uses provided
WebServiceTemplate

Summary 383
 The problem with the web services as remoting view is that it leads to tight cou-
pling between a service and its clients. When treated as remoting, a client is
bound to the service’s internal API. The contract with the client is a side effect of
this binding. Changes to the service could break the contract with the client,
requiring the client to change or requiring the service to be versioned.

 In this chapter, we’ve looked at web services from a different angle, taking a
message-centric view. This approach is known as contract-first web services, as it
elevates the contract to be a first-class citizen of the service. Rather than simply
being remote objects, contract-first web services are implemented as message end-
points that process messages sent by the client and defined by the contract. Con-
sequently, the service and its API can be changed without impacting the contract.

 Spring-WS is an exciting new web service framework that encourages contract-
first web services. Based on Spring MVC, Spring-WS endpoints handle XML mes-
sages sent from the client, producing responses that are also XML messages.

 If you’re like me, you’re probably a bit skeptical about all of the work that went
into configuring a web service in Spring-WS. I won’t deny that contract-first web
services require a bit more work than using XFire to SOAP-ify a bean in contract-
last style. In fact, when I first looked at Spring-WS, I initially dismissed it as too
much work and no benefit… crazy talk.

 But after some more thought, I realized that the benefits of decoupling the
service’s contract from the application’s internal API far outweigh the extra effort
required by Spring-WS. And that work will pay dividends in the long run as we are
able to revise and refactor our application’s internal API without worrying about
breaking the service’s contract with its clients.

 Web services, especially those that are contract first, are a great way for applica-
tions to communicate with each other in a loosely coupled way. Another approach
is to send messages using the Java Message Service (JMS). In the next chapter,
we’ll explore Spring’s support for asynchronous messaging with JMS.

Spring messaging
This chapter covers
■ Sending and receiving asynchronous messages
■ Creating message-driven POJOs
■ Asynchronous remoting with Lingo
384

385
It’s 4:55 PM on Friday. You’re only minutes away from starting a much-anticipated
vacation. You have just enough time to drive to the airport and catch your flight.
But before you pack up and head out, you need to be sure that your boss and col-
leagues know the status of the work you’ve been doing so that they can pick up
where you left off on Monday. Unfortunately, some of your colleagues have
already skipped out for an early weekend departure... and your boss is tied up in a
meeting. What do you do?

 You could call your boss’s cell phone... but it’s not necessary to interrupt his
meeting for a mere status report. Maybe you could stick around and wait until he
returns from the meeting. But it’s anyone’s guess how long the meeting will last
and you have a plane to catch. Or perhaps you could leave a sticky note on his
monitor... right next to 100 other sticky notes that it will blend in with.

 The most practical way to communicate your status and still catch your plane is
to send a quick email to your boss and your colleagues, detailing your progress
and promising to send a postcard. You don’t know where they are or when they’ll
actually read the email, but you do know that they’ll eventually return to their
desk and read it. Meanwhile, you’re on your way to the airport.

 Sometimes it’s necessary to talk to someone directly. If you injure yourself and
need an ambulance, you’re probably going to pick up the phone—emailing the
hospital just won’t do. Often, however, sending a message is sufficient and offers
some advantages over direct communication—such as letting you get on with
your vacation.

 In the past few chapters, you’ve seen how to use RMI, Hessian, Burlap, HTTP
invoker, and web services to enable communication between applications. All of
these communication mechanisms employ synchronous communication in which
a client application directly contacts a remote service and waits for the remote
procedure to complete before continuing.

 Synchronous communication has its place, but it is not the only style of inter-
application communication available to developers. Asynchronous messaging is a
way of indirectly sending messages from one application to another without wait-
ing for a response. There are several advantages of asynchronous messaging over
synchronous messaging, as you’ll soon see.

 The Java Message Service (JMS) is a standard API for asynchronous messaging.
In this chapter, we’re going to look at how Spring simplifies sending and receiving
messages with JMS. In addition to basic sending and receiving of messages, we’ll
look at Spring’s support for message-driven POJOs, a way to receive messages that
resembles EJB’s message-driven beans (MDBs). Finally, we’ll wrap up with a look at
Lingo, a remoting extension for Spring that uses JMS as its transport mechanism.

386 CHAPTER 10

Spring messaging
 But before we dive into the nuts and bolts of Spring’s JMS support, let’s review
the basics of asynchronous messaging with JMS.

10.1 A brief introduction to JMS

Much like the remoting mechanisms we’ve covered in previous chapters, JMS is all
about applications communicating with one another. JMS differs from those other
mechanisms, however, in how information is transferred between systems.

 Remoting options like RMI and Hessian/Burlap are synchronous. As illus-
trated in figure 10.1, when the client invokes a remote method, the client must
wait for the method to complete before moving on. Even if the remote method
doesn’t return anything back to the client, the client will be put on hold until the
service is done.

 JMS, on the other hand, provides Java applications with the option of commu-
nicating asynchronously. When messages are sent asynchronously, as shown in fig-
ure 10.2, the client does not have to wait for the service to process the message or
even for the message to be delivered. The client sends its message and then
moves along with the assumption that the service will eventually receive and pro-
cess the message.

 Asynchronous communication through JMS offers several advantages over syn-
chronous communication. We’ll take a closer look at these advantages in a
moment. First, let’s see how messages are sent using JMS.

Call

Return

Program
Flow

The Client
Waits

C
lie

n
t

Se
rv

ic
e

Figure 10.1
When communicating synchronously, the
client must wait for the service to complete.

A brief introduction to JMS 387
10.1.1 Architecting JMS

Most of us take the postal service for granted. Millions of times every day, people
place letters, cards, and packages in the hands of postal workers, trusting that
they’ll get to the desired destination. The world’s too big of a place for us to hand-
deliver these things ourselves, so we rely on the postal system to handle it for us.
We address it, place the necessary postage on it, and then drop it in the mail to be
delivered without giving a second thought to how it might get there.

 The key to the postal service is indirection. When Grandma’s birthday comes
around, it’d be very inconvenient if we had to deliver a card directly to her.
Depending on where she lives, we’d have to set aside anywhere from a few hours
to a few days to deliver a birthday card. Fortunately, they’ll deliver the card to her
while we go about our lives.

 Similarly, indirection is the key to JMS. When one application sends informa-
tion to another through JMS, there is no direct link between the two applications.
Instead, the sending application places the message in the hands of a service that
will ensure delivery to the receiving application.

 There are two main concepts in JMS: message brokers and destinations.
 When an application sends a message, it hands it off to a message broker. A

message broker is JMS’s answer to the post office. The message broker will ensure
that the message is delivered to the specified destination, leaving the sender free
to go about other business.

 When you send a letter through the mail, it’s important to address it so that
the postal service knows where it should be delivered. Likewise, in JMS, messages

Program
Flow

Message

C
lie

n
t

Se
rv

ic
e

The Client Doesn’t
Need to Wait

Figure 10.2
Asynchronous communication is a
no-wait form of communication.

388 CHAPTER 10

Spring messaging
are addressed with a destination. Destinations are like mailboxes where the mes-
sages are placed until someone comes to pick them up.

 However, unlike mail addresses, which may indicate a specific person or street
address, destinations are less specific. Destinations are only concerned about
where the message will be picked up—not who will pick them up. In this way, des-
tinations are like sending a letter addressed “To resident.”

 In JMS, there are two types of destination: queues and topics. Each of these is
associated with a specific messaging model, either point-to-point (for queues) or
publish-subscribe (for topics).

Point-to-point messaging model
In the point-to-point model, each message has exactly one sender and one
receiver, as illustrated in figure 10.3. When the message broker is given a message,
it places the message in a queue. When a receiver comes along and asks for the
next message in the queue, the message is pulled from the queue and delivered to
the receiver. Because the message is removed from the queue as it is delivered, it
is guaranteed that the message will be delivered to only one receiver.

 Although each message in a message queue is delivered to only one receiver,
this does not imply that there is only one receiver pulling messages from the
queue. In fact, it’s quite likely that there are several receivers processing messages
from the queue. But they’ll each be given their own messages to process.

 This is analogous to waiting in line at the bank. As you wait, you may notice
that there are multiple tellers available to help you with your financial transac-
tion. After each customer is helped and a teller is freed up, she will call for the
next person in line. When it’s your turn at the front of the line, you’ll be called
to the counter and helped by one teller. The other tellers will help other bank-
ing customers.

 Another observation to be made at the bank is that when you get in line, you
probably won’t know which teller will eventually help you. You could count how

Sender Queue

Messages

Receiver

Figure 10.3 A message decouples a message sender from the message
receiver. While a queue may have several receivers, each message is picked up
by exactly one receiver.

A brief introduction to JMS 389
many people are in line, match that up with the number of available tellers, note
which teller is fastest, and then come up with a guess as to which teller will call
you to their window. But chances are you’ll be wrong and end up at a different
teller’s window.

 Likewise, in JMS, if there are multiple receivers listening to a queue, there’s no
way of knowing which one will actually process a specific message. This uncer-
tainty is actually a good thing because it enables an application to scale up mes-
sage processing by simply adding another listener to the queue.

Publish-subscribe messaging model
In the publish-subscribe messaging model, messages are sent to a topic. As with
queues, many receivers may be listening to a topic. However, unlike queues where
a message is delivered to exactly one receiver, all subscribers to a topic will receive
a copy of the message, as shown in figure 10.4.

 As implied by its name, the publish-subscribe message model is very much like
the model of a magazine publisher and its subscribers. The magazine (a mes-
sage) is published, sent to the postal service, and then all subscribers receive
their own copy.

 The magazine publisher analogy breaks down, however, when you realize that
in JMS, the publisher has no idea of who its subscribers are. The publisher only
knows that its message will be published to a particular topic—not who is listen-
ing to that topic. This also implies that the publisher has no idea of how the mes-
sage will be processed.

 Now that we’ve covered the basics of JMS, let’s see how JMS messaging com-
pares to synchronous RPC.

Subscriber #2Publisher Topic

Messages Subscriber #3

Subscriber #1

Figure 10.4 Like queues, topics decouple message senders from message receivers.
Unlike queues, however, a topic message could be delivered to many topic subscribers.

390 CHAPTER 10

Spring messaging
10.1.2 Assessing the benefits of JMS

Even though it’s very intuitive and simple to set up, synchronous communication
imposes several limitations on the client of a remote service. Most significantly:

■ Synchronous communication implies waiting. When a client invokes a
method on a remote service, it must wait for the remote method to com-
plete before the client can continue. If the client communicates frequently
with the remote service and/or the remote service is slow to respond, this
could negatively impact performance of the client application.

■ The client is coupled to the service through the service’s interface. If the
interface of the service changes, all of the service’s clients will also need to
change accordingly.

■ The client is coupled to the service’s location. A client must be configured
with the service’s network location so that it knows how to contact the ser-
vice. If the network topology changes, the client will need to be reconfig-
ured with the new location.

■ The client is coupled to the service’s availability. If the service becomes
unavailable, the client is effectively crippled.

While synchronous communication has its place, these shortcomings should be
taken into account when deciding what communication mechanism is a best fit for
your application’s needs. If these constraints are a concern for you, you may want
to consider how asynchronous communication with JMS addresses these issues.

No waiting
When a message is sent with JMS, the client doesn’t need to wait around for it to
be processed or even delivered. The client drops the message off with the mes-
sage broker and moves along with faith that the message will make it to the
appropriate destination.

 Since it doesn’t have to wait, the client will be freed up to perform other activi-
ties. With all of this free time, the client’s performance can be dramatically
improved.

Message-oriented
Unlike RPC communication that is typically oriented around a method call, mes-
sages sent with JMS are data-centric. This means that the client isn’t fixed to a spe-
cific method signature. Any queue or topic subscriber that can process the data
sent by the client can process the message. The client doesn’t need to be aware of
any service specifics.

A brief introduction to JMS 391
Location independence
Synchronous RPC services are typically located by their network address. The
implication of this is that clients are not resilient to changes in network topol-
ogy. If a service’s IP address changes or if it’s configured to listen on a different
port, the client must be changed accordingly or the client will be unable to
access the service.

 In contrast, JMS clients have no idea who will process their messages or where
the service is located. The client only knows the queue or topic through which the
messages will be sent. As a result, it doesn’t matter where the service is located, as
long as it can retrieve messages from the queue or topic.

 In the point-to-point model, it’s possible to take advantage of location inde-
pendence to create a cluster of services. If the client is unaware of the service’s
location and if the service’s only requirement is that it must be able to access the
message broker, there’s no reason why multiple services can’t be configured to
pull messages from the same queue. If the service is being overburdened and fall-
ing behind in its processing, all we need to do is turn up a few more instances of
the service to listen to the same queue.

 Location independence takes on another interesting side effect in the publish-
subscribe model. Multiple services could all be subscribed to a single topic, receiv-
ing duplicate copies of the same message. But each service could process that
message differently. For example, let’s say you have a set of services that together
process a message that details the new hire of an employee. One service might
add the employee to the payroll system, another to the HR portal, and yet another
makes sure that the employee is given access to the systems they’ll need to do
their job. Each service works independently on the same data that they each
received from a topic.

Guaranteed delivery
In order for a client to communicate with a synchronous service, the service must
be listening at the IP address and port specified. If the service were to go down or
otherwise become unavailable, the client wouldn’t be able to proceed.

 However, when sending messages with JMS, the client can rest assured that its
messages will be delivered. Even if the service is unavailable when a message is
sent, it will be stored until the service is available again.

 Now that you have a feel for the basics of JMS and asynchronous messaging,
let’s set up a JMS message broker that we’ll use in our examples. Although you’re
free to use any JMS message broker you’d like, we’re going to use the popular
ActiveMQ message broker.

392 CHAPTER 10

Spring messaging
10.1.3 Setting up ActiveMQ in Spring

ActiveMQ is a great open source message broker and a wonderful option for asyn-
chronous messaging with JMS. Although ActiveMQ began its life as a Codehaus
project, it is in the process of moving to Apache. As this is being written,
ActiveMQ 4.1.0 is in Apache’s incubator program.

 To get started with ActiveMQ, you’ll need to download the binary distribution
from www.activemq.org. Once you’ve downloaded ActiveMQ, unzip it to your
local hard drive. In the base directory of the unzipped distribution, you’ll find
incubator-activemq-4.1.0.jar. This is the JAR file you’ll need to add to the applica-
tion’s classpath to be able to use ActiveMQ’s API.

 In the bin directory, you’ll find a script that starts ActiveMQ: activemq for Unix
users or activemq.bat for Windows users. Run the script and within moments
ActiveMQ will be ready and waiting to broker your messages.

Creating a connection factory
Throughout this chapter, we’re going to see different ways that Spring can be
used to both send and receive messages through JMS. In all cases, we’ll need a JMS
connection factory to be able to send messages through the message broker. Since
we’re using ActiveMQ as our message broker, we’ll have to configure the JMS con-
nection factory so that it knows how to connect to ActiveMQ. ActiveMQConnec-
tionFactory is the JMS connection factory that comes with ActiveMQ, and it is
configured in Spring like this:

<bean id="connectionFactory"
 class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://localhost:61616"/>
</bean>

Later in this chapter we’ll use this connectionFactory bean a lot. But for now,
suffice it to say that the brokerURL property tells the connection factory where the
message broker is located. In this case, the URL in the brokerURL property tells
ActiveMQConnectionFactory to connect to ActiveMQ on the local machine at
port 61616 (which is the port that ActiveMQ listens to by default).

Declaring an ActiveMQ message destination
In addition to a connection factory, we’ll need a destination for the messages to
be passed along on to. The destination can be either a queue or a topic, depend-
ing on the needs of the application.

 Regardless of whether you are using a queue or a topic, you must configure the
destination bean in Spring using a message broker–specific implementation class.
For example, the following <bean> declaration declares an ActiveMQ queue:

Using JMS with Spring 393
<bean id="rantzDestination"
 class="org.apache.activemq.command.ActiveMQQueue">
 <constructor-arg index="0" value="rantz.marketing.queue"/>
</bean>

Similarly, the following <bean> declares a topic for ActiveMQ:

<bean id="rantzDestination"
 class="org.apache.activemq.command.ActiveMQTopic">
 <constructor-arg index="0" value="rantz.marketing.topic"/>
</bean>

Again, these beans illustrate how to configure destinations for ActiveMQ 4.1.0. If
you’re using a different message broker, be sure to configure destination beans
using implementations that are appropriate to the message broker you’re using.

 With the common beans out of the way, we’re ready to start sending and
receiving messages. For that, we’ll use JmsTemplate, the centerpiece of Spring’s
JMS support. But first, let’s gain an appreciation for what JmsTemplate provides
by looking at what JMS is like without JmsTemplate.

10.2 Using JMS with Spring

As you’ve seen, JMS gives Java developers a standard API for interacting with mes-
sage brokers and for sending and receiving messages. Furthermore, virtually every
message broker implementation available supports JMS, so there’s no reason to
learn a proprietary messaging API for every message broker you deal with.

 But while JMS offers a universal interface to all message brokers, its conve-
nience comes at a cost. Sending and receiving messages with JMS is not a simple
matter of licking a stamp and placing it on an envelope. As you’ll see, JMS
demands that you also fuel up the mail carrier’s truck.

10.2.1 Tackling runaway JMS code

In chapter 5 (see section 5.3.1) you saw how conventional JDBC code can be an
unwieldy mess of code to handle connections, statements, result sets, and
exceptions. Unfortunately, conventional JMS follows a similar model, as you’ll
observe in listing 10.1.

ConnectionFactory cf =
 new ActiveMQConnectionFactory("tcp://localhost:61616");

Connection conn = null;
Session session = null;

Listing 10.1 Sending a message using conventional (non-Spring) JMS

Gets connection
factory

394 CHAPTER 10

Spring messaging
try {
 conn = cf.createConnection();

 session = conn.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

 Destination destination = new ActiveMQQueue("myQueue");

 MessageProducer producer = session.createProducer(destination);
 TextMessage message = session.createTextMessage();
 message.setText("Hello world!");

 producer.send(message);
} catch (JMSException e) {
…
} finally {
 try {
 if(session != null) { session.close(); }
 if(conn != null) { conn.close(); }
 } catch (JMSException ex) {}
}

At the risk of sounding repetitive—holy runaway code, Batman! Just as with the
JDBC example, there are almost 20 lines of code here just to send a “Hello world!”
message. Actually, only a few lines actually send the message. The rest are merely
setting the stage for sending a message.

 As you can see in listing 10.2, it’s not any prettier for the receiving end, either.

ConnectionFactory cf =
 new ActiveMQConnectionFactory("tcp://localhost:61616");
Connection conn = null;
Session session = null;
try {
 conn = cf.createConnection();

 session = conn.createSession(false,
 Session.AUTO_ACKNOWLEDGE);

 Destination destination = new ActiveMQQueue("myQueue");

 MessageConsumer consumer = session.createConsumer(destination);

 conn.start();

 Message message = consumer.receive();

 TextMessage textMessage = (TextMessage) message;
 System.out.println("GOT A MESSAGE: " + textMessage.getText());
} catch (JMSException e) {
 System.out.println(e);

Listing 10.2 Receiving a message using conventional (non-Spring) JMS

Creates connection

Creates
session

Creates queue

Sets up message
Sends message

Handles exception—
somehow

Cleans up
resource

Creates connection

Creates session

Selects destination

Receives message

Handles any
JMSExceptions

Using JMS with Spring 395
} finally {
 try {
 if(session != null) { session.close(); }
 if(conn != null) { conn.close(); }
 } catch (JMSException ex) {}
}

Again, just as in listing 10.1, there’s a lot of code here to do something so simple.
If you take a line-by-line comparison, you’ll find that they’re almost identical. And
if you were to look at a thousand other JMS examples, you’d find them all to be
strikingly similar. Some may retrieve their connection factories from JNDI and
some may use a topic instead of a queue. Nevertheless, they all follow roughly the
same pattern.

 A consequence of all of this boilerplate code is that you’ll find that you repeat
yourself every time you work with JMS. Worse still, you’ll find yourself repeating
other developers’ JMS code.

 We’ve already seen in chapter 5 how Spring’s JdbcTemplate handles runaway
JDBC boilerplate. Now let’s look at how Spring’s JmsTemplate can do the same
thing for JMS boilerplate code.

10.2.2 Working with JMS templates

JmsTemplate is Spring’s answer to verbose and repetitive JMS code. JmsTemplate
takes care of creating a connection, obtaining a session, and the actual sending
and receiving of messages. This leaves you to focus your development efforts on
constructing the message to send or processing messages that are received.

 What’s more, JmsTemplate can handle any clumsy JMSException that may be
thrown along the way. If a JMSException is thrown in the course of working with
JmsTemplate, JmsTemplate will catch it and rethrow it as one of the unchecked
subclasses of JmsException in the first column of table 10.1.

Table 10.1 The subclasses of Spring’s JmsException compared to the subclasses
of JMSException.

Spring (org.springframework.jms.*) JMS (javax.jms.*)

support.destination.Destination
ResolutionException

Spring specific—Thrown when Spring can’t resolve a
destination name.

IllegalStateException IllegalStateException

InvalidClientIDException InvalidClientIDException

InvalidDestinationException InvalidDestinationException

Closes session
and connection

396 CHAPTER 10

Spring messaging
In fairness to the JMS API, JMSException does come with a rich and descriptive set
of subclasses that give you a better sense of what went wrong. Nevertheless, all of
these subclasses of JMSException are checked exceptions and thus must be
caught. JmsTemplate will attend to that for you.

InvalidSelectorExeption InvalidSelectorException

JmsSecurityException JMSSecurityException

listener.adapter.Listener
ExecutionFailedException

Spring specific—Thrown when execution of a listener
method fails.

support.converter.Message
ConversionException

Spring specific—Thrown when message conversion
fails.

MessageEOFException MessageEOFException

MessageFormatException MessageFormatException

MessageNotReadableException MessageNotReadableException

MessageNotWritableException MessageNotWritableException

ResourceAllocationException ResourceAllocationException

TransactionInProgressException TransactionInProgressException

TransactionRolledBackException TransactionRolledBackException

UncategorizedJmsException Spring specific—Thrown when no other exception
applies.

Table 10.1 The subclasses of Spring’s JmsException compared to the subclasses
of JMSException. (continued)

Spring (org.springframework.jms.*) JMS (javax.jms.*)

A tale of two JmsTemplates
Spring actually comes with two JMS template classes: JmsTemplate and
JmsTemplate102. JmsTemplate102 is a special version of JmsTemplate for
JMS 1.0.2 providers. In JMS 1.0.2, topics and queues are treated as complete-
ly different concepts known as domains. In JMS 1.1+, however, topics and
queues are unified under a domain-independent API. Because topics and
queues are treated so differently in JMS 1.0.2, there has to be a special
JmsTemplate102 for interacting with older JMS implementations. In this chap-
ter, we’re going to assume a modern JMS provider and therefore will focus our
attention on JmsTemplate.

Using JMS with Spring 397
Wiring JmsTemplate
To use JmsTemplate, we’ll need to declare it as a bean in the Spring configuration
file. The following XML should do the trick:

<bean id="jmsTemplate"
 class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="connectionFactory" />
</bean>

Because JmsTemplate needs to know how to get connections to the message bro-
ker, we had to set the connectionFactory property with a bean that implements
JMS’s ConnectionFactory interface. Here we’ve wired it with a reference to the
connectionFactory bean that we declared earlier in section 10.1.3.

 JmsTemplate has a few other properties that come in handy in certain circum-
stances. But we’ll defer discussion of those until we need them. For now, the
JmsTemplate we’ve configured is good enough to get started.

 That’s all you need to do to configure JmsTemplate—it is now ready to go.
Let’s send a message!

Sending messages
One of the benefits of signing up as a motorist in the RoadRantz application is
that you can opt in to be sent coupons and great deals on car washes, oil changes,
and other automotive products and services. Motorists who are interested in
third-party offers are tracked in a separate marketing system from the main
RoadRantz application. When a user registers as a RoadRantz motorist, if they
elect to receive third-party offers, their name and email address is sent to the
RoadRantz marketing system as a JMS message.

 On the RoadRantz side, we’re going to use JmsTemplate to send the motorist
information to the RoadRantz marketing system. Listing 10.3 shows RantzMar-
ketingGatewayImpl, which is the class through which RoadRantz will interact
with the marketing system.

package com.roadrantz.marketing;
import javax.jms.Destination;
import javax.jms.JMSException;
import javax.jms.MapMessage;
import javax.jms.Message;
import javax.jms.Session;
import org.springframework.jms.core.JmsTemplate;
import org.springframework.jms.core.MessageCreator;
import com.roadrantz.domain.Motorist;

Listing 10.3 Sending a motorist message using JmsTemplate

398 CHAPTER 10

Spring messaging
public class RantzMarketingGatewayImpl
 implements RantzMarketingGateway {
 public RantzMarketingGatewayImpl() {}

 public void sendMotoristInfo(final Motorist motorist) {
 jmsTemplate.send(
 destination,
 new MessageCreator() {
 public Message createMessage(Session session)
 throws JMSException {
 MapMessage message = session.createMapMessage();

 message.setString("lastName", motorist.getLastName());
 message.setString("firstName", motorist.getFirstName());
 message.setString("email", motorist.getEmail());

 return message;
 }
 });
 }

 private JmsTemplate jmsTemplate;
 public void setJmsTemplate(JmsTemplate jmsTemplate) {
 this.jmsTemplate = jmsTemplate;
 }

 private Destination destination;
 public void setDestination(Destination destination) {
 this.destination = destination;
 }
}

The sendMotoristInfo() method is the centerpiece of RantzMarketingGateway-
Impl. It does nothing more than use the JmsTemplate’s send() method to send
the message.

 The first parameter to the send() method is the name of the JMS Destination
that the message will be sent to. Here we’re using the destination property that
will be given to RantzMarketingGatewayImpl through setter injection. When the
send() method is called, JmsTemplate will deal with obtaining a JMS connection
and session and will send the message on behalf of the sender (see figure 10.5).

 As for the message itself, it is constructed using a MessageCreator, imple-
mented here as an anonymous inner class. In MessageCreator’s createMes-
sage() method, we simply assemble a JMS MapMessage and populate it with the
motorist’s name and email address. The createMessage() method is a callback
method that JmsTemplate will use to construct the message that will be sent.

 The JmsTemplate and the Destination are injected into RantzMarketing-
GatewayImpl using setter injection. Therefore, when we configure the RantzMar-

Sends message

Specifies destination

Creates
message

Injects
JmsTemplate

Injects
Destination

Using JMS with Spring 399
ketingGatewayImpl class in Spring, we must wire in references to the
jmsTemplate and rantzDestination beans:

<bean id="marketingGateway"
 class="com.roadrantz.marketing.RantzMarketingGatewayImpl">
 <property name="jmsTemplate" ref="jmsTemplate" />
 <property name="destination" ref="rantzDestination" />
</bean>

And that’s it! Notice that the sendMotoristInfo() method is focused entirely on
assembling and sending a message. There’s no connection or session manage-
ment code—JmsTemplate handles all of that for us. And there’s no need to catch
JMSExeption—JmsTemplate will catch any JMSException that is thrown and then
rethrow it as one of Spring’s unchecked exceptions from table 10.1.

Setting a default destination
In listing 10.3, we explicitly specified a specific Destination that the motorist
message would be sent to in the send() method. That form of the send()
method comes in handy when we want to programmatically choose a destination.
But in the case of RantzMarketingGatewayImpl, we will always be sending the
motorist messages to the same destination, so the benefits of that form of send()
aren’t as clear.

 Instead of explicitly specifying a destination each time we send a message, we
could opt for wiring a default destination into JmsTemplate:

<bean id="jmsTemplate"
 class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="defaultDestination" ref="rantzDestination" />
</bean>

Now the call to JmsTemplate’s send() method can be simplified slightly by remov-
ing the first parameter:

jmsTemplate.send(
 new MessageCreator() {
…
 });

Sender
send()

Queue/Topic

Figure 10.5 JmsTemplate deals with the complexities of sending a message
on behalf of the sender.

400 CHAPTER 10

Spring messaging
This form of the send() method only takes a MessageCreator. With no destina-
tion specified, JmsTemplate will assume that you want the message sent to the
default destination. Since JmsTemplate will always assume the correct destination,
we no longer need to inject a destination into RantzMarketingGatewayImpl. Its
declaration can be simplified to this:

<bean id="marketingGateway"
 class="com.roadrantz.marketing.RantzMarketingGatewayImpl">
 <property name="jmsTemplate" ref="jmsTemplate" />
</bean>

Because we’re no longer injecting the destination into RantzMarketingGateway-
Impl, the destination property and its setter method can also be removed.

Consuming messages
Now you’ve seen how to send a message using JmsTemplate. But what if you’re on
the receiving end? Can JmsTemplate be used to receive messages?

 Yes, it can. In fact, it’s even easier to receive a message with JmsTemplate. All
you need to do is call JmsTemplate’s receive() method, as shown in listing 10.4.

package com.roadrantz.marketing;
import javax.jms.JMSException;
import javax.jms.MapMessage;
import org.springframework.jms.core.JmsTemplate;
import org.springframework.jms.support.JmsUtils;

public class MarketingReceiverGatewayImpl {
 public MarketingReceiverGatewayImpl() {}

 public SpammedMotorist receiveSpammedMotorist() {
 MapMessage message = (MapMessage) jmsTemplate.receive();

 SpammedMotorist motorist = new SpammedMotorist();
 try {
 motorist.setFirstName(message.getString("firstName"));
 motorist.setLastName(message.getString("lastName"));
 motorist.setEmail(message.getString("email"));

 } catch (JMSException e) {
 throw JmsUtils.convertJmsAccessException(e);
 }
 return motorist;
 }

 //injected
 private JmsTemplate jmsTemplate;
 public void setJmsTemplate(JmsTemplate jmsTemplate) {

Listing 10.4 Receiving a message using JmsTemplate

Receives
message

Creates
object from
message

Converts any
JMSException

Using JMS with Spring 401
 this.jmsTemplate = jmsTemplate;
 }
}

When the receive() method is called, JmsTemplate will once again piece
together all of the parts needed to interact with the message broker—the JMS
connection, session, and message consumer. Then it will call the receive()
method on the message consumer on behalf of the receiving application, as illus-
trated in figure 10.6.

 JmsTemplate’s receive() method is synchronous. By default, a call to
receive() will block until a message appears on the destination—waiting forever,
if necessary. To avoid an eternal wait for messages, you can specify a receive time-
out by setting the receiveTimeout property when configuring the JmsTemplate.
The following configuration configures JmsTemplate to time out on receives after
one minute (60,000 milliseconds):

<bean id="jmsTemplate"
 class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="defaultDestination" ref="rantzDestination" />
 <property name="receiveTimeout" value="60000" />
</bean>

As used in listing 10.4, the receive() method receives a message from the default
destination. If you’d prefer to specify a destination, you can do so by passing in
the destination:

MapMessage message =
 (MapMessage) jmsTemplate.receive(destination);

Alternatively, you can specify a destination by name and let Spring’s destination
resolver automatically resolve the destination:

MapMessage message =
 (MapMessage) jmsTemplate.receive("rantz.marketing.queue");

Queue/Topic
receive()

Receiver

Figure 10.6 Receiving messages with JmsTemplate is as simple as calling
the receive() method. JmsTemplate takes care of the rest.

402 CHAPTER 10

Spring messaging
Synchronous receipt of messages is not the only option offered by Spring. We’ll
look at how Spring supports asynchronous receiving in section 10.3. But first, let’s
explore JmsTemplate a bit more by looking at how it can be configured to auto-
matically convert messages to and from Java objects.

10.2.3 Converting messages

In listing 10.3, the message that is sent is constructed by the anonymous Mes-
sageCreator instance in its createMessage() method. The message is con-
structed by taking the properties of the Motorist object and placing them in a
MapMessage object. Meanwhile, on the receiving end, MarketingReceiverGate-
wayImpl’s receiveSpammedMotorist() method pulls values out of the received
message to populate a SpammedMotorist object.

 For our simple example, it’s not that big of a deal to place the message conver-
sion code directly alongside the code that sends and receives the message. But if
you find yourself sending and/or receiving the same message at multiple points in
your application, you may want to avoid unnecessary duplication of the mapping
code by consolidating it into a message converter.

 Although it wouldn’t be hard to extract the message conversion code into a
utility class of your own design, you’d still need to explicitly invoke the utility class
to do the conversion. Fortunately, Spring supports message conversion through
its MessageConverter interface:

public interface MessageConverter {
 public Message toMessage(Object object, Session session);
 public Object fromMessage(Message message);
}

The MessageConverter interface is very straightforward. It has only two methods
that must be implemented. For sending messages, the toMessage() method con-
verts an object to a Message. On the receiving end, the fromMessage() method
converts an incoming Message into an Object.

 Because MessageConverter is an interface, we’ll need to provide an imple-
mentation for our application. Listing 10.5 shows MotoristMessageConverter, an
implementation of MessageConverter that transforms Motorist objects into mes-
sages and messages into SpammedMotorist objects.

Using JMS with Spring 403

package com.roadrantz.marketing;
import javax.jms.JMSException;
import javax.jms.MapMessage;
import javax.jms.Message;
import javax.jms.Session;
import org.springframework.jms.support.converter.
 ➥ MessageConversionException;
import org.springframework.jms.support.converter.MessageConverter;
import com.roadrantz.domain.Motorist;
import com.roadrantz.marketing.SpammedMotorist;

public class MotoristMessageConverter implements MessageConverter {
 public MotoristMessageConverter() {}

 public Object fromMessage(Message message)
 throws JMSException, MessageConversionException {

 if(!(message instanceof MapMessage)) {
 throw new MessageConversionException(
 "Message isn't a MapMessage");
 }

 MapMessage mapMessage = (MapMessage) message;
 SpammedMotorist motorist = new SpammedMotorist();

 motorist.setFirstName(mapMessage.getString("firstName"));
 motorist.setLastName(mapMessage.getString("lastName"));
 motorist.setEmail(mapMessage.getString("email"));

 return motorist;
 }

 public Message toMessage(Object object, Session session)
 throws JMSException, MessageConversionException {

 if(!(object instanceof Motorist)) {
 throw new MessageConversionException("Object isn't
 ➥ a Motorist");
 }

 Motorist motorist = (Motorist) object;
 MapMessage message = session.createMapMessage();
 message.setString("firstName", motorist.getFirstName());
 message.setString("lastName", motorist.getLastName());
 message.setString("email", motorist.getEmail());

 return message;
 }
}

Listing 10.5 A message converter that converts a Motorist to a message and a
message to a SpammedMotorist

Converts message
to SpammedMotorist

Converts
Motorist

to message

404 CHAPTER 10

Spring messaging
When the RoadRantz application needs to send a Motorist to the marketing sys-
tem, the toMessage() method will be used to convert the Motorist object into a
MapMessage object. In the marketing system, the fromMessage() method will con-
vert the received message into a SpammedMotorist object that the marketing sys-
tem will use to send special offers to the user.

 So now when we send and receive messages, all we’ll need to do is call the
toMessage() and fromMessage() methods on the converter object, right? Well…
not exactly.

Sending and receiving converted messages
While we could call the toMessage() method before sending a message and
fromMessage() upon receipt of a message, Spring offers a better way.

 Instead of explicitly calling the toMessage() method before sending a mes-
sage, we can simply call the convertAndSend() method of JmsTemplate. That way,
the sendMotoristInfo() method in RantzMarketingGatewayImpl becomes sig-
nificantly simpler:

public void sendMotoristInfo(final Motorist motorist) {
 jmsTemplate.convertAndSend(motorist);
}

JmsTemplate’s convertAndSend() method automatically calls the toMessage()
method before sending the message to the destination. As used here, the message
will be sent to the JmsTemplate’s default destination (assuming one has been
specified). But we could also select a specific destination when calling con-
vertAndSend():

jmsTemplate.convertAndSend(destination, motorist);

Optionally, we can specify the destination by name:

jmsTemplate.convertAndSend("rantz.marketing.queue", motorist);

On the receiving end, we won’t need to call fromMessage() to convert the mes-
sage returned from JmsTemplate’s receive(). Instead, we’ll replace the call to
receive() with a call to receiveAndConvert():

public SpammedMotorist receiveSpammedMotorist() {
 return (SpammedMotorist) jmsTemplate.receiveAndConvert();
}

Again, unless otherwise specified, receiveAndConvert() receives messages from
the default destination. But we can also choose a destination by passing it as a
parameter to receiveAndConvert():

return (SpammedMotorist) jmsTemplate.receiveAndConvert(destination);

Using JMS with Spring 405
or, using the destination’s name:

return (SpammedMotorist)
 jmsTemplate.receiveAndConvert("rantz.marketing.queue");

There’s but one small detail that we’ve left out. If JmsTemplate’s convertAnd-
Send() and receiveAndConvert() methods use the message converter to convert
the messages then how does JmsTemplate know about the message converter?

Wiring a message converter
For the message converter to work, we’ll need to configure it as a <bean> in
Spring. The following XML will handle that:

<bean id="motoristConverter"
 class="com.roadrantz.marketing.MotoristMessageConverter" /

Finally, the JmsTemplate needs to know about the message converter. To accom-
modate that, we’ll wire the motoristConverter bean into JmsTemplate’s mes-
sageConverter property:

<bean id="jmsTemplate"
 class="org.springframework.jms.core.JmsTemplate">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="defaultDestination" ref="rantzDestination" />
 <property name="messageConverter" ref="motoristConverter" />
</bean>

You’ve already seen many parallels between how JdbcTemplate and JmsTemplate
work. But there’s still one more parallel that you may be interested in. Let’s look
at how Spring provides support for building JMS gateways through its JmsGate-
waySupport class.

10.2.4 Using Spring’s gateway support classes for JMS

You may remember from chapter 5 that Spring makes working with JdbcTemplate
a little easier by providing JdbcDaoSupport, a base class for writing JDBC-based
DAOs. Similarly, Spring comes with JmsGatewaySupport, a base class for JMS gate-
way classes.

 Thus far, we have explicitly created jmsTemplate and destination properties
in RantzMarketingGatewayImpl to hold the JmsTemplate and Destination.
Although this didn’t add a lot of extra code, just imagine how many times those
properties (and their setter methods) would be duplicated in an application that
has several JMS gateways. To clean things up a bit, we could have written Rantz-
MarketingGatewayImpl to subclass JmsGatewaySupport instead, as shown in list-
ing 10.6.

406 CHAPTER 10

Spring messaging

package com.roadrantz.marketing;
// imports omitted

public class RantzMarketingGatewayImpl
 extends JmsGatewaySupport
 implements RantzMarketingGateway {
 public RantzMarketingGatewayImpl() {}

 public void sendMotoristInfo(final Motorist motorist) {
 getJmsTemplate().send(
 "rantz.marketing.queue",
 new MessageCreator() {
 public Message createMessage(Session session)
 throws JMSException {
 MapMessage message = session.createMapMessage();

 message.setString("lastName", motorist.getLastName());
 message.setString("firstName", motorist.getFirstName());
 message.setString("email", motorist.getEmail());

 return message;
 }
 });
 }
}

Notice that the jmsTemplate property and the setJmsTemplate() method are
gone. Instead of using an injected jmsTemplate property as before, this version of
RantzMarketingGatewayImpl makes a call to getJmsTemplate() to receive the
JmsTemplate that’s managed by JmsGatewaySupport. Therefore, jmsTemplate
and its setter method are no longer needed.1

 Where does JmsGatewaySupport get its JmsTemplate? It depends. You can
inject a JmsTemplate directly into the jmsTemplate property, as we did with the
original RantzMarketingGatewayImpl. Or, you can short-circuit the need for a
JmsTemplate bean altogether by wiring the connection factory into the connec-
tionFactory property:

<bean id="marketingGateway"
 class="com.roadrantz.marketing.RantzMarketingGatewayImpl">
 <property name="connectionFactory" ref="connectionFactory" />
</bean>

Listing 10.6 A new version of RantzMarketingGatewayImpl rewritten to use
JmsGatewaySupport

1 As a matter of fact, the setJmsTemplate() method is final in JmsGatewaySupport. As a result it can’t
appear in any class that extends JmsGatewaySupport.

Sends message
to queue

Sets message
properties

Creating message-driven POJOs 407
When configured this way, JmsGatewaySupport will automatically create a
JmsTemplate object based on the injected connection factory. You no longer need
to declare a JmsTemplate bean in Spring.

 Before you get too excited about wiring a connection factory directly into the
gateway class, you should be aware that there are a couple of shortcomings to this
approach:

■ You can only specify a default destination on a JmsTemplate. If JmsGateway-
Support creates its own JmsTemplate, you won’t get a chance to specify a
default destination. You’ll need to always explicitly choose a destination
when calling send() or receive().

■ You can only wire a message converter into a JmsTemplate. If JmsGateway-
Support creates its own JmsTemplate, you won’t be able to use a message
converter. You’ll need to explicitly handle message conversion in your gate-
way code.

You’ve already seen how to receive messages using JmsTemplate. But as you saw,
the receive() method blocks until a message is available. Coming up next, let’s
have a look at a new feature in Spring 2.0 that makes it possible to asynchronously
receive messages.

10.3 Creating message-driven POJOs

During one summer in college, I had the great privilege of working in Yellow-
stone National Park. The job wasn’t one of the high-profile jobs like park ranger
or the guy who turns Old Faithful on and off.2 Instead, I held a position in house-
keeping at Old Faithful Inn, changing sheets, cleaning bathrooms, and vacuum-
ing floors. Not glamorous, but at least I was working in one of the most beautiful
places on earth.

 Every day after work, I would head over to the local post office to see if I had
any mail. I was away from home for several weeks, so it was nice to receive a letter
or card from my friends back at school. I didn’t have my own post box, so I’d walk
up and ask the man sitting on the stool behind the counter if I had received any
mail. That’s when the wait would begin.

2 Before I get emails, I’m quite aware that Old Faithful doesn’t have a cut-off valve. Old Faithful is a gey-
ser, a natural phenomenon where incredibly hot water shoots out of the ground periodically—without
being turned on or off. The valve comment was a joke.

408 CHAPTER 10

Spring messaging
 You see, the man behind the counter was approximately 195 years old. And
like most people that age he had a difficult time getting around. He’d drag his
keister off the stool, slowly scoot his feet across the floor, and then disappear
behind a partition. After a few moments, he’d emerge, shuffle his way back to the
counter, and lift himself back up onto the stool. Then he would look at me and
say, “No mail today.”

 JmsTemplate’s receive() method is a lot like that aged postal employee.
When you call receive(), it goes away and looks for a message in the queue or
topic and doesn’t return until a message arrives or until the timeout has passed.
Meanwhile, your application is sitting there doing nothing, waiting to see if
there’s a message. Wouldn’t it be better if your application could go about its busi-
ness and be notified when a message arrives?

 One of the highlights of the EJB 2 specification was the inclusion of the mes-
sage-driven bean (MDB). MDBs are EJBs that process messages asynchronously. In
other words, MDBs react to messages in a JMS destination as events and respond to
those events. This is in contrast to synchronous message receivers that block until
a message is available.

 MDBs were a bright spot in the EJB landscape. Even many of the most rabid
detractors of EJB would concede that MDBs were an elegant way of handling mes-
sages. The only blemish to be found in EJB 2 MDBs was that they had to imple-
ment javax.ejb.MessageDrivenBean. In doing so, they also had to implement a
few EJB lifecycle callback methods. Put simply, EJB 2 MDBs were very un-POJO.

 With the EJB 3 specification, MDBs were cleaned up to have a slightly more
POJO feel to them. No longer must you implement the MessageDrivenBean inter-
face. Instead, you implement the more generic javax.jms.MessageListener
interface and annotate MDBs with @MessageDriven.

 Spring 2.0 addresses the need for asynchronous consumption of messages by
providing its own form of message-driven bean that is quite similar to EJB 3’s
MDBs. In this section, you’ll learn how Spring supports asynchronous message
consumption using message-driven POJOs (we’ll call them MDPs, for short).

10.3.1 Creating a message listener

For a moment, try to imagine a simpler world where the MarketingMdp doesn’t
have to implement the MessageDrivenBean interface. In such a happy place, the
sky would be the brightest of blues, the birds would always whistle your favorite
song, and you wouldn’t have to implement the setMessageDrivenContext()
method or the empty ejbRemove() method—all demands placed on an MDB

Creating message-driven POJOs 409
developer by the EJB 2 MDB programming model. In such a world, the Market-
ingMdp class might look a little like listing 10.7.

package com.roadrantz.marketing;
import javax.jms.JMSException;
import javax.jms.MapMessage;
import javax.jms.Message;
import javax.jms.MessageListener;

public class MarketingMdp implements MessageListener {
 public void onMessage(Message message) {
 MapMessage mapMessage = (MapMessage) message;
 try {
 SpammedMotorist motorist = new SpammedMotorist();
 motorist.setFirstName(mapMessage.getString("firstName"));
 motorist.setLastName(mapMessage.getString("lastName"));
 motorist.setEmail(mapMessage.getString("email"));

 processMotoristInfo(motorist);
 } catch (JMSException e) {
 // handle—somehow
 }
 }

 private void processMotoristInfo(SpammedMotorist motorist) {
 …
 }
}

Although the color of the sky and training birds to sing are a bit out of scope for
Spring, the dream world I just described is much closer to reality with the release
of Spring 2.0. In fact, the MarketingMdp class in listing 10.7 is exactly how a Spring
2.0 message-driven POJO3 would be written to process motorist information mes-
sages in the RoadRantz marketing engine.

 By itself, MarketingMdp doesn’t do much. It has an onMessage() method ready
to process messages, but until we configure it in Spring, it’s just dead weight. So
let’s go ahead and configure MarketingMdp as a <bean> in the Spring application
context:

Listing 10.7 Simplifying the message-driven paradigm

3 Okay, okay… I know… it’s still not a POJO because it implements the MessageListener interface. Nev-
ertheless, many in the Spring community are satisfied to call this a message-driven POJO despite the
dependence on MessageListener. If you’re still not convinced then hang on… we’ll look at pure-
POJO MDPs in section 10.2.3.

Reacts to
message

Converts message to
SpammedMotorist

410 CHAPTER 10

Spring messaging
<bean id="rantzMdp"
 class="com.roadrantz.marketing.MarketingMdp" />

So far, this is nothing special. The most striking thing about listing 10.7 is that it
looks very much like what an equivalent EJB 3 MDB might look like. The only real
difference is that an EJB 3 MDB would also be annotated with @MessageDriven to
indicate to the container that it is an MDB. In Spring, however, we’ll indicate that
this is an MDP by wiring it into a message listener container.

Containing message listeners
A message listener container is a special bean that watches a JMS destination, wait-
ing for a message to arrive. Once a message arrives, it retrieves the message and
then passes it on to a MessageListener implementation by calling the onMes-
sage() method. Figure 10.7 illustrates this interaction.

Because our MarketingMdp class implements the MessageListener interface, it
seems that a message listener container is in order. Table 10.2 lists the message lis-
tener containers offered by Spring.

Table 10.2 Spring’s message listener containers.

Container class
(org.springframework.jms.listener.*)

What it does

SimpleMessageListenerContainer This is the simplest message listener container.
It works with a fixed number of JMS sessions
and does not support transactions.

DefaultMessageListenerContainer This message listener container builds upon
SimpleMessageListenerContainer by
adding support for transactions.

serversession.ServerSessionMessage
ListenerContainer

This is the most powerful of the message lis-
tener containers. Like
DefaultMessageListenerContainer, it
supports transactions. However it is unique in
that it allows for dynamic management of JMS
sessions.

Message
Listener
(MDP)

Figure 10.7 MessageListenerContainer listens to a queue/topic. When a
message arrives, it is forwarded to a MessageListener.

Creating message-driven POJOs 411
As its name implies, SimpleMessageListenerContainer is the simplest of the mes-
sage listener containers. It can be configured in Spring as follows:

<bean class="org.springframework.jms.listener.
 ➥ SimpleMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="destination" ref="rantzDestination" />
 <property name="messageListener" ref="rantzMdp" />
</bean>

The connectionFactory and destination properties are wired with the same
connectionFactory and destination properties that we wired into JmsTemplate
in section 10.2. As for the messageListener property, we’ve wired it with a refer-
ence to our MDP implementation so that the onMessage() method will be invoked
upon receipt of a message.

Working with transactional MDPs
SimpleMessageListenerContainer is great for basic messaging needs. But if you
need messages to be received in a transaction, you’ll want to look at DefaultMes-
sageListenerContainer instead.

 DefaultMessageListenerContainer is configured similarly to SimpleMes-
sageListenerContainer, as you can see here:

<bean class="org.springframework.jms.listener.
 ➥ DefaultMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="destination" ref="rantzDestination" />
 <property name="messageListener" ref="rantzMdp" />
 <property name="transactionManager" ref="jmsTransactionManager" />
</bean>

The only difference here is that DefaultMessageListenerContainer’s transac-
tionManager property is wired with a reference to a transaction manager. If you
need the MDP to participate in transactions along with other transactional ele-
ments (a data access object, for example), you’ll want to wire a JtaTransaction-
Manager into the transactionManager property. Review section 6.2.5 in chapter 6
for details on how to configure a JtaTransactionManager.

 If your transactional needs are simpler, a JmsTransactionManager will do:

<bean id="jmsTransactionManager"
 class="org.springframework.jms.connection.
 ➥ JmsTransactionManager">
 <property name="connectionFactory" ref="connectionFactory" />
</bean>

412 CHAPTER 10

Spring messaging
It’s worth mentioning that the transactionManager property of DefaultMes-
sageListenerContainer is optional. If you don’t inject a transaction manager
into it, the MDP will not be transactional. Leaving out the transaction manager
will effectively degrade DefaultMessageListenerContainer to be equivalent to
SimpleMessageListenerContainer.

 At this point you may be thinking that we’re trying to pull a fast one on you.
We keep referring to MarketingMdp as a message-driven POJO. But there’s nothing
very POJO about a class that is required to implement a MessageListener inter-
face. It’s certainly simpler than the EJB 2 MDB, but it’s still not quite a POJO. If this
discrepancy is keeping you up at night then read on as I show you how to create a
MDP that is truly a POJO.

10.3.2 Writing pure-POJO MDPs

In MarketingMdp, the onMessage() method is really just plumbing code. It’s only
there to receive and translate the message. What’s more, it’s the onMessage()
method and its defining MessageListener interface that keep MarketingMdp
from truly being a POJO.

 The real work occurs in the processMotoristInfo() method. If there were
only some way we could bypass the onMessage() method and go straight to
the processMotoristInfo() method, MarketingMdp would be much simpler.
And, more importantly, MarketingMdp would be a honest-to-goodness message-
driven POJO.

 But the MessageListener interface and its onMessage() method serve a very
important purpose. If the message listener container can count on its message-
Listener property being wired with an implementation of MessageListener then
it knows that it only needs to call the onMessage() method when a message arrives.

 Fortunately, Spring offers an alternative in MessageListenerAdapter. Mes-
sageListenerAdapter is a MessageListener that delegates to a bean and method
of your choosing, as shown in figure 10.8.

 Instead of wiring your own implementation of MessageListener into the mes-
sage listener container, you can wire in a MessageListenerAdapter:

<bean class="org.springframework.jms.listener.
 ➥ SimpleMessageListenerContainer">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="destination" ref="rantzDestination" />
 <property name="messageListener" ref="purePojoMdp" />
</bean>

Creating message-driven POJOs 413
Here we’ve wired a reference to the purePojoMdp bean into the messageListener
property. Otherwise, this message listener container is configured like any other
message listener container. As for the purePojoMdp bean, it’s a MessageListener-
Adapter:

<bean id="purePojoMdp"
 class="org.springframework.jms.listener.adapter.
 ➥ MessageListenerAdapter">
 <property name="delegate" ref="rantzMdp" />
 <property name="defaultListenerMethod"
 value="processMotoristInfo" />
</bean>

As you can see, we’ve configured the MessageListenerAdapter to call the pro-
cessMotoristInfo() method on the rantzMdp bean when a message arrives on
the destination. By default, MessageListenerAdapter calls a handleMessage()
method when a message arrives. But we want our MarketingMdp bean to handle
messages through its processMotoristInfo() method, so we’ve set defaultLis-
tenerMethod to processMotoristInfo.

 Because we have chosen a specific method to be invoked, there’s no need to
implement MessageListener or the onMessage() method. As a result, Market-
ingMdp can now be simplified to look like listing 10.8.

package com.roadrantz.marketing;
import javax.jms.JMSException;
import javax.jms.MapMessage;

public class MarketingMdp {
 public MarketingMdp () {}

 public void processMotoristInfo(MapMessage message) {

Listing 10.8 A near-POJO implementation of MarketingMdp.java

handleMessage()

POJO

Figure 10.8 A MessageListenerAdapter plays the role of
MessageListener. When it receives a message, it invokes a method on a POJO.

Specifies
message arrives
as Map

414 CHAPTER 10

Spring messaging
 try {
 SpammedMotorist motorist = new SpammedMotorist();
 motorist.setFirstName(message.getString("firstName"));
 motorist.setLastName(message.getString("lastName"));
 motorist.setEmail(message.getString("email"));
 …
 } catch (JMSException e) {
 // handle this-somehow
 }
 }
}

This version of MarketingMdp is somewhat simpler than before. There’s no longer
an onMessage() method and MarketingMdp no longer needs to implement a Mes-
sageListener interface. When a message arrives in the destination, the process-
MotoristInfo() method will be called. Because the message is a MapMessage, the
processMotoristInfo() method translated it into a SpammedMotorist object,
which is then processed.

 One thing about MarketingMdp that still feels wrong is that the processMotor-
istInfo() method is still called with a JMS-specific MapMessage. Although it’s a
POJO, the dependency on MapMessage unnecessarily couples MarketingMdp with
JMS. What’s more, MapMessage’s getString() method throws a JMSException
that must be dealt with somehow. Ideally, MarketingMdp wouldn’t depend on any
framework-specific types.

 When MessageListenerAdapter receives a message, it considers the message
type and the value of the defaultListenerMethod and tries to find an appropri-
ate listener method signature to invoke. Table 10.3 describes how MessageLis-
tenerAdapter maps a JMS message to listener method parameters.

Table 10.3 How JMS messages are mapped to MDP message parameters.

Message type Method parameter

TextMessage String or TextMessage

MapMessage java.util.Map or MapMessage

BytesMessage byte[] or BytesMessage

ObjectMessage java.io.Serializable or ObjectMessage

Processes
motorist info

How to contend
with this
exception?

Creating message-driven POJOs 415
Something to notice about table 10.3 is that the listener method can be written to
take either the original JMS message or a simpler type. For example, the process-
MotoristInfo() method could be made even simpler by using a java.util.Map:

public void processMotoristInfo(Map map) {
 SpammedMotorist motorist = new SpammedMotorist();
 motorist.setFirstName((String) map.get("firstName"));
 motorist.setLastName((String) map.get("lastName"));
 motorist.setEmail((String) map.get("email"));
 …
}

Now MarketingMdp is truly a POJO. It no longer has any dependency on any JMS
type. And since the message arrives as a simple java.util.Map, there’s no need to
catch JMSException when retrieving the messages’ values. This is a lot better, but
something still doesn’t feel right.

Converting MDP messages
In the original MarketingMdp class, the processMotoristInfo() method took a
SpammedMotorist object as a parameter. But in the latest version, it takes a Map,
which it translates into a SpammedMotorist before processing. This means that the
first few lines of processMotoristInfo() still include some plumbing code to do
the translation into SpammedMotorist. Wouldn’t it be great if processMotor-
istInfo() would be given a SpammedMotorist object, ready for processing, when
a message arrives?

 As you’ll recall from earlier in this chapter (see section 10.2.3), Spring mes-
sage converters can be used to translate messages to and from domain-specific
Java types. And from listing 10.5, we already have a message converter that con-
verts a MapMessage into a SpammedMotorist object. All we need to do is tell Mes-
sageListenerAdapter about the message converter. As it turns out,
MessageListenerAdapter has a messageConverter property for that purpose:

<bean id="purePojoMdp"
 class="org.springframework.jms.listener.adapter.
 ➥ MessageListenerAdapter">
 <property name="delegate" ref="rantzMdp" />
 <property name="defaultListenerMethod"
 value="processMotoristInfo" />
 <property name="messageConverter" ref="motoristConverter" />
</bean>

416 CHAPTER 10

Spring messaging
We’ve wired the messageConverter property with a reference to the motorist-
Converter bean (which is configured as a MotoristMessageConverter from list-
ing 10.5). Now we can write the ultimate version of MarketingMdp, as shown in
listing 10.9.

package com.roadrantz.marketing;

public class MarketingMdp {
 public MarketingMdp() {}

 public void processMotoristInfo (SpammedMotorist motorist) {
 …
 }
}

Wow! MarketingMdp has come a long way from the original MessageListener ver-
sion in listing 10.7. MarketingMdp started as a class purposed for processing JMS
messages, but the final version has no hint of JMS. In fact, MarketingMdp doesn’t
even have to be used as an MDP. Because it’s just a POJO, its processMotor-
istInfo() method could be called directly without a message broker involved.
Keep this fact in mind, because we’re not quite done with MarketingMdp. Soon
you’ll learn how we can export this same POJO as a remote service.

 Now you’ve seen how Spring supports messaging through JMS abstraction.
We’ve both sent and received messages without having to succumb to the com-
plexities of the JMS API or resorting to using EJB MDBs. But there’s still one more
way to use messaging in Spring that may appeal to you if you’re more comfortable
with the RPC model. Before we leave the topic of messaging behind, let’s look at
how to make remote procedure calls using asynchronous messaging as a transport.

10.4 Using message-based RPC

In chapter 8, we explored several of Spring’s options for making remote proce-
dure calls on remote objects. Those were all fantastic options for communication
between applications. But all of those options were synchronous. That is, the cli-
ent would invoke a method on the server object and then wait for the server to
respond. Moreover, if the server process weren’t available, the request would
immediately end with an exception being thrown.

 As you’ve seen in this chapter, there are benefits to asynchronous communica-
tion through messaging. With asynchronous messaging, the message sender

Listing 10.9 MarketingMdp, now a pure POJO (with no hint of JMS)

Using message-based RPC 417
doesn’t have to wait for the receiver to finish processing the message before mov-
ing on. This has a positive impact on the performance of the “client” application.
Also, message delivery is guaranteed—even if the receiver isn’t available when the
message is sent.

 But there’s also something appealing about the RPC model. The RPC program-
ming model makes interacting with remote services as straightforward as invoking
local object methods. If there were only some way to have the simplicity of the
RPC programming model with the benefits of asynchronous messaging…

10.4.1 Introducing Lingo

Lingo is a Spring-based remoting option that bridges the gap between RPC and
asynchronous messaging. As with other Spring remoting options, Lingo provides
a service exporter to export bean functionality as a Lingo service and a client-
side proxy to transparently wire a reference to a remote Lingo service on the
calling side.

 What makes Lingo different from the other remoting options we looked at in
chapter 8 is in how it communicates. In all of Spring’s other remoting options, the
client communicates directly with the service via sockets. Consequently, the ser-
vice must be available when the client makes a call or else the call will fail.

 Lingo remoting, however, carries information over a JMS queue or topic. As
such, if the service is unavailable when a call is made, the call will be held in the
queue/topic until the service is available again. Also, if the client call is one-way
(that is, there is no return value), the client call can immediately return without
having to wait for the service to process the call.

 Although Lingo is based on Spring remoting, it is not part of the Spring
Framework. You can download Lingo from the Lingo homepage at http://
lingo.codehaus.org/Download. Be sure to get the latest version. We’re building
our examples against version 1.3.

 Alternatively, if you’re using Maven 2 to build your project, you can add Lingo
as a dependency in pom.xml with the following:

<dependency>
 <groupId>org.logicblaze.lingo</groupId>
 <artifactId>lingo</artifactId>
 <version>1.3</version>
 <scope>compile</scope>
</dependency>

Maven will take care of ensuring that Lingo is in the build and runtime classpath
for you.

418 CHAPTER 10

Spring messaging
 Now that you have a basic idea of what Lingo does, let’s revisit the RoadRantz
marketing system. This time we’ll build the interaction between the main
RoadRantz application and the marketing engine using Lingo for communication.

10.4.2 Exporting the service

When we last visited MarketingMdp in listing 10.9, it was a pure POJO. Sure, we
were wiring it into a MessageListenerAdapter so that it could be used as a mes-
sage-driven POJO. But there is nothing about the class in listing 10.9 that makes it
message-driven. It’s just a POJO and we can do any POJO kind of thing we want to
with it.

 As a POJO, it is suitable for export as a remote service using any of Spring’s
remote service exporters we discussed in chapter 8. However, instead of rehashing
those conventional RPC exporters again, this time we’re going to export Market-
ingMdp as a Lingo service.

 On the service side, Lingo provides JmsServiceExporter, a service exporter
not entirely unlike those in chapter 8. Instead of exporting a service that is avail-
able for direct RPC access, however, Lingo-exported services are made available
through JMS, as shown in figure 10.9.

 The following XML configures a JmsServiceExporter that exports the rantz-
Mdp bean (which is a MarketingMdp) as an RPC-over-JMS service:

Service Interface

Service Bean JmsServiceExporter
has a

Handle marshaling
and unmarshaling of
remote method calls

Queue/Topic

Figure 10.9 JmsServiceExporter exports a POJO as an RPC service that receives
messages from a JMS destination.

Using message-based RPC 419
<bean id="server"
 class="org.logicblaze.lingo.jms.JmsServiceExporter">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="destination" ref="destination" />
 <property name="service" ref="rantzMdp" />
 <property name="serviceInterface"
 value="com.roadrantz.marketing.MarketingService" />
</bean>

The first two properties wired in JmsServiceExporter are our old friends, the
connectionFactory and destination properties. Unlike conventional RPC ser-
vices, which typically use TCP/IP as the transport, a Lingo-exported service is avail-
able through a JMS destination (either a topic or a queue). Therefore, instead of
configuring JmsServiceExporter with a URL or a port number, we will need to
configure JmsServiceExporter with a JMS connection factory and a destination
so that it will know where to export the service.

 The service property is wired with a reference to the rantzMdp bean, which is
our MarketingMdp. Finally, the serviceInterface property is configured with the
class name of an interface that defines the exported service. We’re declaring that
our service will be exported with the MarketingService interface, which is
defined here:

package com.roadrantz.marketing;
public interface MarketingService {
 void processMotoristInfo(SpammedMotorist motorist);
}

Because we defined the service with the MarketingService interface, this means
that we’ll need to make one small tweak to the MarketingMdp class. We’ll need to
change it to implement the MarketingService interface:

package com.roadrantz.marketing;

public class MarketingMdp implements MarketingService {
 public MarketingMdp () {}

 public void processMotoristInfo(SpammedMotorist motorist) {
 …
 }
}

That’s all there is to exporting a service using Lingo. Once the application is
started, the JmsServiceExporter will kick in and we’ll be ready to start using it.
Now let’s look at the client side to see how the RoadRantz application will make
calls to the exported marketing service.

420 CHAPTER 10

Spring messaging
10.4.3 Proxying JMS

In the RoadRantz application, we’re going to need to call the processMotor-
istInfo() method every time a user registers and elects to receive special offers
from RoadRantz. Therefore, we’ll have to wire a reference to the Lingo-exported
service into the RoadRantz application somehow.

Wiring JmsProxyFactoryBean
Lingo provides JmsProxyFactoryBean, a proxy factory bean that produces proxies
to remote Lingo-exported services. Conceptually, this is no different than the
proxy factory beans we looked at in chapter 8. As you can see in figure 10.10, how-
ever, the service proxied by JmsProxyFactoryBean is available through a JMS desti-
nation (either a queue or a topic) instead of through TCP/IP.

 The following <bean> declaration configures a JmsProxyFactoryBean that
makes the marketing service exported in section 10.4.2 available on the client
side:

<bean id="marketing"
 class="org.logicblaze.lingo.jms.JmsProxyFactoryBean">
 <property name="connectionFactory" ref="connectionFactory" />
 <property name="destination" ref="destination" />
 <property name="serviceInterface"
 value="com.roadrantz.marketing.MarketingService" />
</bean>

Service Interface

JmsProxyFactoryBean Service

Client

has a

Handles marshaling
and unmarshaling of
remote method calls

Queue/Topic

Figure 10.10 JmsProxyFactoryBean proxies a remote service that is listening
on a JMS destination.

Using message-based RPC 421
You’ve already been introduced to the connectionFactory and destination
properties—they serve the same purpose here as they have throughout this chap-
ter. And the serviceInterface property specifies the Java interface that the
proxy will implement. It is through this interface that RoadRantz will invoke the
processMotoristInfo() method.

 The most significant thing to notice about how JmsProxyFactoryBean is con-
figured is the conspicuous absence of anything telling where the service is
located. Unlike the proxy factory beans in chapter 8, there’s no IP address, host-
name, or port number—no clue as to the service’s whereabouts. That’s because
the service’s location isn’t important. You don’t need to know where it lives—only
where it picks up its mail.

 In fact, there’s nothing here indicating that there’s only one instance of the
remote service. If we wanted to set up the marketing service for high availability,
we would only have to start up two or more instances, with all of them listening to
the same destination. Each instance could potentially process a request. Mean-
while, the client has no idea that there’s a pool of services waiting to respond to
its request.

Making the call
With the JmsProxyFactoryBean wired, we’re ready to start making calls to the
remote service. All we need to do is wire it into RantServiceImpl:

<bean id="rantService"
 class="com.roadrantz.service.RantServiceImpl">
 <property name="rantDao" ref="rantDao" />
 <property name="marketingService" ref="marketing" />
</bean>

Then we can use it in the addMotorist() method to send a SpammedMotorist
object to the marketing service. Listing 10.10 shows the pertinent changes to
RantServiceImpl to call the remote marketing service.

public class RantServiceImpl implements RantService {
…

 public void addMotorist(Motorist motorist)
 throws MotoristAlreadyExistsException {
 …

 SpammedMotorist SpammedMotorist = new SpammedMotorist();
 SpammedMotorist.setFirstName(motorist.getFirstName());

Listing 10.10 Changing RantServiceImpl to send SpammedMotorists to the
marketing service

422 CHAPTER 10

Spring messaging
 SpammedMotorist.setLastName(motorist.getLastName());
 SpammedMotorist.setEmail(motorist.getEmail());
 marketingService.processMotoristInfo(SpammedMotorist);

 …
 }

…
 private MarketingService marketingService;
 public void setMarketingService(
 MarketingService marketingService) {
 this.marketingService = marketingService;
 }
}

As you can see, invoking a Lingo-exported service is no different from invoking an
RMI service, a web service, or even a method on another bean in the same pro-
cess. Nothing in listing 10.10 indicates that JMS is involved.

 The only thing that is different is the Spring configuration. In this way, switch-
ing from JMS to another communication mechanism is a simple matter of chang-
ing the configuration. You could easily replace Lingo with one of the synchronous
options from chapter 8. Or perhaps you could inject the marketingService prop-
erty with a mock implementation of the MarketingService interface in the con-
text of a unit test.

10.5 Summary

Asynchronous messaging presents several advantages over synchronous RPC. Indi-
rect communication results in applications that are loosely coupled with respect
to one another and thus reduces the impact of any one system going down. Addi-
tionally, because messages are forwarded to their recipients, there’s no need for a
sender to wait for a response. In many circumstances, this can be a boost to appli-
cation performance.

 Although JMS provides a standard API for all Java applications wishing to par-
ticipate in asynchronous communication, it can be a little cumbersome to use.
Spring eliminates the need for JMS boilerplate code and exception-handling code
and makes asynchronous messaging easier to use.

 Coming up in the next chapter, we’ll watch worlds collide as we see how Spring
supports the use and development of Enterprise JavaBeans.

Calls remote
service

Injects service

Spring and
Enterprise JavaBeans
This chapter covers
■ Wiring EJBs into a Spring context
■ Building Spring-aware EJBs
■ Using EJB 3 annotations with Spring beans
423

424 CHAPTER 11

Spring and Enterprise JavaBeans
Several years ago, a series of advertisements ran on television for Reese’s peanut
butter cups. In these advertisements, one character would be enjoying a chocolate
bar while another would be enjoying some peanut butter. Ultimately, the charac-
ters would collide, accidentally mixing their snacks. One would proclaim, “You’ve
got chocolate in my peanut butter!” while the other would declare, “You’ve got
peanut butter on my chocolate!” After each would taste the mixture, they would
decide it was “two great tastes that taste great together.”

 You may be surprised to find a section on how to use Spring with EJBs in this
book. Much of this book so far has shown you how to implement enterprise-class
applications without resorting to EJBs. Many developers liken Spring and EJB
more to oil and water than to chocolate and peanut butter.

 The fact is that although Spring provides a lot of functionality that gives POJOs
the power of EJBs, you may not always have the luxury of working on a project that
is completely EJB free. On the one hand, you may have to interface with other sys-
tems that expose their functionality through stateless session EJBs. On the other
hand, you may be placed in a project where for legitimate technical (or perhaps
political) reasons you must write EJB code.

 Whether your application is the client of an EJB or you must write the EJB
itself, you don’t have to completely abandon all the benefits of Spring in order to
work with EJBs. Spring offers three ways to mix the Spring and EJB to reap the ben-
efits of both frameworks:

■ If your application will be consuming the services of a session EJB, Spring
enables you to declare EJBs as beans within the Spring application context.
This makes it possible to wire references to EJB session beans (both EJB 2.x
and EJB 3) into the properties of your other beans as though the EJB is just
another POJO.

■ If you’re developing an EJB 2.x session bean, you can write your EJB to be
Spring aware. That is, your EJB will have access to the Spring application
context so that it can access and use beans that are configured in Spring.

■ A Spring-related framework called Pitchfork makes it possible to use EJB 3
annotations to perform dependency injection and simple AOP on beans
within the Spring context.

This chapter represents the collision of EJBs with Spring. Whether you want to
write some Spring-flavored EJBs or mix EJB into your Spring application, there’s
something here for you. We’ll explore all of the ways that Spring and EJB can be
mixed, starting with wiring EJBs in a Spring application context.

Wiring EJBs in Spring 425
11.1 Wiring EJBs in Spring

If you’ve ever written a client for a 2.x EJB, you are probably familiar with how you
gain access to an EJB reference. First you would look up the EJB’s home interface
from JNDI using code that looks a little like this:

private TrafficServiceHome trafficServiceHome;
private TrafficServiceHome getTrafficServiceHome ()
 throws javax.naming.NamingException {

 if(trafficServiceHome != null)
 return trafficServiceHome;

 javax.naming.InitialContext ctx =
 new javax.naming.InitialContext();

 try {
 Object objHome = ctx.lookup("trafficService");

 TrafficServiceHome home =
 (TrafficServiceHome) javax.rmi.PortableRemoteObject.narrow(
 objHome, TrafficServiceHome.class);

 trafficServiceHome = home;
 return home;
 } finally {
 ctx.close();
 }
}

Once you’ve got the reference to the home interface, you’ll then need to get a ref-
erence to the EJB’s business interface (either remote or local) so that you can call
its methods. For example, the following code shows how you might call the
getTrafficConditions() method on the traffic service EJB:

try {
 TrafficServiceHome home = getTrafficServiceHome();
 TrafficService trafficService = home.create();

 TrafficConditions conditions =
 trafficService.getTrafficConditions(city, state);
} catch (java.rmi.RemoteException e) {
 throw new TrafficException();
} catch (CreateException e) {
 throw new TrafficException();
}

Wow! That’s a lot of code just to look up traffic conditions. What’s most unsettling
is that only a few lines have anything directly to do with retrieving the traffic con-
ditions. Most of it is boilerplate EJB plumbing that is used just to retrieve a

426 CHAPTER 11

Spring and Enterprise JavaBeans
reference to the EJB. That’s an awful lot of work just to make a single call to the
EJB’s getTrafficConditions() method.

 EJB 3 makes things a little bit easier. Instead of looking up the EJB’s home
interface from JNDI, you look up EJB 3 session beans directly from JNDI. But that
still involves a lot of boilerplate JNDI lookup code.

 Hold on. Throughout this book, you’ve seen ways to inject your application
beans with the services they need. Beans don’t look up other beans—beans are
given to other beans. But this whole exercise of looking up an EJB via JNDI and its
home interface doesn’t seem to fit how the rest of the RoadRantz application is
constructed. If we proceed to interact with EJB in the traditional EJB way, we’ll end
up muddying up everything with ugly lookup code and will definitely couple the
code with the EJB. Isn’t there a better way?

11.1.1 Proxying session beans (EJB 2.x)

As you’ve probably guessed from this lead-up, yes, there is a better way. In chapter 8
we showed you how to configure proxies to access various remote services, includ-
ing services based in RMI, Hessian, Burlap, and Spring’s own HTTP invoker. Spring
offers much the same kind of proxy support for accessing EJBs.

 Spring comes with two proxies suitable for accessing session EJBs:

■ LocalStatelessSessionProxyFactoryBean—Used to access local EJBs
(EJBs that are in the same container as their clients)

■ SimpleRemoteStatelessSessionProxyFactoryBean—Used to access
remote EJBs (EJBs that are in a separate container from their clients)

As illustrated in figure 11.1, these proxy factory beans produce proxies that handle
the details of looking up an EJB’s home interface and invoking the EJB’s business
methods. They make it possible to configure references to EJBs in the Spring appli-
cation context that can be wired as if they were any other Spring-managed bean.

 For illustration’s sake, let’s assume that the traffic service EJB is a local stateless
session EJB. To wire a traffic service EJB in Spring, you would use LocalState-
lessSessionProxyFactoryBean like this:

<bean id="trafficService"
 class="org.springframework.ejb.access.
 ➥ LocalStatelessSessionProxyFactoryBean"
 lazy-init="true">

 <property name="jndiName" value="ejb/TrafficService" />
 <property name="businessInterface"
 value="com.roadrantz.ejb.TrafficServiceEjb" />
</bean>

Wiring EJBs in Spring 427
The jndiName property, here set to trafficService, is used to identify the name
of the EJB home interface in JNDI. Meanwhile the businessInterface property
identifies the EJB’s business interface. The proxy will adhere to this interface.

 Pay particular attention to the lazy-init attribute on the <bean> element.
The Spring application context will normally pre-instantiate singleton beans once
the Spring configuration file is loaded. This is usually a good thing, but it could
cause problems with EJB proxies. That’s because the Spring application context
may load and instantiate the proxy before the EJB’s home interface is bound in
the naming service. By setting lazy-init to true, we are telling Spring to not look
up the home interface until the trafficService bean is first used—which should
be plenty of time for the EJB to be bound in the naming service.

 Now let’s switch gears and see how we would configure the trafficService
bean if the traffic service were a remote stateless session bean. Take a close look at
the following XML:

<bean id="trafficService"
 class="org.springframework.ejb.access.
 ➥ SimpleRemoteStatelessSessionProxyFactoryBean"
 lazy-init="true">

 <property name="jndiName" value="trafficService" />
 <property name="businessInterface"
 value="com.roadrantz.ejb.TrafficServiceEjb" />
</bean>

See the difference? The only thing that changed was the name of the proxy fac-
tory bean class. Nothing else needs to change. Spring makes the choice between
local and remote EJBs almost transparent.

JNDI Repository

EJB
Proxy

Traffic
Service
Home

Looks up

java:comp/env/ejb/TrafficService

EJB Container

Traffic
Service

EJB

Proxies

Creates

EJB Proxy
Factory
Bean

Produces

Figure 11.1 Spring’s EJB proxy factory beans look up a session bean’s home interface
and then produce a proxy that delegates to the actual EJB.

428 CHAPTER 11

Spring and Enterprise JavaBeans
 But you’re probably wondering about java.rmi.RemoteException. How can
the choice between local and remote EJBs be completely transparent if invoking a
remote EJB method could throw a RemoteException? Doesn’t someone need to
catch that exception?

 This illustrates one more benefit of using Spring’s EJB support for accessing
EJBs. As with RMI services, any RemoteException that may be thrown from EJBs
are caught and then rethrown as org.springframework.remoting.RemoteAcces-
sException. Since RemoteAccessException is an unchecked exception, catching
it is optional for the EJB client.

Declaring EJB proxies with Spring’s JEE namespace
Spring’s proxy factory beans for EJB access greatly simplify EJB and make it possi-
ble to wire EJBs into Spring beans as if they were any other Spring bean. Life
couldn’t be much easier for EJB, could it?

 Well, Spring 2 makes things even easier by supplying EJB configuration ele-
ments in the new JEE namespace. The JEE namespace includes two configuration
elements specifically for EJB:

■ <jee:local-slsb>—Configures a proxy to a local stateless session bean in
the Spring application context

■ <jee:remote-slsb>—Configures a proxy to a remote stateless session bean
in the Spring application context

In order to use these two elements, you’ll need to declare the JEE namespace in
your Spring configuration by including the following in the <beans> element:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 ➥ spring-beans-2.0.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/
 ➥ spring-jee-2.0.xsd">

With the JEE namespace declared, you’re ready to use its elements to configure an
EJB reference in Spring. For example, to configure a reference to a local stateless
session EJB, you would use the <jee:local-slsb> as follows:

<jee:local-slsb id="trafficService"
 jndi-name="trafficService"
 business-interface="com.roadrantz.ejb.TrafficServiceEjb"/>

Wiring EJBs in Spring 429
Under the covers, <jee:local-slsb> configures a LocalStatelessSession-
ProxyFactoryBean in the Spring context. The end result is the same, even
though the amount of XML is less.

 Similarly, a remote stateless session EJB can be wired using the <jee:remote-
slsb> element:

<jee:remote-slsb id="trafficService"
 jndi-name="trafficService"
 business-interface="com.roadrantz.ejb.TrafficServiceEjb"/>

Just as <jee:local-slsb> is a shortcut for LocalStatelessSessionProxyFacto-
ryBean, <jee:remote-slsb> is a shortcut for SimpleRemoteStatelessSession-
ProxyFactoryBean.

Declaring EJB 3 session beans in Spring
As I mentioned earlier, EJB 3 simplifies the session bean lookup process by elimi-
nating the notion of a home interface. Instead of looking up a session bean
through a home interface that was retrieved through JNDI, EJB 3 session beans are
retrieved directly from JNDI.

 But as you’ve already seen, JNDI lookup code is rather complex and is
mostly boilerplate. Furthermore, looking up an EJB is in stark contrast to
Spring’s principle of dependency injection. In Spring, session beans should be
injected, not retrieved.

 Fortunately, Spring provides the ability to wire JNDI-stored objects just like any
other bean in the application context. The trick involves using Spring’s JndiOb-
jectFactoryBean. The following snippet of XML from the Spring application
context shows how you might declare an EJB 3 traffic service session bean:

<bean id="trafficService"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="ejb/TrafficService" />
 <property name="resourceRef" value="true" />
</bean>

As a factory bean, JndiObjectFactoryBean produces a proxy to the real session
bean (see figure 11.2), which it looks up from a JNDI repository using the jndi-
Name property. The resourceRef property indicates that the EJB should be looked
up as a Java resource, in effect prefixing the value of jndiName with java:comp/
env/ before performing the lookup.

 Optionally, using Spring 2.0’s JEE namespace, you can declare the EJB using
the <jee:jndi-lookup>:

430 CHAPTER 11

Spring and Enterprise JavaBeans
<jee:jndi-lookup id="trafficService"
 jndi-name="ejb/TrafficService"
 resource-ref="true" />

This snippet of XML is equivalent to the <bean> declaration above. Under the cov-
ers, <jee:jndi-lookup> creates a JndiObjectFactoryBean. We’ll talk more about
JndiObjectFactoryBean and <jee:jndi-lookup> in chapter 12. But for now just
know that JndiObjectFactoryBean creates a proxy to the session bean that’s
stored in JNDI.

 Now that the session bean proxy has been declared, it’s time to put it to work.
Let’s see how to wire an EJB into a Spring-configured POJO.

11.1.2 Wiring EJBs into Spring beans

As it turns out, wiring an EJB into a Spring-configured POJO isn’t any different
than wiring any other POJO. For example, to wire the traffic service session bean
into the rantService bean, you could use the following XML:

<bean id="rantService"
 class="com.roadrantz.service.RantServiceImpl">
…
 <property name="trafficService" ref="trafficService" />
…
</bean>

Did you see that? There is nothing EJB about that. The trafficService bean
(which happens to be a proxy to an EJB) is simply injected into the trafficSer-
vice property. There’s no indication that EJB is involved at all. As illustrated in fig-
ure 11.3, proxied EJBs can be injected into other beans just like any other Spring-
configured POJO.

 The wonderful thing about using a proxy factory bean to access the traffic ser-
vice EJB is that you don’t have to write your own service locator or business dele-
gate code. In fact, you don’t have to write any JNDI code of any sort. Nor must you

JNDI Repository

JNDI
Proxy

Traffic
Service

EJB

Proxies

java:comp/env/ejb/TrafficService

Figure 11.2
EJB 3 session beans can be
configured in Spring using a
JNDI proxy.

Developing Spring-enabled EJBs (EJB 2.x) 431
deal with the EJB’s home interface (or local
home interface).

 Furthermore, by hiding it all behind the
TrafficService business interface, the
trafficService bean isn’t even aware that
it’s dealing with an EJB. As far as it knows, it’s
collaborating with just another POJO. This is
significant because it means that you are free
to swap out the EJB implementation of Traf-
ficService with any other implementation
(perhaps even a mock implementation that’s
used when unit testing RantServiceImpl).

 Now that you’ve seen how to wire EJBs
into a Spring application, let’s look at how
Spring supports EJB development.

11.2 Developing Spring-enabled EJBs (EJB 2.x)

Although Spring provides many capabilities that make it possible to implement
enterprise applications without EJBs, you may still find yourself needing to
develop your components as EJBs.

 In chapter 8, you saw how Spring exporters can turn any Spring-configured
POJO into a remote service. I hate to disappoint you, but unfortunately, Spring
doesn’t provide an EjbServiceExporter class that exports POJOs as EJBs. (But I
do agree that such an exporter would be really cool.)

 Nevertheless, Spring can make developing EJBs a little bit easier. Spring comes
with four abstract support classes that bring regular EJBs into the world of Spring:

■ AbstractMessageDrivenBean—Useful for developing message-driven beans
that accept messages from sources other than JMS (as allowed by the EJB 2.1
specification)

■ AbstractJmsMessageDrivenBean—Useful for developing message-driven
beans that accept messages from JMS sources

■ AbstractStatefulSessionBean—Useful for developing stateful session
EJBs

■ AbstractStatelessSessionBean—Useful for developing stateless session
EJBs

EJB/JNDI
Proxy

Traffic
Service

EJB

Proxies

Rant
Service

Injected into

Figure 11.3 EJB and JNDI proxies can
be injected into a Spring beans just as if
they were any other Spring bean.

432 CHAPTER 11

Spring and Enterprise JavaBeans
These abstract classes simplify EJB development in two ways:

■ They provide default empty implementations of EJB lifecycle methods
(e.g., ejbActivate(), ejbPassivate(), ejbRemove()). These methods are
required per the EJB specification but are typically implemented as empty
methods.

■ They provide access to a Spring bean factory. This makes it possible for you
to implement an EJB that delegates responsibility for the business logic to
Spring-configured POJOs. Effectively, the EJB can be developed as an EJB
façade to Spring-managed POJO functionality.

For example, suppose that you were to expose the functionality of the rantSer-
vice bean as a stateless session EJB. Listing 11.1 shows how you might implement
this EJB.

package com.roadrantz.ejb;
import java.util.Date;
import java.util.List;
import javax.ejb.CreateException;
import org.springframework.ejb.support.AbstractStatelessSessionBean;
import com.roadrantz.domain.Motorist;
import com.roadrantz.domain.Rant;
import com.roadrantz.domain.Vehicle;
import com.roadrantz.service.MotoristAlreadyExistsException;
import com.roadrantz.service.RantService;

public class RantServiceEjb
 extends AbstractStatelessSessionBean
 implements RantService {
 public RantServiceEjb() {}

 private RantService rantService;
 protected void onEjbCreate() throws CreateException {
 rantService = (RantService)
 getBeanFactory().getBean("rantService");
 }

 public void addMotorist(Motorist motorist)
 throws MotoristAlreadyExistsException {
 rantService.addMotorist(motorist);
 }

 public void addRant(Rant rant) {
 rantService.addRant(rant);
 }

Listing 11.1 A stateless session EJB that delegates responsibility for business logic to
a Spring-managed POJO

Looks up rant service

Delegates
to POJO

Developing Spring-enabled EJBs (EJB 2.x) 433
 public List<Rant> getRantsForDay(Date date) {
 return rantService.getRantsForDay(date);
 }

 public List<Rant> getRantsForVehicle(Vehicle vehicle) {
 return rantService.getRantsForVehicle(vehicle);
 }

 public List<Rant> getRecentRants() {
 return rantService.getRecentRants();
 }

 public void sendDailyRantEmails() {
 rantService.sendDailyRantEmails();
 }

 public void sendEmailForVehicle(Vehicle vehicle) {
 rantService.sendEmailForVehicle(vehicle);
 }
}

When the RantServiceEjb is created, its onEjbCreate() method retrieves the
rantService bean from the Spring bean factory. Then, when any of its methods
are invoked, they delegate responsibility to the rantService bean, as illustrated in
figure 11.4.

 The big unanswered question regarding the EJB in listing 11.1 is where the
bean factory comes from. In typical JEE fashion, the abstract EJB classes retrieve
the bean factory from JNDI. By default, they expect to find the Spring bean factory
in JNDI with the name java:comp/env/ejb/BeanFactoryPath. This means that
you’ll need to configure the bean factory in JNDI at that name.

Delegates
to POJO

RantService
EJB

JNDI Repository

Spring Application Context
java:comp/env/ejb/BeanFactoryPath

Rant
Service
(POJO)

Figure 11.4 Spring’s EJB support classes enable development of EJBs that
have access to a Spring application context (stored in JNDI).

434 CHAPTER 11

Spring and Enterprise JavaBeans
 If you’d rather configure the bean factory under a different JNDI name, set
the beanFactoryLocatorKey property before the bean factory is loaded (in either
the constructor or in the setSessionContext() method). For example:

public void setSessionContext(SessionContext sessionContext) {
 super.setSessionContext(sessionContext);

 setBeanFactoryLocatorKey("java:comp/env/ejb/SpringContext");
}

With this setSessionContext() method in place, the Spring context will be
located using java:comp/env/ejb/SpringContext instead of the default JNDI
name.

 Spring’s support for developing EJBs is focused on the EJB 2.x specifications.
However, the EJB 3 specification changed things dramatically. EJB 3 borrows sev-
eral ideas from Spring, such as dependency injection and AOP, to make EJB devel-
opment much simpler than in previous specifications. Let’s have a look at EJB 3
and how it fits into Spring.

11.3 Spring and EJB3

Although EJBs have enjoyed a great amount of popularity among Java developers
since their debut, they also suffer from several complexities, including:

■ Retrieving access to an EJB involves complex JNDI code to look up the EJB’s
home (or local home) interface, which is then used to create the EJB’s busi-
ness interface.

■ With EJB 2.x, EJBs had to implement special interfaces that mandated that
certain lifecycle callback methods be implemented. Because most applica-
tions have no use for these methods, they are often implemented as empty
methods.

■ The method signatures of remote EJBs are required to throw
java.rmi.RemoteException, even when the method implementation does
not actually throw the exception.

These and other problems have caused many developers to lose interest in EJBs
and to start looking for simpler alternatives such as Spring. Reacting to the back-
lash against EJBs, the Java Community Process revisited the EJB specification, pro-
ducing the most significant change in EJBs since their initial introduction: the EJB
3 specification.

Spring and EJB3 435
 The EJB 3 specification addresses the concerns of its heavyweight predecessor
by supporting dependency injection of EJBs and resources instead of complex
JNDI lookups. However, EJB 3 encourages the use of Java 5 annotations for declar-
ing dependencies that are to be injected into bean properties.

 Moreover, EJB 3 doesn’t require that EJBs implement any specific interface or
implement needless lifecycle methods. And remote methods no longer need to
be declared to throw RemoteException. In short, the EJB 3 programming model is
a POJO-based model.

 Spring doesn’t provide any direct support for the EJB 3 specification. However,
there is a Spring add-on that makes it possible to use EJB 3 annotations to perform
dependency injection and AOP in Spring.

11.3.1 Introducing Pitchfork

Pitchfork is an add-on for Spring that supports EJB 3 annotations. It is co-devel-
oped by Interface 21 (the Spring team) and BEA and is used within BEA’s
WebLogic Server 10 to support EJB 3. But you don’t have to use WebLogic to use
Pitchfork. Pitchfork is open sourced under the Apache 2.0 license and can be
used in any Spring 2.0 application. You can download Pitchfork from Interface
21’s site at http://www.springframework.com/pitchfork.

 Pitchfork is not intended to be a complete implementation of the EJB 3 specifi-
cation. However, it does support dependency injection and AOP through EJB 3
annotations, including the annotations listed in table 11.1.

 In this section, you’ll see how to use a few of these annotations within a Spring
context using Pitchfork. We will assume, however, that you already have some
understanding of EJB 3 and these annotations. For a more detailed discussion of
EJB 3, we suggest that you have a look at EJB 3 in Action (Manning, 2006).

Table 11.1 EJB 3 annotations supported by Pitchfork.

Annotation What it does

@ApplicationException Declares an exception to be an application exception,
which, by default, does not roll back a transaction

@AroundInvoke Declares a method to be an interceptor method

@EJB Declares a dependency to an EJB

@ExcludeClassInterceptors Declares that a method should not be intercepted by a
class interceptor

436 CHAPTER 11

Spring and Enterprise JavaBeans
11.3.2 Getting started with Pitchfork

Pitchfork uses a bean factory postprocessor to perform dependency injection on
beans that are annotated with EJB 3 annotations. Pitchfork comes with two bean
factory postprocessors to choose from:

■ org.springframework.jee.config.JeeBeanFactoryPostProcessor

■ org.springframework.jee.ejb.config.JeeEjbBeanFactoryPostProces-

sor

For the most part, these two bean factory postprocessors are identical. Both sup-
port all of the annotations in table 11.1, except for the @EJB annotation, which is
only supported by JeeEjbBeanFactoryPostProcessor. If you want to use the @EJB
annotation, be sure to choose JeeEjbBeanFactoryPostProcessor. Otherwise, the
choice is arbitrary.

 To configure one of these bean factory postprocessors in Spring, simply add it
as a bean in the Spring application context. For example, to use JeeBeanFactory-
PostProcessor, add the following to your Spring configuration:

<bean class="org.springframework.jee.config.
 ➥ JeeBeanFactoryPostProcessor" />

@ExcludeDefaultInterceptors Declares that a method should not be intercepted by a
default interceptor

@Interceptors Specifies one or more interceptors classes to associate
with a bean class or method

@PostConstruct Specifies a method to be executed after a bean is con-
structed and all dependency injection is done to per-
form initialization

@PreDestroy Specifies a method to be executed prior to bean being
removed from the container

@Resource Declares a dependency to an external resource

@Stateless Declares a bean to be a stateless session bean

@TransactionAttribute Specifies that a method should be invoked within a
transaction context

Table 11.1 EJB 3 annotations supported by Pitchfork. (continued)

Annotation What it does

Spring and EJB3 437
With JeeBeanFactoryPostProcessor in place, we’re now ready to start using the
EJB 3 annotations. Next I’ll show you how to apply these annotations in Spring-
managed beans.

11.3.3 Injecting resources by annotation

To illustrate the use of EJB annotations in Pitchfork, we’re going to revisit the
knight example from chapter 1. Imagine that we were to rewrite the Knight-
OfTheRoundTable class from chapter 1 to use the @Resource attribute for depen-
dency injection. It might look a little like listing 11.2.

package com.springinaction.knight;
import javax.annotation.Resource;

public class KnightOfTheRoundTable implements Knight {
 @Resource(name = "quest")
 private Quest quest;

 public String name;

 public KnightOfTheRoundTable(String name) {
 this.name = name;
 }

 public String getName() {
 return name;
 }

 public void embarkOnQuest() {
 quest.embark();
 }
}

This KnightOfTheRoundTable is then configured in Spring using the following
XML:

<bean id="knight" class=
 ➥ "com.springinaction.knight.KnightOfTheRoundTable">
 <constructor-arg value="Bedivere" />
</bean>

In chapter 1, we injected the knight’s quest property using XML in the Spring
configuration. But here we’re letting the @Resource annotation do all of the work.
@Resource will try to find an object named quest and, if it’s found, wire it into the

Listing 11.2 An annotation-injected KnightOfTheRoundTable

Injects
quest

Uses injected
quest

438 CHAPTER 11

Spring and Enterprise JavaBeans
quest property. Notice that there wasn’t a need for a setQuest() method—
@Resource can inject directly into private properties!

 But where does the quest object come from? Well, that depends. Pitchfork will
first look in JNDI for an object named quest and if it finds it, that object will be
wired into the quest property. If JNDI turns up nothing, it will look in the Spring
application context for a bean named quest.

 Therefore, you’ll either need to make sure that a Quest implementation is
available through JNDI or you’ll need to declare a Spring bean named quest:

<bean id="quest"
 class="com.springinaction.knight.SlayDragonQuest" />

 That demonstrates Pitchfork’s capability to do EJB 3 dependency injection.
Now let’s see how Pitchfork provides for EJB 3 AOP using interceptors.

11.3.4 Declaring interceptors using annotations

In addition to dependency injection, Pitchfork also supports EJB 3 interceptor
annotations. EJB 3 interceptors are a simple form of AOP around advice that can
be applied using annotations.

 For example, the Minstrel advisor from chapter 1 could be rewritten as in list-
ing 11.3 to use the @AroundInvoke annotation.

package com.springinaction.knight;
// imports omitted

public class Minstrel {
 @AroundInvoke
 public Object singAboutQuest(InvocationContext ctx)
 throws Exception {
 Knight knight = (Knight) ctx.getTarget();

 Logger song =
 Logger.getLogger(knight.getClass());

 Method method = ctx.getMethod();

 song.debug("Brave " + knight.getName() +
 " did " + method.getName());

 Object rtn = ctx.proceed();

 return rtn;
 }
}

Listing 11.3 An EJB-annotated minstrel interceptor

Declares
intereptor
method

Proceeds to
target method

Spring and EJB3 439
The @AroundInvoke method declares a method that will be invoked when an
advised method is intercepted. In this case, the singAboutQuest() method will be
called before a target method is called so that the Minstrel can sing about the
knight’s exploits.

 By itself the @AroundInvoke annotation only defines an interceptor method.
We still need to apply it to the KnightOfTheRoundTable class. That’s what the
@Interceptors annotation is for:

@Interceptors({Minstrel.class})
public class KnightOfTheRoundTable implements Knight {
…
}

The @Interceptors annotation takes an array of one or more interceptor classes
(e.g., classes that have methods that are annotated with @AroundInvoke). When a
class is annotated with @Interceptors, all methods of the class are intercepted by
the interceptors listed. Since KnightOfTheRoundTable only has an embarkOn-
Quest() method, that will be the only method intercepted. However, if you want
finer control over which methods are intercepted and which are not, you may
want to place the @Interceptors annotation at the method level:

@Interceptors({Minstrel.class})
public void embarkOnQuest() {
 quest.embark();
}

When used at the method level, only those methods that are annotated will be
intercepted by the interceptors.

 Another option for limiting classwide interception is to use the @ExcludeClass-
Interceptors annotation. When applied to a method, @ExcludeClassIntercep-
tors will prevent class interceptors from intercepting the method. For example, to
prevent embarkOnQuest() from being intercepted, annotate it like this:

@ExcludeClassInterceptors
public void embarkOnQuest() {
 quest.embark();
}

Pitchfork represents a choice for Spring developers. You can either use conven-
tional Spring dependency injection and AOP, or you can use EJB 3 annotations for
dependency injection and AOP. In virtually all circumstances, however, the pure
Spring option is likely the best choice. Spring AOP, for instance, is far more flexi-
ble than EJB 3’s interceptors are. Nevertheless, with Pitchfork, the choice is yours
to make.

440 CHAPTER 11

Spring and Enterprise JavaBeans
11.4 Summary

Although Spring’s POJO-based development model offers a compelling alternative
to Enterprise JavaBeans, there may be factors (either technical, political, or histor-
ical) that force a project to choose EJBs. In those cases, there’s no need to dismiss
Spring entirely, as Spring supports both EJB development and consumption.

 In this chapter, you’ve seen how Spring and EJB can work together, starting
with how Spring beans can be made into clients of EJBs. Using EJB proxies, we
declared references to EJBs in a Spring application context. Once configured in
Spring, the EJB could then be wired into other Spring beans that will consume the
EJB’s services. We also looked at how EJB proxy declaration is made simpler using
Spring 2.0’s <jee:local-slsb> and <jee:remote-slsb> configuration elements.

 We then turned our attention to developing EJBs. Even though Spring doesn’t
provide a mechanism for directly hosting 2.x EJBs in the Spring container, Spring
does provide a set of Spring-aware base classes from which EJBs can be developed.
These base classes expose the Spring application context to the EJB so that the EJB
can delegate its work to Spring-managed POJOs.

 Finally, we peeked at Pitchfork, an intriguing Spring add-on that enables the use
of EJB 3 annotations for dependency injection and AOP within a Spring container.

 With the Spring-EJB story behind us, we now turn to look at a hodgepodge of
other enterprise features available in Spring. In the next chapter, we’ll explore
Spring’s support for JNDI, sending email, scheduling, and JMX.

Accessing enterprise
services
This chapter covers
■ Wiring JNDI resources in Spring
■ Sending email messages
■ Scheduling tasks
■ Exporting and using MBeans
441

442 CHAPTER 12

Accessing enterprise services
Contrary to what you may have heard, Spring’s manifesto does not include a
wholesale ousting of JEE technologies. Spring recognizes that the JEE specification
is a collection of several effective subspecifications that still have their place in
enterprise Java development. However, JEE does have a few rough edges that
encourage less-than-ideal programming practices. Therefore, rather than subvert
and replace JEE, Spring aims to complement JEE with a set of abstractions that
round off the rough edges.

 As it stands, a motorist can log into the RoadRantz application and view any
rants that have been posted against their vehicles. That’s great, but it requires
the motorist to play an active role, logging in to check for new rants. More often
than not, there won’t be any new rants posted for them (unless they’re an excep-
tionally bad driver). Suppose that instead of making the motorist come to
RoadRantz to check for rants, we take RoadRantz to the motorist whenever they
receive new rants.

 In this chapter, we’re going to add an email feature to RoadRantz to alert
motorists that they have new rants. Along the way, we’ll explore some of Spring’s
useful abstraction APIs, including Spring’s support for Java Naming and Directory
Interface (JNDI), JavaMail, scheduling, and Java Management Extensions (JMX).

 To get started, let’s see how to wire JNDI-managed objects into a Spring appli-
cation context.

12.1 Wiring objects from JNDI

Throughout this book, you’ve seen how to use Spring to configure and wire your
application objects. But what if you need to wire in objects that aren’t configured
in Spring? What if you need to wire in objects that are stored in JNDI?

 What? Objects that aren’t configured in Spring? How can that be? After all,
this is a book about Spring. Why would I even suggest that some objects wouldn’t
be configured in Spring?

 Before you chastise me for putting forward such deplorable thoughts, consider
the following dataSource bean (taken from chapter 5):

<bean id="dataSource"
 class="org.springframework.jdbc.datasource.
 ➥ DriverManagerDataSource">
 <property name="driverClassName"
 value="org.hsqldb.jdbcDriver" />
 <property name="url"
 value="jdbc:hsqldb:hsql://localhost/roadrantz/roadrantz" />

Wiring objects from JNDI 443
 <property name="username" value="sa" />
 <property name="password" value="" />
</bean>

This bean configures a JDBC DataSource in Spring, perfectly suitable for wiring
into a JdbcTemplate, HibernateTemplate, or some other data access object. It will
certainly work anywhere access to the RoadRantz database is required, but it pre-
sents a couple of problems:

■ All of the database information is configured directly in the Spring applica-
tion context. For purposes of change control and security, system adminis-
trators may prefer to configure and control the data source when the
application is deployed, rather than allowing the developers to configure it
themselves in the Spring context.

■ Changing the database connection information can be inconvenient.
Should the database connection need to change (perhaps the database is
moved to a different server or the password must be changed), the applica-
tion will likely need to be rebuilt and redeployed.

To address these concerns, you can configure the data source external to Spring,
perhaps in a JNDI-accessible directory.

 JNDI is a Java API that enables lookup of objects by name in a directory (often,
but not necessarily, an LDAP directory). JNDI provides Java applications with
access to a central repository for storing and retrieving application objects. JNDI is
typically used in JEE applications to store and retrieve JDBC data sources and JTA
transaction managers.

 But if some of our application objects are configured in JNDI, external to
Spring, how can we inject them into the Spring-managed objects that need them?

 In this section, we’ll be looking at how Spring supports JNDI by providing a
simplified abstraction layer above the standard JNDI API. Spring’s JNDI abstraction
makes it possible to declare JNDI lookup information in your Spring context defi-
nition file. Then you can wire a JNDI-managed object into the properties of other
Spring beans as though the JNDI object were just another POJO.

 To gain a deeper appreciation of what Spring’s JNDI abstraction provides, let’s
start by looking at how to look up an object from JNDI without Spring.

12.1.1 Working with conventional JNDI

Looking up objects in JNDI can be a tedious chore. For example, suppose you
need to perform the very common task of retrieving a javax.sql.DataSource

444 CHAPTER 12

Accessing enterprise services
from JNDI. Using the conventional JNDI APIs, your might write some code that
looks like this:

InitialContext ctx = null;
try {
 ctx = new InitialContext();

 DataSource ds =
 (DataSource)ctx.lookup("java:comp/env/jdbc/RantzDatasource");
} catch (NamingException ne) {
 // handle naming exception
 …
} finally {
 if(ctx != null) {
 try {
 ctx.close();
 } catch (NamingException ne) {}
 }
}

If you’ve ever written JNDI lookup code before, you’re probably very familiar with
what’s going on in this code snippet. You may have written a similar incantation
dozens of times before to raise an object out of JNDI. Before you repeat it again,
however, take a closer look at what is going on:

■ You must create and close an initial context for no other reason than to
look up a DataSource. This may not seem like a lot of extra code, but it is
extra plumbing code that is not directly in line with the goal of retrieving a
data source.

■ You must catch or, at the very least, rethrow a javax.naming.NamingExcep-
tion. If you choose to catch it, you must deal with it appropriately. If you
choose to rethrow it, the calling code will be forced to deal with it. Ulti-
mately, someone somewhere will have to deal with the exception.

■ Your code is tightly coupled with a JNDI lookup. All your code needs is a
DataSource. It doesn’t matter whether it comes from JNDI. But if your code
contains code like that shown earlier, you’re stuck retrieving the Data-
Source from JNDI.

■ Your code is tightly coupled with a specific JNDI name—in this case
java:comp/env/jdbc/RantzDatasource. Sure, you could extract that name
into a properties file, but then you’ll have to add even more plumbing code
to look up the JNDI name from the properties file.

Wiring objects from JNDI 445
Upon closer inspection we find that most of the code is boilerplate JNDI lookup
that looks pretty much the same for all JNDI lookups. The actual JNDI lookup hap-
pens in just one line:

DataSource ds =
 (DataSource)ctx.lookup("java:comp/env/jdbc/RantzDatasource");

Even more disquieting than boilerplate JNDI code is the fact that the application
knows where the data source comes from. It is coded to always retrieve a data
source from JNDI. As illustrated in figure 12.1, the DAO that uses the data source
will be coupled to JNDI. This makes it almost impossible to use this code in a set-
ting where JNDI isn’t available or desirable.

 For instance, imagine that the data source lookup code is embedded in a class
that is being unit tested. In an ideal unit test, we’re testing an object in isolation
without any direct dependence on specific objects. Although the class is decou-
pled from the data source through JNDI, it is coupled to JNDI itself. Therefore,
our unit test has a direct dependence on JNDI and a JNDI server must be available
for the unit test to run.

 Regardless, this doesn’t change the fact that sometimes you need to be able to
look up objects in JNDI. DataSources are often configured in an application
server to take advantage of the application server’s connection pooling and then
retrieved by the application code to access the database. How can your code get
an object from JNDI without being dependent on JNDI?

 The answer is found in dependency injection (DI). Instead of asking for a data
source from JNDI, you should write your code to accept a data source from any-
where. That is, your code should have a DataSource property that is injected
either through a setter method or through a constructor. Where the object comes
from is of no concern to the class that needs it.

JNDI Repository

DAO
Data

Source
Look Up Data Source

java:comp/env/jdbc/RantzDatasource

Figure 12.1 Using conventional JNDI to get dependencies means that an
object is coupled to JNDI, making it difficult to use the object anywhere
that JNDI is not available.

446 CHAPTER 12

Accessing enterprise services
 The data source object still lives in JNDI, however. So how can we configure
Spring to inject an object that is stored in JNDI?

12.1.2 Injecting JNDI objects

Spring’s JndiObjectFactoryBean gives you the best of both JNDI and DI. It is a
factory bean, which means that when it is wired into a property, it will actually cre-
ate some other type of object that will wire into that property. In the case of
JndiObjectFactoryBean, it will wire an object retrieved from JNDI.

 To illustrate how this works, let’s revisit an example from chapter 5
(section 5.2.1). There I used JndiObjectFactoryBean to retrieve a DataSource
from JNDI:

<bean id="dataSource"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="jdbc/RantzDatasource" />
</bean>

The jndiName property specifies the name of the object in JNDI. By default, the
name is used as is to look up the object in JNDI. But if the lookup is occurring in a
JEE container then a java:comp/env/ prefix needs to be added. You can manually
add the prefix to the value specified in jndiName. Or you can set the resourceRef
property to true to have JndiObjectFactoryBean automatically prepend jndi-
Name with java:comp/env/:

<bean id="dataSource"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="jdbc/RantzDatasource" />
 <property name="resourceRef" value="true" />
</bean>

With the dataSource bean declared, you may now inject it into a dataSource
property. For instance, you may use it to configure a Hibernate session factory as
follows:

<bean id="sessionFactory" class="org.springframework.orm.
 ➥ hibernate.LocalSessionFactoryBean">
 <property name="dataSource" ref="dataSource" />
…
</bean>

As shown in figure 12.2, when Spring wires the sessionFactory bean, it will inject
the DataSource object retrieved from JNDI into the session factory’s dataSource
property.

Wiring objects from JNDI 447
The great thing about using JndiObjectFactoryBean to look up an object in
JNDI is that the only part of the code that knows that the DataSource is retrieved
from JNDI is the XML declaration of the dataSource bean. The sessionFactory
bean doesn’t know (or care) where the DataSource came from. This means that
if you decide that you would rather get your DataSource from a JDBC driver
manager, all you need to do is redefine the dataSource bean to be a Driver-
ManagerDataSource.

 Now our data source is retrieved from JNDI and then injected into the session
factory. No more explicit JNDI lookup code! Whenever we need it, the data source
is always handy in the Spring application context as the dataSource bean.

 As you have seen, wiring a JNDI-managed bean in Spring is fairly simple. Now
let’s explore a few ways that we can influence when and how the object is retrieved
from JNDI, starting with caching.

Caching JNDI objects
Oftentimes, the objects retrieved from JNDI will be used more than once. A data
source, for example, will be needed every time you access the database. It would
be inefficient to repeatedly retrieve the data source from JNDI every time that it is
needed. For that reason, JndiObjectFactoryBean caches the object that it
retrieves from JNDI by default.

 Caching is good in most circumstances. However, it precludes hot redeploy-
ment of objects in JNDI. If you were to change the object in JNDI, the Spring appli-
cation would need to be restarted so that the new object can be retrieved.

JNDI Repository

JndiObject
FactoryBean

Data
Source

Retrieves data source

java:comp/env/jdbc/RantzDatasource

LocalSession
FactoryBean

injected into

Figure 12.2 JndiObjectFactoryBean looks up an object from JNDI on
behalf of a Spring object that it is wired into.

448 CHAPTER 12

Accessing enterprise services
 If your application is retrieving an object from JNDI that will change frequently,
you’ll want to turn caching off for JndiObjectFactoryBean. To turn caching off,
you’ll need to set the cache property to false when declaring the bean:

<bean id="dataSource"
 class="org.springframework.jndi.JndiObjectFactoryBean"
 <property name="jndiName" value="jdbc/RantzDatasource" />
 <property name="cache" value="false" />
 <property name="proxyInterface" value="javax.sql.DataSource" />
</bean>

Setting the cache property to false tells JndiObjectFactoryBean to always fetch
the object from JNDI. Notice that the proxyInterface property has also been set.
Since the JNDI object can be changed at any time, there’s no way for JndiObject-
FactoryBean to know the actual type of the object. The proxyInterface property
specifies a type that is expected for the object retrieved from JNDI.

Lazily loading JNDI objects
Sometimes your application won’t need to retrieve the JNDI object right away. For
instance, suppose that a JNDI object is only used in an obscure branch of your
application’s code. In that situation, it may not be desirable to load the object
until it is actually needed.

 By default, JndiObjectFactoryBean fetches objects from JNDI when the appli-
cation context is started. Nevertheless, you can configure it to wait to retrieve the
object until it’s needed by setting the lookupOnStartup property to false:

<bean id="dataSource"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="jdbc/RantzDatasource" />
 <property name="lookupOnStartup" value="false" />
 <property name="proxyInterface" value="javax.sql.DataSource" />
</bean>

As with the cache property, you’ll need to set the proxyInterface property when
setting lookupOnStartup to false. That’s because JndiObjectFactoryBean won’t
know the type of the object being retrieved until it is actually retrieved. The prox-
yInterface property tells it what type to expect from the fetched object.

Fallback objects
You now know how to wire JNDI objects in Spring and have a JNDI-loaded data
source to show for it. Life is good. But what if the object can’t be found in JNDI?

 For instance, maybe your application can count on a data source being avail-
able in JNDI when running in a production environment. But that arrangement

Wiring objects from JNDI 449
may not be practical in a development environment. If Spring is configured to
retrieve its data source from JNDI for production, the lookup will fail in develop-
ment. How can we make sure that a data source bean is always available from JNDI
in production and explicitly configured in development?

 As you’ve seen, JndiObjectFactoryBean is great for retrieving objects from
JNDI and wiring them in a Spring application context. But it also has a fallback
mechanism that can account for situations where the requested object can’t be
found in JNDI. All you must do is configure its defaultObject property.

 For example, suppose that you’ve declared a data source in Spring using Driv-
erManagerDataSource as follows:

<bean id="devDataSource"
 class="org.springframework.jdbc.datasource.
 ➥ DriverManagerDataSource">
 <property name="driverClassName"
 value="org.hsqldb.jdbcDriver" />
 <property name="url"
 value="jdbc:hsqldb:hsql://localhost/roadrantz/roadrantz" />
 <property name="username" value="sa" />
 <property name="password" value="" />
</bean>

This is the data source that you’ll use in development. But in production, you’d
rather use a data source configured in JNDI by the system administrators. If that’s
the case, you’ll configure the JndiObjectFactoryBean like this:

<bean id="dataSource"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="jdbc/RantzDatasource" />
 <property name="defaultObject" ref="devDataSource" />
</bean>

Here I’ve wired the defaultObject property with a reference to the devData-
Source bean. If JndiObjectFactoryBean can’t find an object in JNDI at jdbc/
RantzDatasource, it will use the devDataSource bean as its object.

 As you can see, it’s reasonably simple to use JndiObjectFactoryBean to wire
JNDI-managed objects into a Spring application context. What we’ve covered so far
works in all versions of Spring. But if you’re using Spring 2, there’s an even easier
way. Let’s see how Spring 2’s namespace support makes JNDI wiring even simpler.

12.1.3 Wiring JNDI objects in Spring 2

As easy as it is to wire JNDI objects into your Spring context using JndiObjectFac-
toryBean, it’s even easier if you’re using Spring 2. Spring 2’s jee namespace pro-
vides the <jee:jndi-lookup> configuration element for retrieving objects from

450 CHAPTER 12

Accessing enterprise services
JNDI. To use the <jee:jndi-lookup> element, you must declare the jee
namespace in your Spring XML using the following preamble:

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jee="http://www.springframework.org/schema/jee"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 ➥ spring-beans-2.0.xsd
 http://www.springframework.org/schema/jee
 http://www.springframework.org/schema/jee/spring-jee-2.0.xsd">

Now you can look up JNDI objects using <jee:jndi-lookup>. For example, the
following XML snippet retrieves a data source from JNDI:

<jee:jndi-lookup id="dataSource"
 jndi-name="jdbc/RantzDatasource"
 resource-ref="true" />

Under the covers, <jee:jndi-lookup> configures a JndiObjectFactoryBean in
the Spring context. This makes <jee:jndi-lookup> a shortcut for referencing
objects in JNDI. The jndi-name attribute maps to the jndiName property of
JndiObjectFactoryBean to identify the name of the object to look up. Likewise,
the resource-ref attribute maps to the resourceRef property and is used to indi-
cate that the object should be looked up as a JEE resource by prepending the
jndi-name with java:comp/env/.

 Looking up objects in JNDI comes in handy when you need access to objects
that are configured external to Spring. As you’ve seen, data sources may be con-
figured through an application server and accessed through JNDI. And as you’ll
see next, Spring’s JNDI lookup capability can be useful when sending email. Let’s
take a look at Spring’s email abstraction layer next.

12.2 Sending email

As a registered RoadRantz user, you might want to know when new rants are
posted for your vehicles. Although you could visit the RoadRantz site over and
over again, it may get a bit old to check every day only to find out that there’s
nothing new most of the time. Wouldn’t it be nice if, instead of having to check
the site for new rants, the site would contact you if there were new rants?

 In this section, we’ll add email functionality to the RoadRantz application so
that an email is generated when a new rant is posted. In doing so, we’re going to
take advantage of the email support provided by Spring.

Sending email 451
12.2.1 Configuring a mail sender

Spring comes with an email abstraction
API that makes simple work of sending
emails. At the heart of Spring’s email
abstraction is the MailSender interface.

 As its name implies and as illustrated in
figure 12.3, a MailSender implementation
sends email.

 Spring comes with two implementa-
tions of this interface, as described in
table 12.1.

Either mail sender is capable of meeting the needs of the RoadRantz email. But
we’ll choose JavaMailSenderImpl since it is the more versatile and more standard
of the two options. We’ll declare it as a <bean> in roadrantz-services.xml as follows:

<bean id="mailSender"
 class="org.springframework.mail.javamail.JavaMailSenderImpl">
 <property name="host" value="mail.roadrantz.com" />
</bean>

The host property specifies the hostname of the mail server that we’ll use to send
the email. By default, JavaMailSenderImpl assumes that the mail server is listen-
ing on port 25 (the standard SMTP port). However, if your mail server is listening
on a different port, specify the correct port number using the port property:

<bean id="mailSender"
 class="org.springframework.mail.javamail.JavaMailSenderImpl">
 <property name="host" value="mail.roadrantz.com" />
 <property name="port" value="1025" />
</bean>

Table 12.1 Mail senders handle the intricacies of sending email. Spring comes with two mail sender
implementations.

Mail sender implementation Description

CosMailSenderImpl Simple implementation of an SMTP mail sender based on Jason
Hunter’s COS (com.oreilly.servlet) implementation from his
Java Servlet Programming book (O’Reilly, 1998).

JavaMailSenderImpl A mail sender based on the JavaMail API. Allows for sending of MIME
messages as well as non-SMTP mail (such as Lotus Notes).

Mail
Sender

Email
Server

Figure 12.3 Spring’s MailSender interface
is primary component of Spring’s email
abstraction API. It simply sends an email to a
mail server for delivery.

452 CHAPTER 12

Accessing enterprise services
If the mail server requires authentication, also set values for the username and
password properties:

<bean id="mailSender"
 class="org.springframework.mail.javamail.JavaMailSenderImpl">
 <property name="host" value="mail.roadrantz.com" />
 <property name="username" value="rantzuser" />
 <property name="password" value="changeme" />
</bean>

As declared, this mailSender bean spells out the details of accessing the mail
server. The mail server’s hostname and the username/password pair are explic-
itly configured in Spring. However, this setup may raise red flags for you with
regard to security. Maybe you don’t want to hard-code this information in the
Spring configuration.

 You may already have a javax.mail.MailSession configured in JNDI (or per-
haps one was placed there by your application server). If so then Spring’s Java-
MailSenderImpl offers you an option to use the MailSender in JNDI.

Using a JNDI mail session
You’ve already seen how to retrieve objects from JNDI in section 12.1. To use a
mail session from JNDI, you can retrieve it using JndiObjectFactoryBean:

<bean id="mailSession"
 class="org.springframework.jndi.JndiObjectFactoryBean">
 <property name="jndiName" value="mail/Session" />
 <property name="resourceRef" value="true" />
</bean>

Or you can use the <jee:jndi-lookup> configuration element:

<jee:jndi-lookup id="mailSession"
 jndi-name="mail/Session"
 resource-ref="true" />

In either event, the mail session object retrieved from JNDI can be wired into the
mailSender bean as follows:

<bean id="mailSender"
 class="org.springframework.mail.javamail.JavaMailSenderImpl">
 <property name="session" ref="mailSession" />
</bean>

The mail session wired into the session property of JavaMailSenderImpl com-
pletely replaces the explicit server (and username/password) configuration from
before. Now the mail session is completely configured in JNDI.

Sending email 453
Wiring the mail sender into a service bean
Now that the mail sender has been configured, it’s time to wire it into the bean
that will use it. In the RoadRantz application, the RantServiceImpl class is the
most appropriate place to send the email from. To make the mail sender available
to the service bean, add a mailSender property (and its setter method) to Rant-
ServiceImpl:

private MailSender mailSender;
public void setMailSender(MailSender mailSender) {
 this.mailSender = mailSender;
}

Now we can use Spring DI to wire the mailSender bean into the mailSender
property:

<bean id="rantService"
 class="com.roadrantz.service.RantServiceImpl">
 <property name="rantDao" ref="rantDao" />
 <property name="mailSender" ref="mailSender" />
</bean>

With the mailSender bean wired into the rantService bean, we’re ready to con-
struct and send the email.

12.2.2 Constructing the email

Since we want to send an email to a motorist to alert the motorist of new rants for
their vehicle, it seems that we’ll need a method that sends an email for a particu-
lar vehicle. The sendEmailForVehicle() method in listing 12.1 uses the mail
sender to send the email.

public void sendEmailForVehicle(Vehicle vehicle) {
 Motorist motorist = vehicle.getMotorist();
 if(motorist == null) { return; }

 SimpleMailMessage message = new SimpleMailMessage(mailMessage);

 message.setTo(motorist.getEmail());

 String text = message.getText();
 text = StringUtils.replace(text, "%STATE%",
 vehicle.getState());
 text = StringUtils.replace(text, "%PLATE%",
 vehicle.getPlateNumber());
 message.setText(text);

 mailSender.send(message);
}

Listing 12.1 Sending an email to tell a motorist that they have new rants

Constructs copy
of message

Sets recipient’s address

Fills in
blanks

Sends email

454 CHAPTER 12

Accessing enterprise services
The first thing that sendEmailForVehicle() does is verify that the vehicle has a
motorist associated with it. If the motorist of the vehicle hasn’t registered with
RoadRantz, the motorist will be null and we won’t be able to send the email.

 Next, the details of the message are set. The motorist’s email address is given
to the setTo() method to specify the recipient of the email. And the message’s
text is set through the setText() method.

 Finally, sendEmailForVehicle() uses the mail sender to send the email.
 Most of the code in listing 12.1 is straightforward. But where does the email

message come from? And what is going on with those calls to String-
Utils.replace()?

 Although we could explicitly define the entire email message within the scope
of the sendEmailForVehicle() method, it would involve a lot of hard-coded val-
ues. It would be better to extract that message definition to a Spring-configured
bean. The following bean declaration captures the common properties of the
mail message:

<bean id="mailMessage"
 class="org.springframework.mail.SimpleMailMessage">
 <property name="from">
 <value><![CDATA[RoadRantz <notify@roadrantz.com>]]></value>
 </property>
 <property name="subject" value="You've got new Rantz!" />
 <property name="text">
 <value>
 <![CDATA[
Someone's been ranting about you! Log in to RoadRantz.com or
click on the link below to see what they had to say.

http://www.roadrantz.com/rantsForVehicle.htm?
 ➥ state=%STATE%&plateNumber=%PLATE%
]]>
 </value>
 </property>
</bean>

The mailMessage bean serves as a template for all of the beans sent from the
RoadRantz application. The from and subject values will be the same for all
emails sent from RoadRantz, so there’s no reason why we shouldn’t configure
them in this bean. The contents of the message will be mostly the same for all
emails sent, so we can configure it here using the text property. On the other
hand, the recipient will vary from email to email, so it doesn’t make much sense to
set the to property in the mailMessage bean.

Sending email 455
 To make the mailMessage bean available to the sendEmailForVehicle()
method, we’ll need to wire it into the RantServiceImpl class. First add a property
to hold the bean and a setter that will be used to inject it into RantServiceImpl:

private SimpleMailMessage mailMessage;
public void setMailMessage(SimpleMailMessage mailMessage) {
 this.mailMessage = mailMessage;
}

Then configure the rantService bean to wire the mailMessage bean into the
mailMessage property:

<bean id="rantService"
 class="com.roadrantz.service.RantServiceImpl">
 <property name="rantDao" ref="rantDao" />
 <property name="mailSender" ref="mailSender" />
 <property name="mailMessage" ref="mailMessage" />
</bean>

The only thing left to discuss is what is going on in sendEmailForVehicle()
where the StringUtils.replace() methods are used. Although the text of the
email is mostly the same for all emails that are sent, it will vary slightly. That’s
because the link that is included in the email has parameters that are specific to
the vehicle in question.

 While we could have constructed the email text in the sendEmailFor-
Vehicle() method, we’d prefer to configure it externally. By configuring it exter-
nally, we are afforded the opportunity to tweak the message without having to
change the method’s source code.

 So, the message configured in the mailMessage bean has two placeholders—
%STATE% and %PLATE%—that are replaced in sendEmailForVehicle() with the
vehicle’s state and license plate number. This makes it possible for the message to
be somewhat dynamic and still be configured in Spring.

 Now that we have a sendEmailForVehicle() method, we should figure out
how to best use it. Since we’d like to send an email alerting registered motorists of
new rants for their vehicles, it would seem best to make the call to sendEmailFor-
Vehicle() from within RantServiceImpl’s addRant() method:

public void addRant(Rant rant) {
 rant.setPostedDate(new Date());

 Vehicle rantVehicle = rant.getVehicle();

 // check for existing vehicle with same plates
 Vehicle existingVehicle =
 rantDao.findVehicleByPlate(rantVehicle.getState(),
 rantVehicle.getPlateNumber());

456 CHAPTER 12

Accessing enterprise services
 if(existingVehicle != null) {
 rant.setVehicle(existingVehicle);
 } else {
 rantDao.saveVehicle(rantVehicle);
 }

 rantDao.saveRant(rant);

 sendEmailForVehicle(existingVehicle);
}

Used this way, sendEmailForVehicle() will send an email to the motorist of the
vehicle within moments of a new rant being added. This is good, but it could
result in the motorist being bombarded with emails from RoadRantz. Maybe there
is some justice in filling a bad motorist’s inbox with frequent emails, but it proba-
bly will only result in the motorist discontinuing their relationship with
RoadRantz—something we’d rather not have happen.

 Rather than email the user after every rant, maybe it would be better to send
only one email per motorist per day. For that we’ll need a way to schedule the
sending of emails. As it so happens, Spring provides support for task scheduling,
as you’ll see in the next section.

12.3 Scheduling tasks

Much of the code we’ve written thus far is triggered as the result of some user
action. However, even though much of an application’s functionality is trig-
gered through user activity, sometimes it’s necessary to kick off some activity
based on a schedule.

 For example, in the RoadRantz application we’d like to send a single email to
every motorist who has received a rant within a given day. Even if the motorist has
been ranted about multiple times, only one email should be sent per day. The
sendDailyRantEmails() method in listing 12.2 pulls together a unique list of
vehicles that have been ranted about and sends an email to their motorist.

public void sendDailyRantEmails() {
 List<Rant> rantsForToday = getRantsForDay(new Date());

 Set<Vehicle> vehiclesRantedAboutToday = new HashSet<Vehicle>();

 for (Rant rant : rantsForToday) {
 vehiclesRantedAboutToday.add(rant.getVehicle());
 }

Listing 12.2 Sending a daily email to motorists who have been ranted about

Gets today’s
rants

Scheduling tasks 457
 for (Vehicle vehicle : vehiclesRantedAboutToday) {
 sendEmailForVehicle(vehicle);
 }
}

The first thing sendDailyRantEmails() does is call getRantsForDay() to retrieve
a list of rants for the current day. Because a motorist may have received several
rants on a given day, sendDailyRantEmails() then goes through the rants, plac-
ing each vehicle into a java.util.Set. By putting them into a Set, we know that
there won’t be any duplicates (and thus we won’t send duplicate emails). Finally,
sendDailyRantEmails() iterates over the set of vehicles and uses sendEmailFor-
Vehicle() to send an email to each vehicle’s motorist.

 Now we have a method that can be used to send a daily email to all the motor-
ists who have been ranted about. What we need now is to set up a schedule for
when that method will be called.

12.3.1 Scheduling with Java’s Timer

Starting with Java 1.3, the Java SDK has included rudimentary scheduling func-
tionality through its java.util.Timer class. This class lets you schedule a task
(defined by a subclass java.util.TimerTask) to occur every so often.

 Spring provides application context support for Java’s Timer through Timer-
FactoryBean. TimerFactoryBean is a Spring factory bean that produces a Java
Timer in the application context that kicks off a TimerTask. Figure 12.4 illustrates
how TimerFactoryBean works.

 I’ll show you how to configure a TimerFactoryBean in a moment. But first, we
need a TimerTask to send the email.

Sends emails

Timer

TimerTask
run()

Timer
FactoryBean

Produces

Figure 12.4
Spring’s TimerFactoryBean produces a Java
Timer, scheduled to kick off a TimerTask after
a specified time has passed.

458 CHAPTER 12

Accessing enterprise services
Creating a timer task
The first step in scheduling the daily rant email using Java’s Timer is to create the
email task by subclassing java.util.TimerTask, as shown in listing 12.3.

package com.roadrantz.service;
import java.util.TimerTask;

public class DailyRantEmailTask extends TimerTask {
 public DailyRantEmailTask() {}

 public void run() {
 rantService.sendDailyRantEmails();
 }

 // injected
 private RantService rantService;

 public void setRantService(RantService rantService) {
 this.rantService = rantService;
 }
}

The run() method defines what the task is to do when it is run. In this case, it calls
the sendDailyRantEmails() method on the injected RantService object.

 The DailyRantEmailTask can be configured in Spring like this:

<bean id="dailyRantEmailTask"
 class="com.roadrantz.service.DailyRantEmailTask">
 <property name="rantService" ref="rantService" />
</bean>

By itself, this <bean> declaration only places an instance of DailyRantEmailTask
into the Spring application context and wires the rantService bean into its rant-
Service property. But this bean is only a task—it won’t do anything interesting
until you schedule it.

Scheduling the timer task
Spring’s ScheduledTimerTask defines how often a timer task is to be run. Since
the rant email is daily, we should schedule it to run every 24 hours. The following
ScheduledTimerTask bean should do the trick:

<bean id="scheduledEmailTask"
 class="org.springframework.scheduling.timer.ScheduledTimerTask">
 <property name="timerTask" ref="dailyRantEmailTask" />
 <property name="period" value="86400000" />
</bean>

Listing 12.3 A timer task for sending the daily rant emails

Sends emails

Injects rant service

Scheduling tasks 459
The timerTask property tells the ScheduledTimerTask which TimerTask to run.
Here it is wired with a reference to the dailyRantEmailTask bean, which is the
DailyRantEmailTask. The period property is what tells the ScheduledTimerTask
how often the TimerTask’s run() method should be called. This property, speci-
fied in milliseconds, has been set to 86400000 to indicate that the task should be
kicked off every 24 hours.

Starting the timer
The last thing you’ll need to do is to start the timer. Spring’s TimerFactoryBean is
responsible for starting timer tasks. You can declare the TimerFactoryBean in
Spring like this:

<bean class="org.springframework.scheduling.timer.
 ➥ TimerFactoryBean">

 <property name="scheduledTimerTasks">
 <list>
 <ref bean="scheduledEmailTask"/>
 </list>
 </property>
</bean>

The scheduledTimerTasks property takes an array of timer tasks that it should
start. By default, TimerFactoryBean will start these tasks immediately upon appli-
cation startup. Since we only have one timer task right now, the list contains a sin-
gle reference to the scheduledEmailTask bean.

Delaying the start of the timer
Unfortunately, even though the task will be run every 24 hours, there is no way to
specify what time of the day it should be run. ScheduledTimerTask does have a
delay property that lets you specify how long to wait before the task is first run.

 For example, to delay the first run of DailyRantEmailTask by an hour, you’d
use this:

<bean id="scheduledEmailTask"
 class="org.springframework.scheduling.timer.
 ➥ ScheduledTimerTask">
 <property name="timerTask" ref="reportTimerTask"/>
 <property name="period" value="86400000" />
 <property name="delay" value="3600000" />
</bean>

Even with the delay, however, the time that the DailyRantEmailTask will run will
be relative to when the application starts. And each successive run will be relative
to the end time of the previous run. How can you have it sent at midnight every
night (aside from starting the application at 11:00 p.m.)?

460 CHAPTER 12

Accessing enterprise services
 This highlights a limitation of using Java’s Timer. Although it’s great for run-
ning tasks at a regular interval, it’s difficult to schedule tasks to run at a specific
time. In order to specify precisely when the email is sent, you’ll need to use the
Quartz scheduler instead.

12.3.2 Using the Quartz scheduler

Suppose that we want the daily rant email to be sent at 11:59 p.m. every night.
Unfortunately, Java’s Timer is limited to scheduling how often the task is per-
formed, not when it is performed.

 The Quartz scheduler provides richer support for scheduling jobs. Just as with
Java’s Timer, you can use Quartz to run a job every so many milliseconds. But
Quartz goes beyond Java’s Timer by enabling you to schedule a job to run at a par-
ticular time and/or day. This makes Quartz more suitable for sending the daily
rant email than Java’s Timer.

 For more information about Quartz, visit the Quartz home page at http://
www.opensymphony.com/quartz.

Creating a Quartz job
The first step in defining a Quartz job is to create the class that defines the job.
For that, we’ll subclass Spring’s QuartzJobBean, as shown in listing 12.4.

package com.roadrantz.service;
import org.quartz.JobExecutionContext;
import org.quartz.JobExecutionException;
import org.springframework.scheduling.quartz.QuartzJobBean;

public class DailyRantEmailJob extends QuartzJobBean {
 public DailyRantEmailJob() {}

 protected void executeInternal(JobExecutionContext jobContext)
 throws JobExecutionException {
 rantService.sendDailyRantEmails();
 }

 private RantService rantService;
 public void setRantService(RantService rantService) {
 this.rantService = rantService;
 }
}

Listing 12.4 Defining a Quartz job for sending a daily rant email

Sends enrollment report

Injects RantService

Scheduling tasks 461
A QuartzJobBean is the Quartz equivalent of Java’s TimerTask. It is an implemen-
tation of Quartz’s org.quartz.Job interface. The executeInternal() method
defines the actions that the job will do when its time comes. Here, just as with
DailyRantEmailTask, the task simply makes a call to the sendDailyRantEmails()
method of the injected RantService bean.

 Declare the job in the Spring configuration file as follows:

<bean id="dailyRantEmailJob"
 class="org.springframework.scheduling.quartz.JobDetailBean">
 <property name="jobClass"
 value="com.roadrantz.service.DailyRantEmailJob" />
 <property name="jobDataAsMap">
 <map>
 <entry key="rantService" value-ref="rantService" />
 </map>
 </property>
</bean>

Notice that although the job is defined in the DailyRantEmailJob class, it’s not
this class that is declared in the Spring context. Instead, a JobDetailBean is
declared. This is an idiosyncrasy of working with Quartz. JobDetailBean is a sub-
class of Quartz’s org.quartz.JobDetail, which requires that the Job implementa-
tion be set through the jobClass property.

 Another quirk of working with Quartz’s JobDetail is that the rantService
property of DailyRantEmailJob isn’t set directly. Instead, JobDetail’s job-
DataAsMap property takes a java.util.Map that contains properties that are to be
set on the object specified by jobClass. Here, the map contains a reference to the
rantService bean with a key of rantService. When JobDetailBean is instanti-
ated, it will inject the rantService bean into the rantService property of Daily-
RantEmailJob.

Scheduling the job
Now that the job is defined, you’ll need to schedule the job. As shown in
figure 12.5, Quartz’s org.quartz.Trigger class decides when and how often a
Quartz job should run.

 Spring comes with two subclasses of Trigger: SimpleTriggerBean and Cron-
TriggerBean. Which one should you use? Let’s have a look at each of them, start-
ing with SimpleTriggerBean.

 SimpleTriggerBean is very similar to ScheduledTimerTask, which we dis-
cussed in the last section. Using it, you can specify how often a job should run and
(optionally) how long to wait before running the job for the first time. For

462 CHAPTER 12

Accessing enterprise services
example, to schedule the report job to run every 24 hours, with the first run start-
ing one hour after the application starts, declare the following bean:

<bean id="simpleReportTrigger"
 class="org.springframework.scheduling.quartz.
 ➥ SimpleTriggerBean">
 <property name="jobDetail" ref="dailyRantEmailJob"/>
 <property name="startDelay" value="3600000" />
 <property name="repeatInterval" value="86400000" />
</bean>

The jobDetail property is wired with the job that is to be scheduled. Here it is the
dailyRantEmailJob bean, which we declared earlier. The repeatInterval prop-
erty tells the trigger how often to run the job (in milliseconds). Here we’ve speci-
fied that the job should run every 86,400,000 milliseconds—or every 24 hours.
Finally, the optional startDelay property has been set to delay the first run of the
job to one hour (or 3,600,000 milliseconds) after the application is started.

 Although you can probably think of many applications for which SimpleTrig-
gerBean is perfectly suitable, it isn’t sufficient for emailing the daily rant email.
Just as with the DailyRantEmailTask (which is based on Java’s Timer), we can
only specify how often the job is run—not exactly when it’s run. Therefore, we
can’t rely on SimpleTriggerBean to send out the daily emails at midnight as we
want. For more precise control over scheduling, Quartz provides cron jobs.

Scheduling a cron job
CronTriggerBean is another Spring subclass of Quartz’s Trigger class. This trig-
ger class, however, lets you specify exact times and days when the job will run. If
you’re familiar with the Unix cron tool, you’ll feel right at home with CronTrig-
gerBean. Instead of declaring how often a job is run, CronTriggerBean lets you
use a cron expression to specify exact times (and days) that a job will run.

T

JobDetailBean
DailyRant
EmailJob

executeInternal()

RantService

sendDailyRantEmails()

riggerBean

Figure 12.5
A Quartz trigger determines the exact
time that a job will be kicked off.

Scheduling tasks 463
 For example, to declare that DailyRantEmailJob be run every day at 11:59
p.m., declare a CronTriggerBean in Spring as follows:

<bean id="cronEmailTrigger"
 class="org.springframework.scheduling.quartz.CronTriggerBean">
 <property name="jobDetail" ref="dailyRantEmailJob"/>
 <property name="cronExpression" value="0 59 23 * * ?" />
</bean>

As with SimpleTriggerBean, the jobDetail property tells the trigger which job to
schedule. Again, we’ve wired it with a reference to the dailyRantEmailJob bean.
The cronExpression property tells the trigger when to fire. If you’re a cron
fanatic, you will have no trouble deciphering this property’s value (and we’re
guessing that you have little trouble setting the timer on your VCR).

 But for those of you who aren’t as well versed in cron expressions, let’s break
down the cronExpression property a bit. It is made up of six (or possibly seven)
time elements, separated by spaces. In order from left to right, the elements are
defined as follows:

1 Seconds (0–59)

2 Minutes (0–59)

3 Hours (0–23)

4 Day of month (1–31)

5 Month (1–12 or JAN–DEC)

6 Day of week (1–7 or SUN–SAT)

7 Year (1970–2099)

Each of these elements can be specified with an explicit value (e.g., 6), a range
(e.g., 9–12), a list (e.g., 9,11,13), or a wildcard (e.g., *). The day of the month
and day of the week elements are mutually exclusive, so you should also indicate
which one of these fields you don’t want to set by specifying it with a question
mark (?). Table 12.2 shows some example cron expressions and what they mean.

 In the case of the cronEmailTrigger bean, we’ve set the cronExpression
property to 0 59 23 * * ?. You can read this as the zero second of the 59th
minute of the 23rd hour of any day of the month of any month (regardless of the
day of the week). In other words, the trigger is fired at a minute before midnight
every night.

 With this kind of precision in timing, it’s clear that CronTriggerBean is better
suited for our daily email than SimpleTriggerBean. Now all that’s left is to start
the job.

464 CHAPTER 12

Accessing enterprise services
Starting the job
To start a Quartz job, we’ll use Spring’s SchedulerFactoryBean. SchedulerFacto-
ryBean is the Quartz equivalent to TimerFactoryBean. It is declared in the Spring
configuration as follows:

 <bean class="org.springframework.scheduling.
 ➥ quartz.SchedulerFactoryBean">
 <property name="triggers">
 <list>
 <ref bean="cronEmailTrigger"/>
 </list>
 </property>
</bean>

The triggers property takes an array of references to trigger beans. Since we
only have a single trigger at the moment, we simply need to wire it with a list con-
taining a single reference to the cronEmailTrigger bean.

 At this point, we should have a nightly email generated at just before midnight
every night. But in doing so, perhaps we’ve done a bit too much work. Before we
let this go, let’s take a look at a slightly easier way to schedule the nightly email.

12.3.3 Invoking methods on a schedule

In scheduling the nightly rant email we wrote a DailyRantEmailJob bean (or the
DailyRantEmailTask bean in the case of the timer tasks). But this bean doesn’t
do much more than make a simple call to the sendDailyRantEmails() method of
the RantService. In this light, both DailyRantEmailJob and DailyRantEmail-
Task seem a bit superfluous. Wouldn’t it be great if we could just ask Spring to call
sendDailyRantEmails() without having to write the extra task or job class?

 Good news! If all you want to do is schedule a single method call, you can
do that without writing a separate TimerTask or QuartzJobBean class. To accom-
plish this, Spring has provided MethodInvokingTimerTaskFactoryBean and

Table 12.2 Some sample cron expressions.

Expression What it means

0 0 10,14,16 * * ? Every day at 10 a.m., 2 p.m., and 4 p.m.

0 0,15,30,45 * 1-30 * ? Every 15 minutes on the first 30 days of the month

30 0 0 1 1 ? 2012 30 seconds after midnight on January 1, 2012

0 0 8-17 ? * MON-FRI Every working hour of every business day

Scheduling tasks 465
MethodInvokingJobDetailFactoryBean to schedule method calls with Java’s
timer support and the Quartz scheduler, respectively.

 For example, to schedule a call to sendDailyRantEmails() using Java’s timer
service, redeclare the scheduledEmailTask bean as follows:

<bean id="scheduledEmailTask"
 class="org.springframework.scheduling.timer.
 ➥ MethodInvokingTimerTaskFactoryBean">
 <property name="targetObject" ref="rantService"/>
 <property name="targetMethod" value="sendDailyRantEmails" />
</bean>

Behind the scenes, MethodInvokingTimerTaskFactoryBean will create a Timer-
Task that calls the method specified by the targetMethod property on the object
that is referenced by the targetObject property (as shown in figure 12.6). This is
effectively the same as the DailyRantEmailTask. Now you can eliminate the
DailyRantEmailTask class and its declaration in the dailyRantEmailTask bean.

 MethodInvokingTimerTaskFactoryBean is good when scheduling simple one-
method calls using a ScheduledTimerTask. But ScheduledTimerTask didn’t pro-
vide us with the precision needed to schedule the email at just before midnight
every night. So instead of using MethodInvokingTimerTaskFactoryBean, let’s
redeclare the dailyRantEmailJob bean as follows:

<bean id="dailyRantEmailJob"
 class="org.springframework.scheduling.quartz.
 ➥ MethodInvokingJobDetailFactoryBean">
 <property name="targetObject" ref="rantService"/>
 <property name="targetMethod" value="sendDailyRantEmails" />
</bean>

As you may have guessed, MethodInvokingJobDetailFactoryBean is the Quartz
equivalent of MethodInvokingTimerTaskFactoryBean. Under the covers it will

Timer

TimerTask RantService

MethodInvoking
TimerTask

FactoryBean

Produces

run() sendDailyRantEmails()

Figure 12.6 MethodInvokingTimerTaskFactoryBean produces a Java TimerTask
that is configured to invoke a specific method on a specific bean in the application context.

466 CHAPTER 12

Accessing enterprise services
create a Quartz JobDetail object that makes a single method call to the object
and method specified by the targetObject and targetMethod properties (see
figure 12.7).

 Now that we’ve scheduled our email, we can sit back and enjoy the fact that
our registered motorists are receiving their rant notification emails. But wait…
what if the mail server is down at the time when the scheduler goes off? Is there
a way that we can manually trigger the email? Or what if we decide to change the
scheduler’s time? Do we need to redeploy the application to enact changes to
the scheduler?

 To address these concerns, let’s now look at how Spring’s support for JMX
enables us to create a management interface for our application’s beans, letting
us change and invoke them on the fly.

12.4 Managing Spring beans with JMX

Spring’s support for DI is a great way to configure bean properties in an applica-
tion. But once the application has been deployed and is running, there’s not
much that DI alone can do to help you change that configuration. Suppose that
you want to dig into a running application and change its configuration on the fly.
That’s where Java Management Extensions (JMX) comes in.

 JMX is a technology that enables you to instrument applications for manage-
ment, monitoring, and configuration. Originally available as a separate extension
to Java, JMX is now a standard part of the Java 5 distribution.

TriggerBean

JobDetailBean RantService
sendDailyRantEmails()

MethodInvoking
JobDetail

FactoryBean

produces

Figure 12.7
MethodInvokingJobDetailFactoryBean
produces a Quartz JobDetail that invokes a
single method on a specified bean.

Managing Spring beans with JMX 467
 In this section we’ll focus on how JMX is supported in Spring. If you want to
learn more about JMX, we recommend that you have a look at JMX in Action (Man-
ning, 2002).

 The key component of an application that is instrumented for management
with JMX is the MBean (managed bean). An MBean is a JavaBean that exposes
certain methods that define the management interface. The JMX specification
defines four types of MBeans:

■ Standard MBeans—Standard MBeans are MBeans whose management inter-
face is determined by reflection on a fixed Java interface that is imple-
mented by the bean class.

■ Dynamic MBeans—Dynamic MBeans are MBeans whose management inter-
face is determined at runtime by invoking methods of the DynamicMBean
interface. Because the management interface isn’t defined by a static inter-
face, it can vary at runtime.

■ Open MBeans—Open MBeans are a special kind of dynamic MBean whose
attributes and operations are limited to primitive types, class wrappers for
primitive types, and any type that can be decomposed into primitives or
primitive wrappers.

■ Model MBeans—A model MBean is a special kind of dynamic MBean that
bridges a management interface to the managed resource. Model MBeans
aren’t written as much as they are declared. Model MBeans are typically
produced by a factory that uses some meta-information to assemble the
management interface.

Spring’s JMX module enables you to export Spring beans as Model MBeans so that
you can see inside your application and tweak the configuration—even while the
application is running. Let’s see how to use Spring’s JMX support to manage the
beans within a Spring application.

12.4.1 Exporting Spring beans as MBeans

In the previous section, we used Spring’s scheduling support to schedule the gen-
eration of emails at 11:59 p.m. every night. Although just before midnight is usu-
ally best for sending the emails, it would also be nice to be able to adjust the
timing of the email without having to redeploy the RoadRantz application. To
accommodate reconfiguration of the scheduler, we’re going to use Spring’s JMX
support to export the timer bean as an MBean.

 Spring’s MBeanExporter is a bean that exports one or more Spring beans as
Model MBeans in an MBean server. An MBean server (sometimes called an MBean

468 CHAPTER 12

Accessing enterprise services
agent) is a container where MBeans live and through which the MBeans are
accessed. For MBeans to be of any use for management and configuration, they
must be registered in an MBean server. As illustrated in figure 12.8, exporting
Spring beans as JMX MBeans makes it possible for a JMX-based management tool
such as MC4J (http://mc4j.org) to peer inside a running application to view the
beans’ properties and invoke their methods.

 The following <bean> declares an MBeanExporter bean in Spring to export the
cronEmailTrigger bean as a Model MBean:

<bean class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="rantz:name=emailSchedule"
 value-ref="cronEmailTrigger"/>
 </map>
 </property>
</bean>

In its simplest form, MBeanExporter can be configured through its beans property
with a <map> of one or more beans that you’d like to expose as a model MBean
through JMX. The key of each <entry> is the name of the MBean. The value of
the <entry> is a reference to the Spring-managed bean that is to be exported.
Here we’re exporting the cronEmailTrigger bean so that the timer can be man-
aged through JMX.

Spring Application Context

MBean
Exporter

Bean A

Bean B
MBean

Exporter

MC4J
MBean
Server

Figure 12.8 Spring’s MBeanExporter exports the properties and methods of Spring beans as
JMX attributes and operations in an MBean server. From there, a JMX management tool such as
MC4J can look inside the running application.

Managing Spring beans with JMX 469
NOTE As configured above, MBeanExporter assumes that it is running within an
application server that provides an MBean server (such as Tomcat or
JBoss). But if your Spring application will be running stand-alone or in a
container that doesn’t provide an MBean server, you’ll want to configure
an MBeanServerFactoryBean:

<bean id="jmxServer"
 class="org.springframework.jmx.support.

➥ MBeanServerFactoryBean">
 <property name="defaultDomain" value="rantz" />
</bean>

Then you’ll need to wire the MBeanServerFactoryBean into the MBean-
Exporter’s server property:

<bean id="mbeanExporter"
 class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="rantz:name=emailSchedule"
 value-ref="cronEmailTrigger"/>
 </map>
 </property>

 <property name="server" ref="jmxServer" />
</bean>

With the MBeanExporter in place, the cronEmailTrigger bean will be exported as
a Model MBean to the MBean server for management under the name
emailSchedule. Figure 12.9 shows how the cronEmailTrigger MBean appears
when viewed through MC4J.

 As you can see from figure 12.9, all public members of the cronEmailTrigger
bean are exported as MBean operations and attributes. This is probably not what
we want. All we really want to do is to be able to configure the timing of the daily
email. The cronExpression property tells CronTriggerBean when to trigger jobs.
But even if we change this property, its schedule won’t take effect until after the
next job is fired. If we want to control when the next job is fired, we’ll also need to
be able to configure the nextFireTime property.

 All of the other attributes and operations, however, are superfluous and just
get in the way. Furthermore, we may want to purposefully restrict those other
attributes and operations from appearing in the management interface to avoid
accidental changes to the bean. Thus, we need a way to select which attributes and
operations end up in the management.

 Recall that a model MBean is an MBean whose management interface is
assembled using some form of meta-information. In Spring, when it comes to

470 CHAPTER 12

Accessing enterprise services
picking and choosing which methods and properties of a bean become opera-
tions and attributes of a model MBean, we must specify an MBean assembler:

<bean id="mbeanExporter"
 class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="rantz:name=emailSchedule"
 ➥ value-ref="cronEmailTrigger"/>
 </map>
 </property>

 <property name="assembler" ref="assembler" />
</bean>

An assembler is a bean whose job is to assemble the management interface for
MBeans that are exported by MBeanExporter. We have three assemblers to choose
from, each using a different source of meta-information to define the manage-
ment interface.

Figure 12.9 CronTriggerBean exported as an MBean and seen through the eyes of MC4J. Notice
that all of CronTriggerBean’s public methods and properties are exported as MBean operations and
attributes.

Managing Spring beans with JMX 471
■ MethodNameBasedMBeanInfoAssembler—Lets you explicitly configure meth-
ods to expose by name

■ InterfaceBasedMBeanInfoAssembler—Exposes bean methods based on
what is contained in an interface

■ MetadataMBeanInfoAssembler—Exposes bean methods and properties that
are annotated with @ManagedOperation and @ManagedAttribute

Let’s look at how to use each of these MBean assemblers one by one starting with
the MethodNameBasedMBeanInfoAssembler.

Exposing methods by name
MethodNameBasedMBeanInfoAssembler is an MBean assembler that decides which
bean methods and properties to expose on the MBean’s management interface
based on a list of method names. The following <bean> declaration shows an
example of using MethodNameBasedMBeanInfoAssembler to expose the cron-
Expression and nextFireTime properties of the cronEmailTrigger bean:

<bean id="assembler"
 class="org.springframework.jmx.export.assembler.
 ➥ MethodNameBasedMBeanInfoAssembler">
 <property name="managedMethods">
 <list>
 <value>setCronExpression</value>
 <value>getCronExpression</value>
 <value>setNextFireTime</value>
 <value>getNextFireTime</value>
 </list>
 </property>
</bean>

The managedMethods property takes a list of method names that are to be exposed
as managed operations. Notice that to expose the cronExpression and next-
FireTime properties as MBean attributes, we had to declare their setter and getter
methods. Although managedMethods is meant to expose methods as managed
operations, the corresponding properties are exposed as managed attributes if
the methods are getter and setter methods.

 Now when we look at the emailSchedule MBean in a JMX client, we see only
the attributes and operations we specified to be exported. Figure 12.10 shows how
the newly assembled emailSchedule MBean looks in MC4J.

 As you’ve seen, the MethodNameBasedMBeanInfoAssembler is the simplest of all
of Spring’s MBean assemblers. It lets you succinctly list all the methods that you
wish to expose in the management interfaces of the exported MBeans.

472 CHAPTER 12

Accessing enterprise services
On the other hand, MethodNameBasedMBeanInfoAssembler is also the most cum-
bersome to use because it requires that you specify all of the methods that you
wish to expose. If you are using MBeanExporter to export several beans, each with
their own set of methods to be exposed, the list of method names given to man-
agedMethods will likely grow very large. And because the method names are all
listed together, it will be difficult to know which methods belong to which
exported beans.

Using interfaces to define MBean operations and attributes
Another of Spring’s MBean assemblers is InterfaceBasedMBeanInfoAssembler.
InterfaceBasedMBeanInfoAssembler is similar to MethodNameBasedMBeanInfo-
Assembler, except that instead of declaring which methods to expose on the man-
agement interface, you declare one or more Java interfaces that define the
management methods.

Figure 12.10 Once we use an MBean assembler, only selected methods and properties are exposed
through the exported MBean.

Managing Spring beans with JMX 473
 To illustrate, suppose that we’ve defined the following interface:

package com.roadrantz.service.mbean;
import java.util.Date;

public interface ManagedCronTrigger {
 void setCronExpression(String ce);
 String getCronExpression();
 void setNextFireTime(Date date);
 Date getNextFireTime();
}

The ManagedCronTrigger interface contains declarations of the methods we’d
like to expose from the Quartz CronTriggerBean. With this interface, we can
declare an interface-based assembler as follows:

<bean id="assembler"
 class="org.springframework.jmx.export.assembler.
 ➥ InterfaceBasedMBeanInfoAssembler">
 <property name="managedInterfaces">
 <list>
 <value>com.roadrantz.service.mbean.ManagedCronTrigger</value>
 </list>
 </property>
</bean>

With ManagedCronTrigger being the only managed interface specified, this
assembler is effectively equivalent to the MethodNameBasedMBeanInfoAssembler
we declared earlier. The difference is that we’re now able to use Java interfaces to
define our MBean managed interfaces.

 Before we move on to the next type of assembler, you may want to take note of
the fact that although ManagedCronTrigger declares methods that we’d like to
expose on the exported MBean, CronTriggerBean doesn’t directly implement
this interface. Oftentimes, the interfaces specified in the managedInterfaces
property will be interfaces that are actually implemented by the exported beans.
But as you can see here in the case of CronTriggerBean and ManagedCronTrigger,
they do not have to be.

 Both MethodNameBasedMBeanInfoAssembler and InterfaceBasedMBeanInfo-
Assembler are suitable for assembling an MBean’s managed interface, especially
when you do not have access to the source code for the beans that are to be
exported. But there’s one more MBean information assembler that is great when
you have access to the MBean’s source code.

474 CHAPTER 12

Accessing enterprise services
Working with metadata-driven MBeans
If you are lucky enough to have access to the bean’s source code, you may want to
consider exporting your beans using a metadata-driven MBean assembler.

 For example, suppose that we’d like to export the rantService bean as an
MBean so that we can invoke the sendDailyRantEmails() method as a managed
operation. We could certainly use either MethodNameBasedMBeanInfoAssembler
or InterfaceBasedMBeanInfoAssembler to assemble the MBean’s managed inter-
face. But with either of those assemblers we’d have to write some interface or dec-
laration separate from the rantService bean or the RantServiceImpl class. What
if we could take advantage of Java 5 annotations instead?

 Spring’s MetadataMBeanInfoAssembler is an MBean assembler that assembles
an MBean’s managed interface based on source-level metadata placed on the
methods and properties to be exposed. The following <bean> declaration sets up
the assembler bean to use source-level metadata:

<bean id="assembler"
 class="org.springframework.jmx.export.assembler.
 ➥ MetadataMBeanInfoAssembler">
 <property name="attributeSource" ref="attributeSource" />
</bean>

The attributeSource property is used to tell MetadataMBeanInfoAssembler
what kind of metadata to look for. In theory, MetadataMBeanInfoAssembler
can be configured to read MBean metadata from virtually any number of
metadata sources, so long as the attributeSource property is configured with
an implementation of org.springframework.jmx.export.metadata.JmxAttri-
buteSource. Spring comes with two such implementations to choose from:

■ AttributesJmxAttributeSource—Reads MBean metadata that is precom-
piled into source code using Jakarta Commons Attributes

■ AnnotationJmxAttributeSource— Reads MBean metadata from JDK 1.5
annotations

Since we’re targeting Java 5, we’ll use AnnotationJmxAttributeSource so that we
can use annotations. It is declared in Spring with the following <bean>:

<bean id="attributeSource"
 class="org.springframework.jmx.export.annotation.
 ➥ AnnotationJmxAttributeSource" />

Meanwhile, MBeanExporter is wired with a reference to the MetadataMBean-
InfoAssembler along with a couple of other useful properties:

Managing Spring beans with JMX 475
<bean id="mbeanExporter"
 class="org.springframework.jmx.export.MBeanExporter">
 <property name="assembler" ref="assembler" />
 <property name="autodetectModeName"
 value="AUTODETECT_ASSEMBLER" />
 <property name="namingStrategy" ref="namingStrategy" />
</bean>

Rather than explicitly list all beans that are to be exposed as MBeans through the
beans property, we’d like Spring to figure out which beans to expose as MBeans
based on their annotations. Therefore, we’ve configured the autodetectMode-
Name property with AUTODETECT_ASSEMBLER. This tells the MBeanExporter to use
the MetadataMBeanInfoAssembler to look for all beans in the Spring application
context that are annotated with the @ManagedResource annotation.

 Moreover, MetadataMBeanInfoAssembler determines a bean’s managed
attributes and operations by looking for properties and methods annotated with
@ManagedAttribute and @ManagedOperation (respectively). For example,
consider the annotated RantService interface in Listing 12.5.

package com.roadrantz.service;
import java.util.Date;
import java.util.List;
import org.springframework.jmx.export.annotation.
 ➥ ManagedOperation;
import org.springframework.jmx.export.annotation.
 ➥ ManagedResource;
import com.roadrantz.domain.Rant;
import com.roadrantz.domain.Motorist;
import com.roadrantz.domain.Vehicle;

@ManagedResource(objectName="rantz:name=RantService")
public interface RantService {
 public void addRant(Rant rant);
 public List<Rant> getRecentRants();
 public void addMotorist(Motorist motorist)
 throws MotoristAlreadyExistsException;
 public List<Rant> getRantsForVehicle(Vehicle vehicle);
 public List<Rant> getRantsForDay(Date date);
 public void sendEmailForVehicle(Vehicle vehicle);

 @ManagedOperation(
 description="Send the daily rant e-mail.")
 public void sendDailyRantEmails();
}

Listing 12.5 Using annotations to declaratively create MBeans

Declare as an
MBean

Expose as a
managed operation

476 CHAPTER 12

Accessing enterprise services
I’ve annotated the RantService interface with @ManagedResource to indicate
that any class that implements it should be exposed as an MBean. I’ve also anno-
tated the sendDailyRantEmails() method with @ManagedOperation to indi-
cate that this method should be exposed as a managed operation.

 However, the beans property did more than just list the beans to expose as
MBeans; it also gave the MBeans their names. If we’re not explicitly listing the
beans anymore, how can we make sure that the MBeans are named appropriately?

 That’s what the namingStrategy property is for. By default, MBeanExporter
uses KeyNamingStrategy, which draws the MBean name from the key value in the
map that is wired into the beans property. Since we’re not using the beans map,
KeyNamingStrategy won’t work. Instead, we’ll use MetadataNamingStrategy,
which is declared as follows:

<bean id="namingStrategy"
 class="org.springframework.jmx.export.naming.
 ➥ MetadataNamingStrategy">
 <property name="attributeSource" ref="attributeSource" />
</bean>

As you might guess, MetadataNamingStrategy determines MBean names from
metadata placed in the bean class. In this case, we’ve wired the attributeSource
with a reference to the AnnotationJmxAttributeSource bean we defined earlier.
Thus, each MBean’s name will be specified by the objectName attribute of the
@ManagedResource annotation.

Handling MBean object name collisions
So far you’ve seen how to publish an MBean into an MBean server using several
approaches. In all cases, we’ve given the MBean an object name that is made up of
a managed domain name and a key-value pair. Assuming that there’s not already
an MBean published with the name we’ve given our MBean, we should have no
trouble publishing our MBean. But what happens if there’s a name collision?

 By default, MBeanExporter will throw an InstanceAlreadyExistsException
should you try to export an MBean that is named the same as an MBean that’s
already in the MBean server. But you can change that behavior by setting the reg-
istrationBehaviorName property on the MBeanExporter. For example, the fol-
lowing <bean> declares an MBeanExporter that replaces the existing MBean with
the new MBean being registered:

<bean class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="rantz:name=emailSchedule"

Managing Spring beans with JMX 477
 value-ref="cronEmailTrigger"/>
 </map>
 </property>

 <property name="registrationBehaviorName"
 value="REGISTRATION_REPLACE_EXISTING" />
</bean>

There are three options for the registrationBehaviorName property, as
described in table 12.3.

 As we mentioned, MBeanExporter’s default behavior is to throw an
InstanceAlreadyExistsException in the event of an MBean object name colli-
sion. Therefore, it’s unnecessary to explicitly set the registrationBehaviorName
property with REGISTRATION_FAIL_ON_EXISTING.

 Now that we’ve registered our MBeans using MBeanExporter, we’ll need a way to
access them for management. As you’ve seen already, most JMX implementations
support an HTML interface for the MBean server. But the HTML interface varies
across all JMX implementations and doesn’t lend itself to programmatic manage-
ment of MBeans. Fortunately, there’s another way to access MBeans as remote
objects. Let’s explore how Spring’s support for remote MBeans will enable us to
access our MBeans in a standard way.

12.4.2 Remoting MBeans

Although the original JMX specification referred to remote management of appli-
cations through MBeans, it didn’t define the actual remoting protocol or API.
Consequently, it fell to JMX vendors to define their own, often proprietary, remot-
ing solutions.

 In response to the need for a standard for remote JMX, the Java Community
Process produced JSR-160, the Java Management Extensions (JMX) Remote API
Specification. This specification defines a standard for JMX remoting, which at

Table 12.3 MBean registration behavior options.

Behavior name Use it when…

REGISTRATION_FAIL_ON_EXISTING You’d like to be notified (via an exception) when an
MBean registration fails due to a name collision

REGISTRATION_IGNORE_EXISTING You’d like to attempt to register an MBean but fail
silently on a name collision

REGISTRATION_REPLACE_EXISTING You’d like to replace an existing MBean with a new
MBean

478 CHAPTER 12

Accessing enterprise services
minimum requires an RMI binding and optionally the JMX Messaging Protocol
(JMXMP).

Exposing remote MBeans
The simplest thing we can do to make our MBeans available as remote objects is
to configure Spring’s ConnectorServerFactoryBean:

<bean class="org.springframework.jmx.support.
 ➥ ConnectorServerFactoryBean" />

ConnectorServerFactoryBean creates and starts a JSR-160 JMXConnectorServer.
By default, the server listens for the JMXMP protocol on port 9875—thus it is
bound to service:jmx:jmxmp://localhost:9875. The problem with this is that
most JMX implementations do not support JMXMP. Therefore, we’ll need to
choose some other protocol for accessing our MBeans.

 Depending on your JMX provider, you may have several remoting protocol
options to choose from. MX4J’s (http://mx4j.sourceforge.net/) remoting sup-
port includes RMI, SOAP, Hessian/Burlap, and IIOP. RMI is sufficient for our
needs, so let’s configure ConnectorServerFactoryBean to expose its beans
remotely with RMI:

<bean class="org.springframework.jmx.support.
 ➥ ConnectorServerFactoryBean">
 <property name="serviceUrl"
 value="service:jmx:rmi://localhost/jndi/rmi://localhost:1099/
 ➥ rantz" />
</bean>

The serviceUrl property is used to specify the remote binding for the JMXCon-
nectorServer. In this case, we’re binding it to an RMI registry listening on port
1099 of the localhost. That means we’ll also need an RMI registry running. As
you’ll recall from chapter 8, an RMI registry can be started through Spring with
the following <bean> declaration:

<bean class="org.springframework.remoting.rmi.
 ➥ RmiRegistryFactoryBean">
 <property name="port" value="1099" />
</bean>

And that’s it! Now our MBeans are available through RMI. But there’s little point
in doing this if nobody will ever access the MBeans over RMI. So, let’s now turn
our attention to the client side of JMX remoting and see how to wire up a remote
MBean in Spring.

Managing Spring beans with JMX 479
Accessing remote MBeans
Accessing a remote MBean server involves configuring an MBeanServerConnec-
tionFactoryBean in Spring. The following <bean> declares an MBeanServerCon-
nectionFactoryBean that is used to access the remote server we created in the
previous section:

<bean id="mBeanServerClient"
 class="org.springframework.jmx.support.
 ➥ MBeanServerConnectionFactoryBean">
 <property name="serviceUrl"
 value="service:jmx:rmi://localhost/jndi/rmi://localhost:1099/
 ➥ rantz" />
</bean>

As its name implies, MBeanServerConnectionFactoryBean is a factory bean that
creates an MBeanServerConnection. The MBeanServerConnection produced by
MBeanServerConnectionFactoryBean acts as a local proxy to the remote MBean
server. It can be wired into a property just like any other bean:

<bean id="jmxClient"
 class="com.springinaction.jmx.JmxClient">
 <property name="mbeanServerConnection"
 ref="mBeanServerClient" />
</bean>

MBeanServerConnection provides several methods that let you query the remote
MBean server and invoke methods on the MBeans contained within it. For exam-
ple, say that we’d like to know how many MBeans are registered in the remote
MBean server. The following code snippet will print that information:

int mbeanCount = mbeanServerConnection.getMBeanCount();
print ("There are " + mbeanCount + " MBeans");

 And you may also query the remote server for all of the MBean names using
the queryNames() method:

java.util.Set mbeanNames =
 mbeanServerConnection.queryNames(null, null);

The two parameters passed to queryNames() are used to refine the results. By
passing in null for both parameters, we’re asking for the names of all registered
MBeans.

 Querying the remote MBean server for bean counts and names is interesting,
but doesn’t get much work done. The real value of accessing an MBean server
remotely is found in accessing attributes and invoking operations on the MBeans
that are registered in the remote server.

480 CHAPTER 12

Accessing enterprise services
 For accessing MBean attributes, you’ll want to use the getAttribute() and
setAttribute() methods. For example, to retrieve the value of an MBean, you’d
call the getAttribute() method like so:

String cronExpression = mbeanServerConnection.getAttribute(
 new ObjectName("rantz:name=emailSchedule"),
 "cronExpression");

Changing the value of an MBean’s property is similarly done using the setAt-
tribute() method:

mbeanServerConnection.setAttribute(
 new ObjectName("rantz:name=emailSchedule"),
 new Attribute("cronExpression", "0 59 23 * * ?"));

If you’d like to invoke a method on a remote MBean, the invoke() method is
what you’ll call. Here’s how you might invoke the sendDailyRantEmails()
method on the RantService MBean:

mbeanServerConnection.invoke(
 new ObjectName("rantz:name=rantService"),
 "sendDailyRantEmails",
 new Object[] {},
 new String[] {""});

And there are dozens of other things you can do with remote MBeans using the
MBeanServerConnection provided by MBeanServerConnectionFactoryBean. I’ll
leave it to you to explore the possibilities.

 However, invoking methods and setting attributes on remote MBeans is awk-
ward through the API offered through MBeanServerConnection. Doing something
as simple as calling the sendDailyRantEmails() method involves creating an
ObjectName instance, and passing in several parameters to the invoke() method is
not nearly as intuitive as simply calling the sendDailyRantEmails() method
directly. For a more direct approach, we’ll need to proxy the remote MBean.

Proxying MBeans
Spring’s MBeanProxyFactoryBean is a proxy factory bean in the same vein as the
remoting proxy factory beans we examined in chapter 8. But instead of providing
proxy-based access to remote beans via RMI or Hessian/Burlap, MBeanProxyFac-
toryBean lets you access remote MBeans directly (as if they were any other locally
configured bean). Figure 12.11 illustrates how this works.

 For example, consider the following declaration of MBeanProxyFactoryBean:

Managing Spring beans with JMX 481
<bean id="remoteRantServiceMBean"
 class="org.springframework.jmx.access.MBeanProxyFactoryBean">
 <property name="objectName" value="rantz:name=RantService" />
 <property name="server" ref="mBeanServerClient" />
 <property name="proxyInterface"
 value="com.roadrantz.service.mbean.RantServiceRemoteMBean" />
</bean>

The objectName property specifies the object name of the remote MBean that is
to be proxied locally. Here it’s referring to the MBean that is exported from the
RantServiceImpl bean.

 The server property refers to an MBeanServerConnection through which all
communication with the MBean is routed. Here I’ve wired in the MBeanServer-
ConnectionFactoryBean that we configured a page or so ago.

 Finally, the proxyInterface property specifies the interface that will be
implemented by the proxy. In this case, it is the RantServiceRemoteMBean
interface:

public interface RantServiceRemoteMBean {
 void sendDailyRantEmails();
}

With the remoteRantServiceMBean bean declared, you can wire it into a Rant-
ServiceRemoteMBean property of any class that needs to access the remote
MBean. Then you’ll be able to invoke the sendDailyRantEmails() method
directly like this:

remoteRantServiceMBean.sendDailyRantEmails();

MBean Server

MBean
Proxy

NetworkClient MBean

MBeanProxy
FactoryBean

Produces

Figure 12.11 MBeanProxyFactoryBean produces a proxy to a remote MBean. The
proxy’s client can then interact with the remote MBean as if it were a locally configured POJO.

482 CHAPTER 12

Accessing enterprise services
We’ve now seen several ways that we can communicate with MBeans and are now
able to view and tweak our Spring bean configuration while the application is run-
ning. But thus far it’s been a one-sided conversation. We’ve talked to the MBeans,
but the MBeans haven’t been able to get a word in edgewise. It’s now time for us
to hear to what they have to say by listening for notifications.

12.4.3 Handling notifications

Querying an MBean for information is only one way of keeping an eye on the
state of an application. It is not, however, the most efficient way to be informed of
significant events within the application.

 For example, suppose you want to know the precise moment that the one-mil-
lionth motorist registers to the RoadRantz applications. You could add an appro-
priate managed attribute to the RantService MBean and continually query the
MBean, waiting for the one-millionth motorist. But you know what they say about
a watched pot and when it boils—you could end up wasting a great deal of time
querying the MBean only to have the one-millionth motorist arrive while you’re
away at lunch.

 Instead of asking the MBean if the one-millionth motorist has registered, a bet-
ter approach would be to have the MBean notify you once the momentous mile-
stone has been achieved. JMX notifications, as shown in figure 12.12, are a way
that MBeans can communicate with the outside world proactively, instead of wait-
ing for an external application to query them.

 Spring’s support for sending notifications comes in the form of the Notifica-
tionPublisherAware interface. Any bean-turned-MBean that wishes to send noti-
fications should implement this interface. Here are the pertinent changes
required to enable the RantServiceImpl class to publish notifications:

MBean Server

MBean

MBean
Listener

MBean
Listener

MBean
Listener

Notification

Notification

Notification

Figure 12.12
JMX notifications enable
MBeans to communicate
proactively with the
outside world.

Managing Spring beans with JMX 483
public class RantServiceImpl implements RantService,
 NotificationPublisherAware {
…
 private NotificationPublisher notificationPublisher;
 public void setNotificationPublisher(
 NotificationPublisher notificationPublisher) {
 this.notificationPublisher = notificationPublisher;
 }
}

The NotificationPublisherAware interface only demands a single method to be
implemented: setNotificationPublisher(). The setNotificationPublisher()
method is used to inject a NotificationPublisher into the RantServiceImpl.
Here we’ve wired ModelMBeanNotificationPublisher as an inner bean to the
notificationPublisher property:

<bean id="rantService"
 class="com.roadrantz.service.RantServiceImpl">
…
 <property name="notificationPublisher">
 <bean class="org.springframework.jmx.export.notification.
 ➥ ModelMBeanNotificationPublisher" />
 </property>
</bean>

With a NotificationPublisher object at hand, we are now able to write the code
that sends a notification when the one-millionth motorist registers. The following
checkForOneMillionthMotorist() method should do the trick:

private void checkForOneMillionthMotorist() {
 if(rantDao.getMotoristCount() == 1000000) {
 notificationPublisher.sendNotification(
 new Notification(
 "RantService.OneMillionMotorists", this, 0));
 }
}

After determining that, in fact, the one-millionth motorist has just been added,
the checkForOneMillionthMotorist() method constructs a new JMX Notifica-
tion object and uses the NotificationPublisher’s sendNotification() method
to publish the notification.

 Once the sendNotification() method is called, the notification is on its way
to… hmm… it seems that we haven’t decided who will receive the notification yet.
Let’s set up a notification listener to listen to and react to the notification.

484 CHAPTER 12

Accessing enterprise services
Listening for notifications
The standard way to receive MBean notifications is to implement the javax.man-
agement.NotificationListener interface. For example, consider PagingNoti-
ficationListener:

package com.roadrantz.service.mbean;
import javax.management.Notification;
import javax.management.NotificationListener;

public class PagingNotificationListener
 implements NotificationListener {
 public PagingNotificationListener() {}

 public void handleNotification(Notification notification,
 Object handback) {
 … // send pager message
 }
}

PagingNotificationListener is a typical JMX notification listener. When a notifi-
cation is received, the handleNotification() method will be invoked to react to
the notification. Presumably, PagingNotificationListener’s handleNotifica-
tion() method will send a message to a pager or cell phone about the one-mil-
lionth motorist. (I’ve left the actual implementation to the reader’s imagination.)

 The only thing left to do is register PagingNotificationListener with the
MBeanExporter:

<bean class="org.springframework.jmx.export.MBeanExporter">
…
 <property name="notificationListenerMappings">
 <map>
 <entry key="rantz:name=rantService">
 <bean class=
 "com.roadrantz.service.mbean.
 ➥ PagingNotificationListener" />
 </entry>
 </map>
 </property>
</bean>

MBeanExporter’s notificationListenerMappings property is used to map notifi-
cation listeners to the MBeans that they’ll be listening to. In this case, we’ve set up
PagingNotificationListener to listen to any notifications published by the
rantService MBean.

Summary 485
12.5 Summary

In this chapter, we’ve added new email capabilities to the RoadRantz application.
In doing so, we’ve explored a few of tidbits from among Spring’s enterprise
abstraction APIs.

 Although configuration through dependency injection is one of Spring’s
strong points, sometimes it’s preferable to store certain configuration informa-
tion or application objects outside of the Spring application context. JDBC data
sources, for example, are often configured within an application server and made
accessible through JNDI. Fortunately, as you’ve seen, Spring’s JNDI abstraction
makes short work of injecting JNDI-managed objects into Spring-managed beans.

 You’ve also seen how Spring’s JavaMail abstraction simplifies the sending of
emails by enabling you to configure a mail sender bean in Spring. The mail
sender can then be injected into any application object that needs to send email.

 Oftentimes it is necessary for an application to perform specific tasks on a
schedule. In the RoadRantz application, we used Spring’s scheduling support to
periodically send emails to registered motorists. Keeping with the Spring theme
of choice, Spring supports scheduling through a variety of scheduling APIs,
including Java’s Timer object and OpenSymphony’s Quartz.

 Finally, you saw how Spring enables management of beans through its JMX
abstraction API. Using Spring JMX, we were able to expose Spring-configured
beans as MBeans suitable for management through JMX.

 Our journey through Spring’s enterprise APIs and abstractions is now at an
end. We’ve covered a lot of ground, including database persistence, declarative
transactions and security, remoting, web services, asynchronous messaging, and
EJBs. These are the heart and mind of many applications, working behind the
scenes to get the job done.

 The enterprise technologies may keep an application humming, but it’s what’s
on the screen that’s of the most concern to your application’s users. In the next
part of this book, we’re going to look at several ways to build the user-facing por-
tion of an application using Spring. We’ll start in the next chapter by looking at
Spring’s own web framework, Spring MVC.

Part 3

Client-side Spring

Now that you’ve seen how to build the business layer of a Spring application,
it’s time to put a face on it.

 In chapter 13, “Handling web requests,” you’ll learn the basics of using
Spring MVC, a web framework built on the principles of the Spring Frame-
work. You’ll discover Spring MVC’s vast selection of controllers for han-
dling web requests and see how to transparently bind request parameters to
your business objects while providing validation and error handling at the
same time.

 Once a request has been handled, you’ll likely want to show the results to
the user. Chapter 14, “Rendering web views,” will pick up where chapter 13
left off by showing you how to match controller output to JSP, Velocity, and
FreeMarker views. You’ll also learn how to lay out your pages using Tiles and
how to produce PDF, Excel, and RSS output in Spring.

 Building on what you learned in chapters 13 and 14, chapter 15, “Using
Spring Web Flow,” will show you how to build conversational, flow-based web
applications using the Spring Web Flow framework.

 Although Spring MVC is a fantastic web framework, you may already
have a different framework in mind for your application’s web layer. In
chapter 16, “Integrating with other web frameworks,” you’ll see how to use
frameworks such as Struts, WebWork, Tapestry, and JSF to front your Spring
application.

Handling web requests
This chapter covers
■ Mapping requests to Spring controllers
■ Transparently binding form parameters
■ Validating form submissions
■ Mapping exceptions to views
489

490 CHAPTER 13

Handling web requests
As a JEE developer, you have more than likely developed a web-based application.
In fact, for many Java developers, web-based applications are their primary focus.
If you do have this type of experience, you are well aware of the challenges that
come with these systems. Specifically, state management, workflow, and validation
are all important features that need to be addressed. None of these is made any
easier given the HTTP protocol’s stateless nature.

 Spring’s web framework is designed to help you address these concerns. Based
on the Model-View-Controller (MVC) pattern, Spring MVC helps you build web-
based applications that are as flexible and as loosely coupled as the Spring Frame-
work itself.

 In this chapter and the one that follows, we’ll explore the Spring MVC web
framework. In this chapter, we’ll focus on the parts of Spring MVC that process
requests. You’ll see how to extend Spring’s rich set of controller objects to handle
virtually any web functionality required in your application. You’ll also see how
Spring’s handler mapping makes easy work of associating URL patterns with spe-
cific controller implementations. Chapter 14 will pick up where this chapter
leaves off by showing you how to use Spring MVC views to send a response back to
the user.

 Before we go too deep with the specifics of Spring MVC’s controllers and han-
dler mappings, let’s start with a high-level view of Spring MVC and build our first
complete bit of web functionality.

13.1 Getting started with Spring MVC

Have you ever seen the children’s game Mousetrap? It’s a crazy game. The goal is
to send a small steel ball over a series of wacky contraptions in order to trigger a
mousetrap. The ball goes over all kinds of intricate gadgets, from rolling down a
curvy ramp to getting sprung off a teeter-totter to spinning on a miniature Ferris
wheel to being kicked out of a bucket by a rubber boot. It goes through of all of
this to spring a trap on a poor, unsuspecting plastic mouse.

 At first glance, you may think that Spring’s MVC framework is a lot like Mouse-
trap. Instead of moving a ball around through various ramps, teeter-totters, and
wheels, Spring moves requests around between a dispatcher servlet, handler map-
pings, controllers, and view resolvers.

 But don’t draw too strong of a comparison between Spring MVC and the Rube
Goldberg-esque game of Mousetrap. Each of the components in Spring MVC per-
forms a specific purpose. Let’s start the exploration of Spring MVC by examining
the lifecycle of a typical request.

Getting started with Spring MVC 491
13.1.1 A day in the life of a request

Every time that a user clicks a link or submits a form in their web browser, a
request goes to work. A request’s job description is that of a courier. Just like a
postal carrier or a Federal Express delivery person, a request lives to carry infor-
mation from one place to another.

 The request is a busy fellow. From the time that it leaves the browser until the
time that it returns a response, it will make several stops, each time dropping off a
bit of information and picking up some more. Figure 13.1 shows all the stops that
the request makes.

 When the request leaves the browser, it carries information about what the
user is asking for. At very least, the request will be carrying the requested URL. But
it may also carry additional data such as the information submitted in a form by
the user.

 The first stop in the request’s travels is Spring’s DispatcherServlet B. Like
most Java-based MVC frameworks, Spring MVC funnels requests through a single
front controller servlet. A front controller is a common web-application pattern
where a single servlet delegates responsibility for a request to other components
of an application to perform the actual processing. In the case of Spring MVC,
DispatcherServlet is the front controller.

 The DispatcherServlet’s job is to send the request on to a Spring MVC con-
troller. A controller is a Spring component that processes the request. But a typi-
cal application may have several controllers and DispatcherServlet needs help
deciding which controller to send the request to. So, the DispatcherServlet

Request Dispatcher
Servlet

Handler
Mapping

Controller

View

ModelAndView

ViewResolver

B

C
D

F

G

E

Figure 13.1 A request is dispatched by DispatcherServlet to a
controller (which is chosen through a handler mapping). Once the
controller is finished, the request is then sent to a view (which is
chosen through a ViewResolver) to render output.

492 CHAPTER 13

Handling web requests
consults one or more handler mappings C to figure out where the request’s next
stop will be. The handler mapping will pay particular attention to the URL car-
ried by the request when making its decision.

 Once an appropriate controller has been chosen, DispatcherServlet sends the
request on its merry way to the chosen controller. D At the controller, the request
will drop off its payload (the information submitted by the user) and patiently wait
for the controller to process that information. (Actually, a well-designed Controller
performs little or no processing itself and instead delegates responsibility for the
business logic to one or more service objects.)

 The logic performed by a controller often results in some information that
needs to be carried back to the user and displayed in the browser. This informa-
tion is referred to as the model. But sending raw information back to the user isn’t
sufficient—it needs to be formatted in a user-friendly format, typically HTML. For
that the information needs to be given to a view, typically a JSP.

 So, the last thing that the controller will do is package up the model data and the
name of a view into a ModelAndView object. E It then sends the request, along with
its new ModelAndView parcel, back to the DispatcherServlet. As its name implies,
the ModelAndView object contains both the model data as well as a hint to what view
should render the results.

 So that the controller isn’t coupled to a particular view, the ModelAndView
doesn’t carry a reference to the actual JSP. Instead it only carries a logical name that
will be used to look up the actual view that will produce the resulting HTML. Once
the ModelAndView is delivered to the DispatcherServlet, the DispatcherServlet
asks a view resolver to help find the actual JSP. F

 Now that the DispatcherServlet knows which view will render the results, the
request’s job is almost over. Its final stop is at the view implementation (probably a
JSP) where it delivers the model data. G With the model data delivered to the view,
the request’s job is done. The view will use the model data to render a page that will
be carried back to the browser by the (not-so-hard-working) response object.

 We’ll discuss each of these steps in more detail throughout this and the next
chapter. But first things first—you’ll need to configure DispatcherServlet to use
Spring MVC.

13.1.2 Configuring DispatcherServlet

At the heart of Spring MVC is DispatcherServlet, a servlet that functions as
Spring MVC’s front controller. Like any servlet, DispatcherServlet must be con-
figured in your web application’s web.xml file. Place the following <servlet> dec-
laration in your application’s web.xml file:

Getting started with Spring MVC 493
<servlet>
 <servlet-name>roadrantz</servlet-name>
 <servlet-class>org.springframework.web.servlet.DispatcherServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

The <servlet-name> given to the servlet is significant. By default, when Dis-
patcherServlet is loaded, it will load the Spring application context from an
XML file whose name is based on the name of the servlet. In this case, because the
servlet is named roadrantz, DispatcherServlet will try to load the application
context from a file named roadrantz-servlet.xml.

 Next you must indicate what URLs will be handled by the DispatcherServlet.
Add the following <servlet-mapping> to web.xml to let DispatcherServlet han-
dle all URLs that end in .htm:

<servlet-mapping>
 <servlet-name>roadrantz</servlet-name>
 <url-pattern>*.htm</url-pattern>
</servlet-mapping>

So, you’re probably wondering why we chose this particular URL pattern. It
could be because all of the content produced by our application is HTML. It
could also be because we want to fool our friends into thinking that our entire
application is composed of static HTML files. And it could be that we think .do is
a silly extension.

 But the truth of the matter is that the URL pattern is somewhat arbitrary and
we could’ve chosen any URL pattern for DispatcherServlet. Our main reason
for choosing *.htm is that this pattern is the one used by convention in most
Spring MVC applications that produce HTML content. The reasoning behind this
convention is that the content being produced is HTML and so the URL should
reflect that fact.

 Now that DispatcherServlet is configured in web.xml and given a URL map-
ping, you are ready to start writing the web layer of your application. However,
there’s still one more thing that we recommend you add to web.xml.

Breaking up the application context
As we mentioned earlier, DispatcherServlet will load the Spring application
context from a single XML file whose name is based on its <servlet-name>. But
this doesn’t mean that you can’t split your application context across multiple
XML files. In fact, we recommend that you split your application context across
application layers, as shown in figure 13.2.

494 CHAPTER 13

Handling web requests
As configured, DispatcherServlet already loads roadrantz-servlet.xml. You could
put all of your application’s <bean> definitions in roadrantz-servlet.xml, but even-
tually that file would become quite unwieldy. Splitting it into logical pieces across
application layers can make maintenance easier by keeping each of the Spring
configuration files focused on a single layer of the application. It also makes it
easy to swap out a layer configuration without affecting other layers (swapping out
a roadrantz-data.xml file that uses Hibernate with one that uses iBATIS, for exam-
ple).

 Because DispatcherServlet’s configuration file is roadrantz-servlet.xml, it
makes sense for this file to contain <bean> definitions pertaining to controllers
and other Spring MVC components. As for beans in the service and data layers,
we’d like those beans to be placed in roadrantz-service.xml and roadrantz-
data.xml, respectively.

Configuring a context loader
To ensure that all of these configuration files are loaded, you’ll need to configure
a context loader in your web.xml file. A context loader loads context configura-
tion files in addition to the one that DispatcherServlet loads. The most com-
monly used context loader is a servlet listener called ContextLoaderListener that
is configured in web.xml as follows:

<listener>
 <listener-class>org.springframework.
 web.context.ContextLoaderListener</listener-class>
</listener>

NOTE Some web containers do not initialize servlet listeners before servlets—
which is important when loading Spring context definitions. If your
application is going to be deployed to an older web container that
adheres to Servlet 2.2 or if the web container is a Servlet 2.3 container

Persistence Layer

Service Layer

Web Layer roadrantz-servlet.xml

roadrantz-service.xml

roadrantz-data.xml

Security Layer roadrantz-security.xml

Figure 13.2
Breaking an application into separate tiers helps
to cleanly divide responsibility. Security-layer
code secures the application, web-layer code is
focused on user interaction, service-layer code is
focused on business logic, and persistence-layer
code deals with database concerns.

Getting started with Spring MVC 495
that does not initialize listeners before servlets, you’ll want to use Con-
textLoaderServlet instead of ContextLoaderListener.

With ContextLoaderListener configured, you’ll need to tell it the location of the
Spring configuration file(s) to load. If not specified otherwise, the context
loader will look for a Spring configuration file at /WEB-INF/applicationCon-
text.xml. But this location doesn’t lend itself to breaking up the application con-
text across application layers, so you’ll probably want to override this default.

 You can specify one or more Spring configuration files for the context loader
to load by setting the contextConfigLocation parameter in the servlet context:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 /WEB-INF/roadrantz-service.xml
 /WEB-INF/roadrantz-data.xml
 /WEB-INF/roadrantz-security.xml
 </param-value>
</context-param>

The contextConfigLocation parameter is specified as a list of paths (relative to
the web application root). As configured here, the context loader will use con-
textConfigLocation to load three context configuration files—one for the secu-
rity layer, one for the service layer, and one for the data layer.

 DispatcherServlet is now configured and ready to dispatch requests to the
web layer of your application. But the web layer hasn’t been built yet! Don’t fret.
We’ll build much of the web layer in this chapter. Let’s start by getting an overview
of how all the pieces of Spring MVC are assembled to produce web functionality.

13.1.3 Spring MVC in a nutshell

Every web application has a homepage. It’s necessary to have a starting point in
the application. It gives the user a place to launch from and a familiar place to
return when they get lost. Otherwise, they would flail around, clicking links, get-
ting frustrated, and probably ending up leaving and going to some other website.

 The RoadRantz application is no exception to the homepage phenomenon.
There’s no better place to start developing the web layer of our application than
with the homepage. In building the homepage, we get a quick introduction to the
nuts and bolts of Spring MVC.

 As you’ll recall from the requirements for RoadRantz, the homepage should
display a list of the most recently entered rants. The following list of steps defines
the bare minimum that you must do to build the homepage in Spring MVC:

496 CHAPTER 13

Handling web requests
1 Write the controller class that performs the logic behind the homepage.
The logic involves using a RantService to retrieve the list of recent rants.

2 Configure the controller in the DispatcherServlet’s context configuration
file (roadrantz-servlet.xml).

3 Configure a view resolver to tie the controller to the JSP.

4 Write the JSP that will render the homepage to the user.

The first step is to build a controller object that will handle the homepage
request. So with no further delay, let’s write our first Spring MVC controller.

Building the controller
When you go out to eat at a nice restaurant, the person you’ll interact with the
most is the waiter or waitress. They’ll take your order, hand it off to the cooks in
the kitchen to prepare, and ultimately bring out your meal. And if they want a
decent tip, they’ll offer a friendly smile and keep the drinks filled. Although you
know that other people are involved in making your meal a pleasant experience,
the waiter or waitress is your interface to the kitchen.

 Similarly, in Spring MVC, a controller is a class that is your interface to the
application’s functionality. As shown in figure 13.3, a controller receives the
request, hands it off to service classes for processing, then ultimately collect the
results in a page that is returned to you in your web browser. In this respect, a con-
troller isn’t much different than an HttpServlet or a Struts Action.

 The homepage controller of the RoadRantz application is relatively simple. It
takes no request parameters and simply produces a list of recently entered rants
for display on the homepage. Listing 13.1 shows HomePageController, a Spring
MVC controller that implements the homepage functionality.

Dispatcher
Servlet

Controller ServiceWeb

Request

Response

Request

Response
doSomething()

Figure 13.3 A controller handles web requests on behalf of the DispatcherServlet. A
well-designed controller doesn’t do all of the work itself—it delegates to a service layer object
for business logic.

Getting started with Spring MVC 497

package com.roadrantz.mvc;
import java.util.List;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.AbstractController;
import com.roadrantz.service.RantService;

public class HomePageController extends AbstractController {
 public HomePageController() {}

 protected ModelAndView handleRequestInternal(
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {

 List recentRants = rantService.getRecentRants();

 return new ModelAndView("home",
 "rants", recentRants);
 }

 private RantService rantService;
 public void setRantService(RantService rantService) {
 this.rantService = rantService;
 }
}

Where a Spring MVC controller differs from a servlet or a Struts Action is that it is
configured as just another JavaBean in the Spring application context. This
means you can take full advantage of dependency injection (DI) and Spring AOP
with a controller class just as you would with any other bean.

 In the case of HomePageController, DI is used to wire in a RantService. Home-
PageController delegates responsibility for retrieving the list of recent rants to
the RantService.

Introducing ModelAndView
After the chef has prepared your meal, the waiter/waitress will pick it up and
bring it to your table. On the way out, the last thing that they may do is add some
final garnishments—perhaps a sprig of parsley.

 Once the business logic has been completed by the service objects, it’s time for
the controller to send the results back to the browser. The last thing that handle-
RequestInternal() does is to return a ModelAndView object. The ModelAndView
class represents an important concept in Spring MVC. In fact, every controller

Listing 13.1 HomePageController, which retrieves a list of recent rants for display
on the homepage

Retrieves list of rants

Goes to “home” view

Returns rants in model

Injects
RantService

498 CHAPTER 13

Handling web requests
execution method must return a ModelAndView. So, let’s take a moment to under-
stand how this important class works.

 A ModelAndView object, as its name implies, fully encapsulates the view and
model data that is to be displayed by the view. In the case of HomePageController,
the ModelAndView object is constructed as follows:

 new ModelAndView("home", "rants", recentRants);

The first parameter of this ModelAndView constructor is the logical name of a view
component that will be used to display the output from this controller. Here the
logical name of the view is home. A view resolver will use this name to look up the
actual View object (you’ll learn more about Views and view resolvers later in chap-
ter 14).

 The next two parameters represent the model object that will be passed to the
view. These two parameters act as a name-value pair. The second parameter is the
name of the model object given as the third parameter. In this case, the list of
rants in the recentRants variable will be passed to the view with a name of rants.

Configuring the controller bean
Now that HomePageController has been written, it is time to configure it in the
DispatcherServlet’s context configuration file (which is roadrantz-servlet.xml
for the RoadRantz application). The following chunk of XML declares the Home-
PageController:

<bean name="/home.htm"
 class="com.roadrantz.mvc.HomePageController">
 <property name="rantService" ref="rantService" />
</bean>

As mentioned before, the rantService property is to be injected with an imple-
mentation of the RantService interface. In this <bean> declaration, we’ve wired
the rantService property with a reference to another bean named rantService.
The rantService bean itself is declared elsewhere (in roadrantz-service.xml, to
be precise).

 One thing that may have struck you as odd is that instead of specifying a
bean id for the HomePageController bean, we’ve specified a name. And to make
things even weirder, instead of giving it a real name, we’ve given it a URL pat-
tern of /home.htm. Here the name attribute is serving double duty as both the
name of the bean and a URL pattern for requests that should be handled by this
controller. Because the URL pattern has special characters that are not valid in

Getting started with Spring MVC 499
an XML id attribute—specifically, the slash (/) character—the name attribute
had to be used instead of id.

 When a request comes to DispatcherServlet with a URL that ends with
/home.htm, DispatcherServlet will dispatch the request to HomePageControl-
ler for handling. Note, however, that the only reason that the bean’s name
attribute is used as the URL pattern is because we haven’t configured a handler-
mapping bean. The default handler mapping used by DispatcherServlet is
BeanNameUrlHandlerMapping, which uses the base name as the URL pattern.
Later (in section 13.2), you’ll see how to use some of Spring’s other handler map-
pings that let you decouple a controller’s bean name from its URL pattern.

Declaring a view resolver
On the way back to the web browser, the results of the web operation need to be
presented in a human-friendly format. Just like a waiter may place a sprig of pars-
ley on a plate to make it more presentable, the resulting list of rants needs to be
dressed up a bit before presenting it to the client. For that, we’ll use a JSP page
that will render the results in a user-friendly format.

 But how does Spring know which JSP to use for rendering the results? As you’ll
recall, one of the values returned in the ModelAndView object is a logical view
name. While the logical view name doesn’t directly reference a specific JSP, it can
be used to indirectly deduce which JSP to use.

 To help Spring MVC figure out which JSP to use, you’ll need to declare one
more bean in roadrantz-servlet.xml: a view resolver. Put simply, a view resolver’s job
is to take the view name returned in the ModelAndView and map it to a view. In the
case of HomePageController, we need a view resolver to resolve home (the logical
view name returned in the ModelAndView) to a JSP file that renders the homepage.

 As you’ll see in section 13.4, Spring MVC comes with several view resolvers from
which to choose. But for views that are rendered by JSP, there’s none simpler than
InternalResourceViewResolver:

<bean id="viewResolver"
 class="org.springframework.web.
 ➥ servlet.view.InternalResourceViewResolver">
 <property name="prefix">
 <value>/WEB-INF/jsp/</value>
 </property>
 <property name="suffix">
 <value>.jsp</value>
 </property>
</bean>

500 CHAPTER 13

Handling web requests
InternalResourceViewResolver prefixes the view name returned in the Mode-
lAndView with the value of its prefix property and suffixes it with the value from
its suffix property. Since HomePageController returns a view name of home in
the ModelAndView, InternalResourceViewResolver will find the view at /WEB-
INF/jsp/home.jsp.

Creating the JSP
We’ve written a controller that will handle the homepage request and have config-
ured it in the Spring application context. It will consult with a RantService bean
to look up the most recently added rants. And when it’s done, it will send the
results on to a JSP. So now we only have to create the JSP that renders the homep-
age. The JSP in listing 13.2 iterates over the list of rants and displays them on the
home page.

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>
 <head><title>Rantz</title></head>

 <body>
 <h2>Welcome to RoadRantz!</h2>

 <h3>Recent rantz:</h3>

 <c:forEach items="${rants}" var="rant">
 <c:out value="${rant.vehicle.state}"/> /
 <c:out value="${rant.vehicle.plateNumber}"/> --
 <c:out value="${rant.rantText}"/>

 </c:forEach>

 </body>
</html>

Although we’ve left out any aesthetic elements in home.jsp for brevity’s sake, it
still serves to illustrate how the model data returned in ModelAndView can be used
in the view. In HomePageController, we placed the list of rants in a model prop-
erty named rants. When home.jsp is rendering the homepage, it references the
list of rants as ${rants}.

Listing 13.2 home.jsp, which displays a list of recent rants

Iterates over
list of rants

Getting started with Spring MVC 501
 Be sure to name this JSP home.jsp and to place it in the /WEB-INF/jsp folder in
your web application. That’s where InternalResourceViewResolver will try to
find it.

Putting it all together
The homepage is now complete. You’ve written a controller to handle requests
for the homepage, configured it to rely on BeanNameUrlHandlerMapping to have a
URL pattern of /home.htm, written a simple JSP that represents the homepage,
and configured a view resolver to find the JSP. Now, how does this all fit together?

 Figure 13.4 shows the steps that a request for /home.htm will go through given
the work done so far.

To recap this process:

1 DispatcherServlet receives a request whose URL pattern is /home.htm.

2 DispatcherServlet consults BeanNameUrlHandlerMapping to find a con-
troller whose bean name is /home.htm; it finds the HomePageController
bean.

3 DispatcherServlet dispatches the request to HomePageController for pro-
cessing.

4 HomePageController returns a ModelAndView object with a logical view
name of home and a list of rants in a property called rants.

/home.htm Dispatcher
Servlet

BeanNameUrl
HandlerMapping

HomePageController

View
/WEB-INF/jsp/home.jsp

ModelAndView

InternalResource
ViewResolver

B

C
D

E

F

G

Figure 13.4 A homepage request is sent by DispatcherServlet to the
HomePageController (as directed by BeanNameUrlHandlerMapping).
When finished, InternalResourceViewResolver directs the request to
home.jsp to render the homepage.

502 CHAPTER 13

Handling web requests
5 DispatcherServlet consults its view resolver (configured as InternalRe-
sourceViewResolver) to find a view whose logical name is home. Internal-
ResourceViewResolver returns the path to /WEB-INF/jsp/home.jsp.

6 DispatcherServlet forwards the request to the JSP at /WEB-INF/jsp/
home.jsp to render the homepage to the user.

Now that you’ve seen the big picture of Spring MVC, let’s slow down a bit and take
a closer look at each of the moving parts involved in servicing a request. We’ll start
where it all begins—with handler mappings.

13.2 Mapping requests to controllers

When a courier has a package that is to be delivered to a particular office within a
large office building, they’ll need to know how to find the office. In a large office
building with many tenants, this would be tricky if it weren’t for a building direc-
tory. The building directory is often located near the elevators and helps anyone
unfamiliar with the building locate the floor and suite number of the office
they’re looking for.

 In the same way, when a request arrives at the DispatcherServlet, there
needs to be some directory to help figure out how the request should be dis-
patched. Handler mappings help DispatcherServlet figure out which controller
the request should be sent to. Handler mappings typically map a specific control-
ler bean to a URL pattern. This is similar to how URLs are mapped to servlets
using a <servlet-mapping> element in a web application’s web.xml file or how
Actions in Jakarta Struts are mapped to URLs using the path attribute of
<action> in struts-config.xml.

 In the previous section, we relied on the fact that DispatcherServlet defaults
to use BeanNameUrlHandlerMapping. BeanNameUrlHandlerMapping was fine to get
started, but it may not be suitable in all cases. Fortunately, Spring MVC offers sev-
eral handler-mapping implementations to choose from.

 All of Spring MVC’s handler mappings implement the org.springframe-
work.web.servlet.HandlerMapping interface. Spring comes prepackaged with
four useful implementations of HandlerMapping, as listed in table 13.1.

 You’ve already seen an example of how BeanNameUrlHandlerMapping works (as
the default handler mapping used by DispatcherServlet). Let’s look at how to
use each of the other handler mappings, starting with SimpleUrlHandlerMapping.

Mapping requests to controllers 503
13.2.1 Using SimpleUrlHandlerMapping

SimpleUrlHandlerMapping is probably one of the most straightforward of
Spring’s handler mappings. It lets you map URL patterns directly to controllers
without having to name your beans in a special way.

 For example, consider the following declaration of SimpleUrlHandlerMapping
that associates several of the RoadRantz application’s controllers with their URL
patterns:

<bean id="simpleUrlMapping" class=
 "org.springframework.web.servlet.handler.
 ➥ SimpleUrlHandlerMapping">
 <property name="mappings">
 <props>
 <prop key="/home.htm">homePageController</prop>
 <prop key="/rantsForVehicle.htm">
 ➥ rantsForVehicleController</prop>
 <prop key="/rantsForVehicle.rss">
 ➥ rantsForVehicleControllerRss</prop>
 <prop key="/rantsForDay.htm">rantsForDayController</prop>
 <prop key="/login.htm">loginController</prop>
 <prop key="/register.htm">registerMotoristController</prop>
 <prop key="/addRant.htm">addRantController</prop>
 </props>
 </property>
</bean>

SimpleUrlHandlerMapping’s mappings property is wired with a java.util.Prop-
erties using <props>. The key attribute of each <prop> element is a URL pattern.

Table 13.1 Handler mappings help DispatcherServlet find the right controller to handle a request.

Handler mapping How it maps requests to controllers

BeanNameUrlHandlerMapping Maps controllers to URLs that are based on the
controllers’ bean name.

SimpleUrlHandlerMapping Maps controllers to URLs using a property collec-
tion defined in the Spring application context.

ControllerClassNameHandlerMapping Maps controllers to URLs by using the control-
ler’s class name as the basis for the URL.

CommonsPathMapHandlerMapping Maps controllers to URLs using source-level
metadata placed in the controller code. The
metadata is defined using Jakarta Commons
Attributes (http://jakarta.apache.org/commons/
attributes).

504 CHAPTER 13

Handling web requests
Just as with BeanNameUrlHandlerMapping, all URL patterns are relative to Dis-
patcherServlet’s <servlet-mapping>. URL. The value of each <prop> is the
bean name of a controller that will handle requests to the URL pattern.

 In case you’re wondering where all of those other controllers came from, just
hang tight. By the time this chapter is done, we’ll have seen most of them. But
first, let’s explore another way to declare controller mappings using the class
names of the controllers.

13.2.2 Using ControllerClassNameHandlerMapping

Oftentimes you’ll find yourself mapping your controllers to URL patterns that are
quite similar to the class names of the controllers. For example, in the RoadRantz
application, we’re mapping rantsForVehicle.htm to RantsForVehicleControl-
ler and rantsForDay.htm to RantsForDayController.

 Notice a pattern? In those cases, the URL pattern is the same as the name of
the controller class, dropping the Controller portion and adding .htm. It seems
that with a pattern like that it would be possible to assume a certain default for the
mappings and not require explicit mappings.

 In fact, that’s roughly what ControllerClassNameHandlerMapping does:

<bean id="urlMapping"
 class="org.springframework.web.servlet.mvc.
 ➥ ControllerClassNameHandlerMapping"/>

By configuring ControllerClassNameHandlerMapping, you are telling Spring’s
DispatcherServlet to map URL patterns to controllers following a simple con-
vention. Instead of explicitly mapping each controller to a URL pattern, Spring
will automatically map controllers to URL patterns that are based on the con-
troller’s class name. Figure 13.5 illustrates how RantsForVehicleController will
be mapped.

 Put simply, to produce the URL pattern, the Controller portion of the con-
troller’s class name is removed (if it exists), the remaining text is lowercased, a
slash (/) is added to the beginning, and ".htm" is added to the end to produce the
URL pattern. Consequently, a controller bean whose class is RantsForVehicle-
Controller will be mapped to /rantsforvehicle.htm. Notice that the entire

/rantsforvehicle.htm

com.roadrantz.mvc.RantsForVehicleController

Figure 13.5
ControllerClassNameHandler-
Mapping maps a request to a controller by
stripping Controller from the end of the
class name and normalizing it to lowercase.

Mapping requests to controllers 505
URL pattern is lowercased, which is slightly different from the convention we were
following with SimpleUrlHandlerMapping.

13.2.3 Using metadata to map controllers

The final handler mapping we’ll look at is CommonsPathMapHandlerMapping.
This handler mapping considers source-level metadata placed in a controller’s
source code to determine the URL mapping. In particular, the metadata is
expected to be an org.springframework.web.servlet.handler.commonsat-
tributes.PathMap attribute compiled into the controller using the Jakarta Com-
mons Attributes compiler.

 To use CommonsPathMapHandlerMapping, simply declare it as a <bean> in your
context configuration file as follows:

<bean id="urlMapping" class="org.springframework.web.
 servlet.handler.metadata.CommonsPathMapHandlerMapping"/>

Then tag each of your controllers with a PathMap attribute to declare the URL pat-
tern for the controller. For example, to map HomePageController to /home.htm,
tag HomePageController as follows:

/**
 * @@org.springframework.web.servlet.handler.
 ➥ commonsattributes.PathMap("/home.htm")
 */
public class HomePageController
 extends AbstractController {
…
}

Finally, you’ll need to set up your build to include the Commons Attributes com-
piler so that the attributes will be compiled into your application code. We refer
you to the Commons Attributes homepage (http://jakarta.apache.org/com-
mons/attributes) for details on how to set up the Commons Attributes compiler
in either Ant or Maven.

13.2.4 Working with multiple handler mappings

As you’ve seen, Spring comes with several useful handler mappings. But what if
you can’t decide which to use? For instance, suppose your application has been
simple and you’ve been using BeanNameUrlHandlerMapping. But it is starting to
grow and you’d like to start using SimpleUrlHandlerMapping going forward. How
can you mix-’n’-match handler mappings during the transition?

506 CHAPTER 13

Handling web requests
 As it turns out, all of the handler mapping classes implement Spring’s Ordered
interface. This means that you can declare multiple handler mappings in your
application and set their order properties to indicate which has precedence with
relation to the others.

 For example, suppose you want to use both BeanNameUrlHandlerMapping and
SimpleUrlHandlerMapping alongside each other in the same application. You’d
need to declare the handler mapping beans as follows:

<bean id="beanNameUrlMapping" class="org.springframework.web.
 ➥ servlet.handler.BeanNameUrlHandlerMapping">
 <property name="order"><value>1</value></property>
</bean>
<bean id="simpleUrlMapping" class="org.springframework.web.
 ➥ servlet.handler.SimpleUrlHandlerMapping">
 <property name="order"><value>0</value></property>
 <property name="mappings">
…
 </property>
</bean>

Note that the lower the value of the order property, the higher the priority. In this
case, SimpleUrlHandlerMapping’s order is lower than that of BeanNameUrlHan-
dlerMapping. This means that DispatcherServlet will consult SimpleUrlHan-
dlerMapping first when trying to map a URL to a controller.
BeanNameUrlHandlerMapping will only be consulted if SimpleUrlHandlerMapping
turns up no results.

 Spring’s handler mappings help DispatcherServlet know which controller a
request should be directed to. After DispatcherServlet has figured out where to
send the request, it’s up to a controller to process it. Next up, let’s have a look at
how to create controllers in Spring MVC.

13.3 Handling requests with controllers

If DispatcherServlet is the heart of Spring MVC then controllers are the brains.
When implementing the behavior of your Spring MVC application, you extend
one of Spring’s controller classes. The controller receives requests from Dispatch-
erServlet and performs some business functionality on behalf of the user.

 If you’re familiar with other web frameworks such as Struts or WebWork, you
may recognize controllers as being roughly equivalent in purpose to a Struts or
WebWork action. One huge difference between Spring controllers and Struts/
WebWork actions, however, is that Spring provides a rich controller hierarchy (as

http://www.springframework.org/docs/api/org/springframework/web/servlet/tags/BindStatus.html
http://www.springframework.org/docs/api/org/springframework/web/servlet/tags/BindStatus.html
http://www.springframework.org/docs/api/org/springframework/web/servlet/tags/BindStatus.html

Handling requests with controllers 507
shown in figure 13.6) in contrast to the rather flat action hierarchy of Struts or
WebWork.

 At first glance, figure 13.6 may seem somewhat daunting. Indeed, when com-
pared to other MVC frameworks such as Jakarta Struts or WebWork, there’s a lot
more to swallow with Spring’s controller hierarchy. In reality, however, this per-
ceived complexity is actually quite simple and flexible.

 At the top of the controller hierarchy is the Controller interface. Any class
implementing this interface can be used to handle requests through the Spring

View Controllers

Command Controllers

Form Controllers

Wizard Controllers

Throwaway Controllers

Multiaction Controllers

Core Controllers

Controller

AbstractController

BaseCommandController

AbstractCommandController AbstractFormController

SimpleFormController AbstractWizardFormController

MultiActionController

ThrowawayController

Parameterizable
ViewController

UrlFilename
ViewController

Figure 13.6 Spring MVC’s controller hierarchy includes controllers for every occasion—from
the simplest requests to more complex form processing.

http://www.springframework.org/docs/api/org/springframework/web/servlet/tags/BindStatus.html
http://www.springframework.org/docs/api/org/springframework/web/servlet/tags/BindStatus.html

508 CHAPTER 13

Handling web requests
MVC framework. To create your own controller, all you must do is write a class that
implements this interface.

 While you could write a class that directly implements the Controller inter-
face, you’re more likely to extend one of the classes lower in the hierarchy.
Whereas the Controller interface defines the basic contract between a controller
and Spring MVC, the various controller classes provide additional functionality
beyond the basics.

 The wide selection of controller classes is both a blessing and a curse.
Unlike other frameworks that force you to work with a single type of controller
object (such as Struts’s Action class), Spring lets you choose the controller that
is most appropriate for your needs. However, with so many controller classes to
choose from, many developers find themselves overwhelmed and don’t know
how to decide.

 To help you decide which controller class to extend for your application’s
controllers, consider table 13.2. As you can see, Spring’s controller classes can be
grouped into six categories that provide more functionality (and introduce
more complexity) as you progress down the table. You may also notice from fig-
ure 13.5 that (with the exception of ThrowawayController) as you move down
the controller hierarchy, each controller builds on the functionality of the con-
trollers above it.

Table 13.2 Spring MVC’s selection of controller classes.

Controller type Classes Useful when…

View ParameterizableViewController
UrlFilenameViewController

Your controller only needs to dis-
play a static view—no processing
or data retrieval is needed.

Simple Controller (interface)
AbstractController

Your controller is extremely simple,
requiring little more functionality
than is afforded by basic Java serv-
lets.

Throwaway ThrowawayController You want a simple way to handle
requests as commands (in a man-
ner similar to WebWork
Actions).

Multiaction MultiActionController Your application has several
actions that perform similar or
related logic.

Handling requests with controllers 509
You’ve already seen an example of a simple controller that extends Abstract-
Controller. In listing 13.1, HomePageController extends AbstractController
and retrieves a list of the most recent rants for display on the home page.
AbstractController is a perfect choice because the homepage is so simple and
takes no input.

 Basing your controller on AbstractController is fine when you don’t need a
lot of power. Most controllers, however, are going to be more interesting, taking
parameters and requiring validation of those parameters. In the sections that fol-
low, we’re going to build several controllers that define the web layer of the
RoadRantz application by extending the other implementations of the Control-
ler classes in figure 13.6, starting with command controllers.

13.3.1 Processing commands

It’s common for a web request to take one or more parameters that are used to
determine the results. For instance, one of the requirements for the RoadRantz
application is to display a list of rants for a particular vehicle.

 Of course, you could extend AbstractController and retrieve the parameters
your controller needs from the HttpServletRequest. But you would also have to
write the logic that binds the parameters to business objects and you’d have to put
validation logic in the controller itself. Binding and validation logic really don’t
belong in the controller.

 In the event that your controller will need to perform work based on parame-
ters, your controller class should extend a command controller class such as

Command BaseCommandController
AbstractCommandController

Your controller will accept one or
more parameters from the request
and bind them to an object. Also
capable of performing parameter
validation.

Form AbstractFormController
SimpleFormController

You need to display an entry form
to the user and also process the
data entered into the form.

Wizard AbstractWizardFormController You want to walk your user through
a complex, multipage entry form
that ultimately gets processed as
a single form.

Table 13.2 Spring MVC’s selection of controller classes. (continued)

Controller type Classes Useful when…

510 CHAPTER 13

Handling web requests
AbstractCommandController. As shown in figure 13.7, command controllers
automatically bind request parameters to a command object. They can also be
wired to plug in validators to ensure that the parameters are valid.

 Listing 13.3 shows RantsForVehicleController, a command controller that is
used to display a list of rants that have been entered for a specific vehicle.

package com.roadrantz.mvc;
import java.util.List;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.springframework.validation.BindException;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.
 ➥ AbstractCommandController;
import com.roadrantz.domain.Vehicle;
import com.roadrantz.service.RantService;

public class RantsForVehicleController
 extends AbstractCommandController {

 public RantsForVehicleController() {
 setCommandClass(Vehicle.class);
 setCommandName("vehicle");
 }

 protected ModelAndView handle(HttpServletRequest request,
 HttpServletResponse response, Object command,
 BindException errors) throws Exception {

 Vehicle vehicle = (Vehicle) command;

 List vehicleRants =
 rantService.getRantsForVehicle(vehicle));

 Map model = errors.getModel();
 model.put("rants",4
 rantService.getRantsForVehicle(vehicle));
 model.put("vehicle", vehicle);

 return new ModelAndView("vehicleRants", model);
 }

Listing 13.3 RantsForVehicleController, which lists all rants for a particular
vehicle

Command
Controller

Command
Object

HTTP Request
Parameters Binds to

Figure 13.7
Command controllers relieve you from
the hassle of dealing with request
parameters directly. They bind the
request parameters to a command object
that you’ll work with instead.

Sets command
class, name

Casts command
object to Vehicle

Uses RantService
to retrieve
list of rants

Creates the
model

Returns
model

Handling requests with controllers 511
 private RantService rantService;
 public void setRantService(RantService rantService) {
 this.rantService = rantService;
 }
}

The handle() method of RantsForVehicleController is the main execution
method for AbstractCommandController. This method is a bit more interesting
than the handleRequestInternal() method from AbstractController. In addi-
tion to an HttpServletRequest and an HttpServletResponse, handle() takes an
Object that is the controller’s command.

 A command object is a bean that is meant to hold request parameters for easy
access. If you are familiar with Jakarta Struts, you may recognize a command
object as being similar to a Struts ActionForm. The key difference is that unlike a
Struts form bean that must extend ActionForm, a Spring command object is a POJO
that doesn’t need to extend any Spring-specific classes.

 In this case, the command object is an instance of Vehicle, as set in the con-
troller’s constructor. You may recognize Vehicle as the domain class that
describes a vehicle from chapter 5. Although command classes don’t have to be
instances of domain classes, it is sure handy when they are. Vehicle already
defines the same data needed by RantsForVehicleController. Conveniently, it’s
also the exact same type needed by the getRantsForVehicle() method of Rant-
Service. This makes it a perfect choice for a command class.

 Before the handle() method is called, Spring will attempt to match any
parameters passed in the request to properties in the command object. Vehicle
has two properties: state and plateNumber. If the request has parameters with
these names, the parameter values will automatically be bound to the Vehicle’s
properties.

 As with HomePageController, you’ll also need to register RantsForVehicle-
Controller in roadrantz-servlet.xml:

<bean id="rantsForVehicleController"
 class="com.roadrantz.mvc.RantsForVehicleController">
 <property name="rantService" ref="rantService" />
</bean>

Command controllers make it easy to handle requests with request parameters by
binding the request parameters to command objects. The request parameters
could be given as URL parameters (as is likely the case with RantsForVehicleCon-
troller) or as fields from a web-based form. Although command controllers can
process input from a form, Spring provides another type of controller with better
support for form handling. Let’s have a look at Spring’s form controllers next.

512 CHAPTER 13

Handling web requests
13.3.2 Processing form submissions

In a typical web-based application, you’re likely to encounter at least one form
that you must fill out. When you submit that form, the data that you enter is sent
to the server for processing, and once the processing is completed, you are either
presented with a success page or are given the form page with errors in your sub-
mission that you must correct.

 The core functionality of the RoadRantz application is the ability to enter a
rant about a particular vehicle. In the application, the user will be presented with
a form to enter their rant. Upon submission of that form, the expectation is that
the rant will be saved to the database for later viewing.

 When implementing the rant submission process, you might be tempted to
extend AbstractController to display the form and to extend AbstractCommand-
Controller to process the form. This could certainly work, but would end up
being more difficult than necessary. You would have to maintain two different
controllers that work in tandem to process rant submissions. Wouldn’t it be sim-
pler to have a single controller handle both form display and form processing?

 What you’ll need in this case is a form controller. Form controllers take the
concept of command controllers a step further, as shown in figure 13.8, by adding
functionality to display a form when an HTTP GET request is received and process
the form when an HTTP POST is received. Furthermore, if any errors occur in pro-
cessing the form, the controller will know to redisplay the form so that the user
can correct the errors and resubmit.

 To illustrate how form controllers work, consider AddRantFormController in
listing 13.4.

Form
Controller

Form
Page

HTTP GET

Returns

Form
Controller

Success
Page

HTTP POST

Returns

Service

Figure 13.8
On an HTTP GET request, form
controllers display a form to
collect user input. Upon
submitting the form with an HTTP
POST, the form controller
processes the input and returns a
success page.

Handling requests with controllers 513

package com.roadrantz.mvc;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.http.HttpServletRequest;
import org.springframework.validation.BindException;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.SimpleFormController;
import com.roadrantz.domain.Rant;
import com.roadrantz.domain.Vehicle;
import com.roadrantz.service.RantService;

public class AddRantFormController extends SimpleFormController {
 private static final String[] ALL_STATES = {
 "AL", "AK", "AZ", "AR", "CA", "CO", "CT", "DE", "DC", "FL",
 "GA", "HI", "ID", "IL", "IN", "IA", "KS", "KY", "LA", "ME",
 "MD", "MA", "MI", "MN", "MS", "MO", "MT", "NE", "NV", "NH",
 "NJ", "NM", "NY", "NC", "ND", "OH", "OK", "OR", "PA", "RI",
 "SC", "SD", "TN", "TX", "UT", "VA", "VT", "WA", "WV", "WI",
 "WY"
 };

 public AddRantFormController() {
 setCommandClass(Rant.class);
 setCommandName("rant");
 }

 protected Object formBackingObject(HttpServletRequest request)
 throws Exception {
 Rant rantForm = (Rant) super.formBackingObject(request);
 rantForm.setVehicle(new Vehicle());
 return rantForm;
 }

 protected Map referenceData(HttpServletRequest request)
 throws Exception {
 Map referenceData = new HashMap();
 referenceData.put("states", ALL_STATES);
 return referenceData;
 }

 protected ModelAndView onSubmit(Object command,
 BindException bindException) throws Exception {

 Rant rant = (Rant) command;

 rantService.addRant(rant);

 return new ModelAndView(getSuccessView());
 }

 private RantService rantService;
 public void setRantService(RantService rantService) {

Listing 13.4 A controller for adding new rants

Sets command
class, name

Sets up Rant command
with blank Vehicle

Provides list of
states for form

Adds new rant

514 CHAPTER 13

Handling web requests
 this.rantService = rantService;
 }
}

Although it may not be obvious, AddRantFormController is responsible for both
displaying a rant entry form and processing the results of that form. When this
controller receives an HTTP GET request, it will direct the request to the form
view. And when it receives an HTTP POST request, the onSubmit() method will
process the form submission.

 The referenceData() method is optional, but is handy when you need to pro-
vide any additional information for displaying the form. In this case, our form will
need a list of states that will be displayed (presumably in a drop-down selection
list). So, the referenceData() method of AddRantFormController adds an array
of Strings that contains all 50 U.S. states as well as the District of Columbia.

 Under normal circumstances, the command object that backs the form is sim-
ply an instance of the command class. In the case of AddRantFormController,
however, a simple Rant instance will not do. The form is going to use the nested
Vehicle property within a Rant as part of the form-backing object. Therefore, it
was necessary to override the formBackingObject() method to set the vehicle
property. Otherwise, a NullPointerException would be thrown when the con-
troller attempts to bind the state and plateNumber properties.

 The onSubmit() method handles the form submission (an HTTP POST
request) by passing the command object (which is an instance of Rant) to the
addRant() method of the injected RantService reference.

 What’s not clear from listing 13.4 is how this controller knows to display the
rant entry form. It’s also not clear where the user will be taken after the rant has
been successfully added. The only hint is that the result of a call to getSuccess-
View() is given to the ModelAndView. But where does the success view come from?

 SimpleFormController is designed to keep view details out of the controller’s
Java code as much as possible. Instead of hard-coding a ModelAndView object, you
configure the form controller in the context configuration file as follows:

<bean id="addRantController"
 class="com.roadrantz.mvc.AddRantFormController">
 <property name="formView" value="addRant" />
 <property name="successView" value="rantAdded" />
 <property name="rantService" ref="rantService" />
</bean>

Handling requests with controllers 515
Just as with the other controllers, the addRantController bean is wired with any
services that it may need (e.g., rantService). But here you also specify a
formView property and a successView property. The formView property is the
logical name of a view to display when the controller receives an HTTP GET
request or when any errors are encountered. Likewise, the successView is the log-
ical name of a view to display when the form has been submitted successfully. A
view resolver (see section 13.4) will use these values to locate the View object that
will render the output to the user.

Validating form input
When AddRantFormController calls addRant(), it’s important to ensure that all
of the data in the Rant command is valid and complete. You don’t want to let
users enter only a state and no plate number (or vice versa). Likewise, what’s the
point in specifying a state and plate number but not providing any text in the
rant? And it’s important that the user not enter a plate number that isn’t valid.

 The org.springframework.validation.Validator interface accommodates
validation for Spring MVC. It is defined as follows:

public interface Validator {
 void validate(Object obj, Errors errors);
 boolean supports(Class clazz);
}

Implementations of this interface should examine the fields of the object passed
into the validate() method and reject any invalid values via the Errors object.
The supports() method is used to help Spring determine whether the validator
can be used for a given class.

 RantValidator (listing 13.5) is a Validator implementation used to validate a
Rant object.

package com.roadrantz.mvc;
import org.apache.oro.text.perl.Perl5Util;
import org.springframework.validation.Errors;
import org.springframework.validation.ValidationUtils;
import org.springframework.validation.Validator;
import com.roadrantz.domain.Rant;

public class RantValidator implements Validator {
 public boolean supports(Class clazz) {
 return clazz.equals(Rant.class);
 }

 public void validate(Object command, Errors errors) {

Listing 13.5 Validating a Rant entry

516 CHAPTER 13

Handling web requests
 Rant rant = (Rant) command;

 ValidationUtils.rejectIfEmpty(
 errors, "vehicle.state", "required.state",
 "State is required.");

 ValidationUtils.rejectIfEmpty(
 errors, "vehicle.plateNumber", "required.plateNumber",
 "The license plate number is required.");

 ValidationUtils.rejectIfEmptyOrWhitespace(
 errors, "rantText", "required.rantText",
 "You must enter some rant text.");

 validatePlateNumber(
 rant.getVehicle().getPlateNumber(), errors);
 }

 private static final String PLATE_REGEXP =
 "/[a-z0-9]{2,6}/i";

 private void validatePlateNumber(
 String plateNumber, Errors errors) {
 Perl5Util perl5Util = new Perl5Util();
 if(!perl5Util.match(PLATE_REGEXP, plateNumber)) {
 errors.reject("invalid.plateNumber",
 "Invalid license plate number.");
 }
 }
}

The only other thing to do is to configure AddRantFormController to use
RantValidator. You can do this by wiring a RantValidator bean into the
AddRantFormController bean (shown here as an inner bean):

<bean id="addRantController"
 class="com.roadrantz.mvc.AddRantFormController">
 <property name="formView" value="addRant" />
 <property name="successView" value="rantAdded" />
 <property name="rantService" ref="rantService" />
 <property name="validator">
 <bean class="com.roadrantz.mvc.RantValidator" />
 </property>
</bean>

When a rant is entered, if all of the required properties are set and if the plate
number passes validation, AddRantFormController’s onSubmit() will be called
and the rant will be added. However, if RantValidator rejects any of the fields,
the user will be returned to the form view to correct the mistakes.

Validates
required

fields

Validates plate
numbers

Handling requests with controllers 517
 By implementing the Validator interface, you are able to programmatically
take full control over the validation of your application’s command objects. This
may be perfect if your validation needs are complex and require special logic.

 However, in simple cases such as ensuring required fields and basic formatting,
writing our own implementation of the Validator interface is a bit too involved.
It’d be nice if we could write validation rules declaratively instead of having to
write validation rules in Java code. Let’s have a look at how to use declarative vali-
dation with Spring MVC.

Validating with Commons Validator
One complaint that we’ve heard about Spring MVC is that validation with the Val-
idator interface doesn’t even compare to the kind of validation possible with
Jakarta Struts. We can’t argue with that complaint. Jakarta Struts has a very nice
facility for declaring validation rules outside of Java code. The good news is that
we can do declarative validation with Spring MVC, too.

 But before you go digging around in Spring’s JavaDoc for a declarative Vali-
dator implementation, you should know that Spring doesn’t come with such a val-
idator. In fact, Spring doesn’t come with any implementations of the Validator
interface and leaves it up to you to write your own.

 However, you don’t have to go very far to find an implementation of Valida-
tor that supports declarative validation. The Spring Modules project (https://
springmodules.dev.java.net) is a sister project of Spring that provides several
extensions to Spring whose scope exceeds that of the main Spring project. One
of those extensions is a validation module that makes use of Jakarta Commons
Validator (http://jakarta.apache.org/commons/validator) to provide declara-
tive validation.

 To use the validation module in your application, you start by making the
springmodules-validator.jar file available in the application’s classpath. If you’re
using Ant to do your builds, you’ll need to download the Spring Modules distribu-
tion (I’m using version 0.6) and find the spring-modules-0.6.jar file in the dist
directory. Add this JAR to the <war> task’s <lib> to ensure that it gets placed in
the WEB-INF/lib directory of the application’s WAR file.

 If you’re using Maven 2 to do your build (as I’m doing), you’ll need to add the
following <dependency> to pom.xml:

<dependency>
 <groupId>org.springmodules</groupId>
 <artifactId>springmodules-validation</artifactId>
 <version>0.6</version>

518 CHAPTER 13

Handling web requests
 <scope>compile</scope>
</dependency>

You’ll also need to add the Jakarta Commons Validator JAR to your application’s
classpath. In Maven 2, it will look like this:

<dependency>
 <groupId>commons-validator</groupId>
 <artifactId>commons-validator</artifactId>
 <version>1.1.4</version>
 <scope>compile</scope>
</dependency>

Spring Modules provides an implementation of Validator called DefaultBean-
Validator. DefaultBeanValidator is configured in roadrantz-servlet.xml as fol-
lows:

<bean id="beanValidator" class=
 "org.springmodules.commons.validator.DefaultBeanValidator">
 <property name="validatorFactory" ref="validatorFactory" />
</bean>

 DefaultBeanValidator doesn’t do any actual validation work. Instead, it dele-
gates to Commons Validator to validate field values. As you can see, DefaultBean-
Validator has a validatorFactory property that is wired with a reference to a
validatorFactory bean. The validatorFactory bean is declared using the fol-
lowing XML:

<bean id="validatorFactory" class=
 "org.springmodules.commons.validator.DefaultValidatorFactory">
 <property name="validationConfigLocations">
 <list>
 <value>WEB-INF/validator-rules.xml</value>
 <value>WEB-INF/validation.xml</value>
 </list>
 </property>
</bean>

DefaultValidatorFactory is a class that loads the Commons Validator configura-
tion on behalf of DefaultBeanValidator. The validationConfigLocations
property takes a list of one or more validation configurations. Here we’ve asked it
to load two configurations: validator-rules.xml and validation.xml.

 The validator-rules.xml file contains a set of predefined validation rules for
common validation needs such as email and credit card numbers. This file comes
with the Commons Validator distribution, so you won’t have to write it yourself—
simply add it to the WEB-INF directory of your application. Table 13.3 lists all of
the validation rules that come in validator-rules.xml.

Handling requests with controllers 519
The other file, validation.xml, defines application-specific validation rules that
apply directly to the RoadRantz application. Listing 13.6 shows the contents of val-
idation.xml as applied to RoadRantz.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE form-validation PUBLIC
 "-//Apache Software Foundation//DTD
 Commons Validator Rules Configuration 1.1//EN"
 "http://jakarta.apache.org/commons/dtds/validator_1_1.dtd">

<form-validation>
 <formset>
 <form name="rant">
 <field property="rantText" depends="required">

Table 13.3 The validation rules available in Commons Validator’s validator-rules.xml.

Validation rule What it validates

byte That the field contains a value that is assignable to byte

creditCard That the field contains a String that passes a LUHN check and thus
is a valid credit card number

date That the field contains a value that fits a Date format

double That the field contains a value that is assignable to double

email That the field contains a String that appears to be an email address

float That the field contains a value that is assignable to float

floatRange That the field contains a value that falls within a range of float values

intRange That the field contains a value that falls within a range of int values

integer That the field contains a value that is assignable to int

long That the field contains a value that is assignable to long

mask That the field contains a String value that matches a given mask

maxlength That the field has no more than a specified number of characters

minlength That the field has at least a specific number of characters

required That the field is not empty

requiredif That the field is not empty, but only if another criterion is met

short That the field contains a value that is assignable to short

Listing 13.6 Declaring validations in RoadRantz

Requires rant text

520 CHAPTER 13

Handling web requests
 <arg0 key="required.rantText" />
 </field>
 <field property="vehicle.state" depends="required">
 <arg0 key="required.state" />
 </field>
 <field property="vehicle.plateNumber"
 depends="required,mask">
 <arg0 key="invalid.plateNumber" />
 <var>
 <var-name>mask</var-name>
 <var-value>^[0-9A-Za-z]{2,6}$</var-value>
 </var>
 </field>
 </form>
 </formset>
</form-validation>

If the contents of validation.xml look strangely familiar to you, it’s probably
because Struts uses the same validation file XML. Under the covers, Struts is using
Commons Validator to do its validation. Now Spring Modules brings the same
declarative validation to Spring.

 One last thing to do is change the controller’s declaration to wire in the new
declarative implementation of Validator:

<bean id="addRantController"
 class="com.roadrantz.mvc.AddRantFormController">
 <property name="formView" value="addRant" />
 <property name="successView" value="rantAdded" />
 <property name="rantService" ref="rantService" />
 <property name="validator" ref="beanValidator" />
</bean>

A basic assumption with SimpleFormController is that a form is a single page.
That may be fine when you’re doing something simple such as adding a rant. But
what if your forms are complex, requiring the user to answer several questions? In
that case, it may make sense to break the form into several subsections and walk
users through using a wizard. Let’s see how Spring MVC can help you construct
wizard forms.

13.3.3 Processing complex forms with wizards

Another feature of RoadRantz is that anyone can register as a user (known as a
motorist in RoadRantz’s terms) and be notified if any rants are entered for their
vehicles. We developed the rant notification email in chapter 12. But we also need
to provide a means for users to register themselves and their vehicles.

Requires
vehicle
state

Requires and masks
plate number

Handling requests with controllers 521
 We could put the entire motorist registration form into a single JSP and extend
SimpleFormController to process and save the data. However, we don’t know
how many vehicles the user will be registering and it gets tricky to ask the user for
an unknown number of vehicle data in a single form.

 Instead of creating one form, let’s break motorist registration into several sub-
sections and walk the user through the form using a wizard. Suppose that we par-
tition the registration process questions into three pages:

■ General user information such as first name, last name, password, and
email address

■ Vehicle information (state and plate number)

■ Confirmation (for the user to review before committing their information)

 Fortunately, Spring MVC provides AbstractWizardFormController to help
out. AbstractWizardFormController is the most powerful of the controllers that
come with Spring. As illustrated in figure 13.9, a wizard form controller is a spe-
cial type of form controller that collects form data from multiple pages into a sin-
gle command object for processing.

 Let’s see how to build a multipage registration form using AbstractWizard-
FormController.

Building a basic wizard controller
To construct a wizard controller, you must extend the AbstractWizardFormCon-
troller class. MotoristRegistrationController (listing 13.7) shows a minimal
wizard controller to be used for registering a user in RoadRantz.

Form
Page 1

Form
Page 2

Form
Page 3

Wizard
Controller

Command
Object

Form Data

Form Data

Form Data

Populates
Figure 13.9
A wizard form controller is a special form controller
that helps to split long and complex forms across
multiple pages.

522 CHAPTER 13

Handling web requests

package com.roadrantz.mvc;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.springframework.validation.BindException;
import org.springframework.validation.Errors;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.
 ➥ AbstractWizardFormController;
import com.roadrantz.domain.Motorist;
import com.roadrantz.domain.Vehicle;
import com.roadrantz.service.RantService;

public class MotoristRegistrationController
 extends AbstractWizardFormController {
 public MotoristRegistrationController() {
 setCommandClass(Motorist.class);
 setCommandName("motorist");
 }

 protected Object formBackingObject(HttpServletRequest request)
 throws Exception {
 Motorist formMotorist = new Motorist();
 List<Vehicle> vehicles = new ArrayList<Vehicle>();
 vehicles.add(new Vehicle());
 formMotorist.setVehicles(vehicles);
 return formMotorist;
 }

 protected Map referenceData(HttpServletRequest request,
 Object command, Errors errors, int page) throws Exception {

 Motorist motorist = (motorist) command;
 Map refData = new HashMap();

 if(page == 1 && request.getParameter("_target1") != null) {
 refData.put("nextVehicle",
 motorist.getVehicles().size() - 1);
 }

 return refData;
 }

 protected void postProcessPage(HttpServletRequest request,
 Object command, Errors errors, int page) throws Exception {

 Motorist motorist = (Motorist) command;

Listing 13.7 Registering motorists through a wizard

Sets command
class, name

Creates form
backing object

Increments next
vehicle pointer

Handling requests with controllers 523
 if(page == 1 && request.getParameter("_target1") != null) {
 motorist.getVehicles().add(new Vehicle());
 }
 }

 protected ModelAndView processFinish(HttpServletRequest request,
 HttpServletResponse response, Object command,
 BindException errors)
 throws Exception {

 Motorist motorist = (motorist) command;

 // the last vehicle is always blank...remove it
 motorist.getVehicles().remove(
 motorist.getVehicles().size() - 1);

 rantService.addMotorist(motorist);

 return new ModelAndView(getSuccessView(),
 "motorist", motorist);
 }

 // injected
 private RantService rantService;
 public void setRantService(RantService rantService) {
 this.rantService = rantService;
 }

 // returns the last page as the success view
 private String getSuccessView() {
 return getPages()[getPages().length-1];
 }
}

Just as with any command controller, you must set the command class when using
a wizard controller. Here MotoristRegistrationController has been set to use
Motorist as the command class. But because the motorist will also be registering
one or more vehicles, the formBackingObject() method is overridden to set the
vehicles property with a list of Vehicle objects. The list is also started with a
blank Vehicle object for the form to populate.

 Since the user can register any number of vehicles and since the vehicles list
will grow with each vehicle added, the form view needs a way of knowing which
entry in the list is the next entry. So, referenceData() is overridden to make the
index of the next vehicle available to the form.

 The only compulsory method of AbstractWizardFormController is process-
Finish(). This method is called to finalize the form when the user has finished
completing it (presumably by clicking a Finish button). In MotoristRegistra-

Adds new
blank vehicle

Adds motorist

524 CHAPTER 13

Handling web requests
tionController, processFinish() sends the data in the Motorist object to
addMotorist() on the injected RantService object.

 Notice there’s nothing in MotoristRegistrationController that gives any
indication of what pages make up the form or in what order the pages appear.
That’s because AbstractWizardFormController handles most of the work
involved to manage the workflow of the wizard under the covers. But how does
AbstractWizardFormController know what pages make up the form?

 Some of this may become more apparent when you see how MotoristRegis-
trationController is declared in roadrantz-servlet.xml:

<bean id="registerMotoristController"
 class="com.roadrantz.mvc.MotoristRegistrationController">
 <property name="rantService" ref="rantService" />
 <property name="pages">
 <list>
 <value>motoristDetailForm</value>
 <value>motoristVehicleForm</value>
 <value>motoristConfirmation</value>
 <value>redirect:home.htm</value>
 </list>
 </property>
</bean>

So that the wizard knows which pages make up the form, a list of logical view
names is given to the pages property. These names will ultimately be resolved into
a View object by a view resolver (see section 13.4). But for now, just assume that
these names will be resolved into the base filename of a JSP.

 While this clears up how MotoristRegistrationController knows which
pages to show, it doesn’t tell us how it knows what order to show them in.

Stepping through form pages
The first page to be shown in any wizard controller will be the first page in the list
given to the pages property. In the case of the motorist registration wizard, the
first page shown will be the motoristDetailForm page.

 To determine which page to go to next, AbstractWizardFormController con-
sults its getTargetPage() method. This method returns an int, which is an index
into the zero-based list of pages given to the pages property.

 The default implementation of getTargetPage() determines which page to go
to next based on a parameter in the request whose name begins with _target and
ends with a number. getTargetPage() removes the _target prefix from the
parameter and uses the remaining number as an index into the pages list. For

Handling requests with controllers 525
example, if the request has a parameter whose name is _target2, the user will be
taken to the page rendered by the motoristConfirmation view.

 Knowing how getTargetPage() works helps you to know how to construct
your Next and Back buttons in your wizard’s HTML pages. For example, suppose
that your user is on the motoristVehicleForm page (index = 1). To create Next
and Back buttons on the page, all you must do is create submit buttons that are
appropriately named with the _target prefix:

<form method="POST" action="feedback.htm">
…
 <input type="submit" value="Back" name="_target0">
 <input type="submit" value="Next" name="_target2">
</form>

When the Back button is clicked, a parameter with its name, _target0, is placed
into the request back to MotoristRegistrationController. The getTar-

getPage() method will process this parameter’s name and send the user to the
motoristDetailForm page (index = 0). Likewise, if the Next button is clicked,
getTargetPage() will process a parameter named _target2 and decide to send
the user to the motoristConfirmation page (index = 2).

 The default behavior of getTargetPage() is sufficient for most projects. How-
ever, if you would like to define a custom workflow for your wizard, you may over-
ride this method.

Finishing the wizard
That explains how to step back and forth through a wizard form. But how can you
tell the controller that you have finished and that the processFinish() method
should be called?

 There’s another special request parameter called _finish that indicates to
AbstractWizardFormController that the user has finished filling out the form
and wants to submit the information for processing. Just like the _targetX param-
eters, _finish can be used to create a Finish button on the page:

<form method="POST" action="feedback.htm">
…
 <input type="submit" value="Finish" name="_finish">
</form>

When AbstractWizardFormController sees the _finish parameter in the
request, it will pass control to the processFinish() method for final processing
of the form.

526 CHAPTER 13

Handling web requests
 Unlike other form controllers, AbstractWizardFormController doesn’t pro-
vide a means for setting the success view page. So, we’ve added a getSuccess-
View() method in MotoristRegistrationController to return the last page in
the pages list. So, when the form has been submitted as finished, the process-
Finish() method returns a ModelAndView with the last view in the pages list as
the view.

Canceling the wizard
What if your user is partially through with registration and decides that they don’t
want to complete it at this time? How can they abandon their input without finish-
ing the form?

 Aside from the obvious answer—they could close their browser—you can add a
Cancel button to the form:

<form method="POST" action="feedback.htm">
…
 <input type="submit" value="Cancel" name="_cancel">
</form>

As you can see, a Cancel button should have _cancel as its name so that, when
clicked, the browser will place a parameter into the request called _cancel. When
AbstractWizardFormController receives this parameter, it will pass control to
the processCancel() method.

 By default, processCancel() throws an exception indicating that the cancel
operation is not supported. So, you’ll need to override this method so that it (at a
minimum) sends the user to whatever page you’d like them to go to when they
click Cancel. The following implementation of processCancel() sends the user
to the success view:

protected ModelAndView processCancel(HttpServletRequest request,
 HttpServletResponse response, Object command,
 BindException bindException) throws Exception {

 return new ModelAndView(getSucessView());
}

If there is any cleanup work to perform upon a cancel, you could also place that
code in the processCancel() method before the ModelAndView is returned.

Validating a wizard form a page at a time
As with any command controller, the data in a wizard controller’s command
object can be validated using a Validator object. However, there’s a slight twist.

Handling requests with controllers 527
 With other command controllers, the command object is completely popu-
lated at once. But with wizard controllers, the command object is populated a bit
at a time as the user steps through the wizard’s pages. With a wizard, it doesn’t
make much sense to validate all at once because if you validate too early, you will
probably find validation problems that stem from the fact that the user isn’t fin-
ished with the wizard. Conversely, it is too late to validate when the Finish button
is clicked because any errors found may span multiple pages (which form page
should the user go back to?).

 Instead of validating the command object all at once, wizard controllers vali-
date the command object a page at a time. This is done every time that a page
transition occurs by calling the validatePage() method. The default implemen-
tation of validatePage() is empty (i.e., no validation), but you can override it to
do your bidding.

 To illustrate, on the motoristDetailForm page you ask the user for their email
address. This field is optional, but if it is entered, it should be in a valid email
address format. The following validatePage() method shows how to validate the
email address when the user transitions away from the motoristDetailForm page:

protected void validatePage(Object command, Errors errors,
 int page) {

 Motorist motorist = (Motorist) command;
 MotoristValidator validator =
 (MotoristValidator) getValidator();

 if(page == 0) {
 validator.validateEmail(motorist.getEmail(), errors);
 }
}

When the user transitions from the motoristDetailForm page (index = 0), the
validatePage() method will be called with 0 passed in to the page argument.
The first thing validatePage() does is get a reference to the Motorist command
object and a reference to the MotoristValidator object. Because there’s no need
to do email validation from any other page, validatePage() checks to see that
the user is coming from page 0.

 At this point, you could perform the email validation directly in the vali-
datePage() method. However, a typical wizard will have several fields that will
need to be validated. As such, the validatePage() method can become quite
unwieldy. We recommend that you delegate responsibility for validation to a fine-
grained field-level validation method in the controller’s Validator object, as
we’ve done here with the call to MotoristValidator’s validateEmail() method.

528 CHAPTER 13

Handling web requests
 All of this implies that you’ll need to set the validator property when you con-
figure the controller:

<bean id="registerMotoristController"
 class="com.roadrantz.mvc.MotoristRegistrationController">
 <property name="rantService" ref="rantService" />
 <property name="pages">
 <list>
 <value>motoristDetailForm</value>
 <value>motoristVehicleForm</value>
 <value>motoristConfirmation</value>
 <value>redirect:home.htm</value>
 </list>
 </property>
 <property name="validator">
 <bean class="com.roadrantz.mvc.MotoristValidator" />
 </property>
</bean>

It’s important to be aware that unlike the other command controllers, wizard con-
trollers never call the standard validate() method of their Validator object.
That’s because the validate() method validates the entire command object as a
whole, whereas it is understood that the command objects in a wizard will be vali-
dated a page at a time.

 The controllers you’ve seen up until now are all part of the same hierarchy
that is rooted with the Controller interface. Even though the controllers all get a
bit more complex (and more powerful) as you move down the hierarchy, all of
the controllers that implement the Controller interface are somewhat similar.
But before we end our discussion of controllers, let’s have a look at another con-
troller that’s very different than the others—the throwaway controller.

13.3.4 Working with throwaway controllers

One last controller that you may find useful is a throwaway controller. Despite the
dubious name, throwaway controllers can be quite useful and easy to use. Throw-
away controllers are significantly simpler than the other controllers, as evidenced
by the ThrowawayController interface:

public interface ThrowawayController {
 ModelAndView execute() throws Exception;
}

To create your own throwaway controller, all you must do is implement this inter-
face and place the program logic in the execute() method. Quite simple, isn’t it?

 But hold on. How are parameters passed to the controller? The execution
methods of the other controllers are given HttpServletRequest and command

Handling requests with controllers 529
objects from which to pull the parameters. If the execute() method doesn’t take
any arguments, how can your controller process user input?

 You may have noticed in figure 13.5 that the ThrowawayController interface is
not even in the same hierarchy as the Controller interface. This is because
throwaway controllers are very different from the other controllers. Instead of
being given parameters through an HttpServletRequest or a command object,
throwaway controllers act as their own command object. If you have ever worked
with WebWork, this may seem quite natural because WebWork actions behave in a
similar way.

 From the requirements for RoadRantz, we know that we’ll need to display a list
of rants for a given month, day, and year. We could implement this using a com-
mand controller, as we did with RantsForVehicleController (listing 13.3).
Unfortunately, no domain object exists that takes a month, day, and year. This
means we’d need to create a special command class to carry this data. It wouldn’t
be so hard to create such a POJO, but maybe there’s a better way.

 Instead of implementing RantsForDayController as a command controller,
let’s implement it as a ThrowawayController, as shown in listing 13.8.

package com.roadrantz.mvc;
import java.util.Date;
import org.springframework.web.servlet.ModelAndView;
import org.springframework.web.servlet.mvc.throwaway.
 ➥ ThrowawayController;
import com.roadrantz.service.RantService;

public class RantsForDayController implements ThrowawayController {
 private Date day;

 public ModelAndView execute() throws Exception {
 List<Rant> dayRants = rantService.getRantsForDay(day);

 return new ModelAndView("dayRants", "rants", dayRants);
 }

 public void setDay(Date day) {
 this.day = day;
 }

 private RantService rantService;
 public void setRantService(RantService rantService) {
 this.rantService = rantService;
 }
}

Listing 13.8 A throwaway controller that produces a list of rants for a given day

Gets list
of rants
for day

Binds day to
request

530 CHAPTER 13

Handling web requests
Before RantsForDayController handles the request, Spring will call the set-
Day() method, passing in the value of the day request parameter. Once in the
execute() method, RantsForDayController simply passes day to rantSer-
vice.getRantsForDay() to retrieve the list of rants for that day. One thing that
remains the same as the other controllers is that the execute() method must
return a ModelAndView object when it has finished.

 Just as with any controller, you also must declare throwaway controllers in the
DispatcherServlet’s context configuration file. There’s only one small differ-
ence, as you can see in this configuration of RantsForDayController:

<bean id="rantsForDayController"
 class="com.roadrantz.mvc.RantsForDayController"
 scope="prototype">
 <property name="rantService" ref="rantService" />
</bean>

Notice that the scope attribute has been set to prototype. This is where throw-
away controllers get their name. By default all beans are singletons, and so unless
you set scope to prototype, RantsForDayController will end up being recycled
between requests. This means its properties (which should reflect the request
parameter values) may also be reused. Setting scope to prototype tells Spring to
throw the controller away after it has been used and to instantiate a fresh instance
for each request.

 There’s just one more thing to be done before we can use our throwaway con-
troller. DispatcherServlet knows how to dispatch requests to controllers by
using a handler adapter. The concept of handler adapters is something that you
usually don’t need to worry about because DispatcherServlet uses a default han-
dler adapter that dispatches to controllers in the Controller interface hierarchy.

 But because ThrowawayController isn’t in the same hierarchy as Controller,
DispatcherServlet doesn’t know how to talk to ThrowawayController. To make
it work, you must tell DispatcherServlet to use a different handler adapter. Spe-
cifically, you must configure ThrowawayControllerHandlerAdapter as follows:

<bean id="throwawayHandler" class="org.springframework.web.
 ➥ servlet.mvc.throwaway.ThrowawayControllerHandlerAdapter"/>

By just declaring this bean, you are telling DispatcherServlet to replace its
default handler adapter with ThrowawayControllerHandlerAdapter.

 This is fine if your application is made up of nothing but throwaway control-
lers. But the RoadRantz application will use both throwaway and regular control-
lers alongside each other in the same application. Consequently, you still need

Handling exceptions 531
DispatcherServlet to use its regular handler adapter as well. Thus, you should
also declare SimpleControllerHandlerAdapter as follows:

<bean id="simpleHandler" class="org.springframework.web.
 ➥ servlet.mvc.SimpleControllerHandlerAdapter"/>

Declaring both handler adapters lets you mix both types of controllers in the
same application.

 Regardless of what functionality your controllers perform, ultimately they’ll
need to return some results to the user. The result pages are rendered by views,
which are selected by their logical name when creating a ModelAndView object.
But there needs to be a mechanism to map logical view names to the actual view
that will render the response. We’ll see that in chapter 14 when we turn our atten-
tion to Spring’s view resolvers.

 But first, did you notice that all of Spring MVC’s controllers have method signa-
tures that throw exceptions? It’s possible that things could go awry as a controller
processes a request. If an exception is thrown from a controller, what will the user
see? Let’s find out how to control the behavior of errant controllers with an
exception resolver.

13.4 Handling exceptions

There’s a bumper sticker that says “Failure is not an option: it comes with the soft-
ware.” Behind the humor of this message is a universal truth. Things don’t always
go well in software. When an error happens (and it inevitably will happen), do
you want your application’s users to see a stack trace or a friendlier message? How
can you gracefully communicate the error to your users?

 SimpleMappingExceptionResolver comes to the rescue when an exception is
thrown from a controller. Use the following <bean> definition to configure Sim-
pleMappingExceptionResolver to gracefully handle any java.lang.Exceptions
thrown from Spring MVC controllers:

<bean id="exceptionResolver" class="org.springframework.web.
 ➥ servlet.handler.SimpleMappingExceptionResolver">
 <property name="exceptionMappings">
 <props>
 <prop key="java.lang.Exception">friendlyError</prop>
 </props>
 </property>
</bean>

The exceptionMappings property takes a java.util.Properties that contains a
mapping of fully qualified exception class names to logical view names. In this

532 CHAPTER 13

Handling web requests
case, the base Exception class is mapped to the View whose logical name is
friendlyError so that if any errors are thrown, users won’t have to see an ugly
stack trace in their browser.

 When a controller throws an Exception, SimpleMappingExceptionResolver
will resolve it to friendlyError, which in turn will be resolved to a View using
whatever view resolver(s) are configured. If the InternalResourceViewResolver
from section 13.4.1 is configured then perhaps the user will be sent to the page
defined in /WEB-INF/jsp/friendlyError.jsp.

13.5 Summary

The Spring Framework comes with a powerful and flexible web framework that
is itself based on Spring’s tenets of loose coupling, dependency injection, and
extensibility.

 At the beginning of a request, Spring offers a variety of handler mappings that
help to choose a controller to process the request. You are given a choice to map
URLs to controllers based on the controller bean’s name, a simple URL-to-control-
ler mapping, the controller class’s name, or source-level metadata.

 To process a request, Spring provides a wide selection of controller classes with
complexity ranging from the very simple Controller interface all the way to the
very powerful wizard controller and several layers in between, letting you choose a
controller with an appropriate amount of power (and no more complexity than
required). This sets Spring apart from other MVC web frameworks such as Struts
and WebWork, where your choices are limited to only one or two Action classes.

 All in all, Spring MVC maintains a loose coupling between how a controller is
chosen to handle a request and how a view is chosen to display output. This is a
powerful concept, allowing you to mix-’n’-match different Spring MVC parts to
build a web layer most appropriate to your application.

 In this chapter, you’ve been taken on a whirlwind tour of how Spring MVC han-
dles requests. Along the way, you’ve also seen how most of the web layer of the
RoadRantz application is constructed.

 Regardless of what functionality is provided by a controller, you’ll ultimately
want the results of the controller to be presented to the user. So, in the next chap-
ter, we’ll build on Spring MVC by creating the view layer of the RoadRantz applica-
tion. In addition to JSP, you’ll learn how to use alternate template languages such
as Velocity and FreeMarker. And you’ll also learn how to dynamically produce
non-HTML output such as Excel spreadsheets, PDF documents, and RSS feeds.

Rendering web views
This chapter covers
■ Matching controllers to views
■ Rendering views with JSP, Velocity, and

FreeMarker
■ Laying out pages with Tiles
■ Generating PDF, Excel, and RSS output
533

534 CHAPTER 14

Rendering web views
The controllers, services, and DAOs in an application live in a box we call the server.
Those application components may be doing something very important, but
unless we can see what they’re doing, we can only guess what’s going on in there.
For an application to be useful, it needs a way to communicate with the user.

 That’s where the V of MVC comes into play. The view of an application com-
municates information back to the user and prompts the user to communicate
with the application. Without the view layer of an application, we can only guess
what’s inside.

 In chapter 13, we looked at how to build the web layer of the RoadRantz appli-
cation using Spring MVC. You learned how to configure Spring MVC and how to
write controllers that would process user input and produce model data to
present to the user. But at that time we conveniently ignored how that informa-
tion would be presented to the user.

 Now it’s time to see how to show the user what’s going on in the application by
building the application’s view layer. We’ll start by looking at how Spring chooses
a view based on the logical view name returned from a controller. Then we’ll
explore various ways that Spring can produce output for the user, including tem-
plate-based HTML, Excel spreadsheets, PDFs, and Rich Site Summary (RSS) feeds.

14.1 Resolving views

As you saw in the previous chapter, most of Spring MVC’s controllers return
ModelAndView objects from their main execution method. You saw how model
objects are passed to the view through the ModelAndView object, but we deferred
discussion of how the logical view name is used to determine which view will ren-
der the results to the user.

 In Spring MVC, a view is a bean that renders results to the user. How it per-
forms the rendering depends on the type of view you’ll use. Most likely, you’ll
want to use JavaServer Pages (JSP) to render the results. But you may also want to
use alternate view technologies such as Velocity and FreeMarker templates or
even views that produce PDF and Microsoft Excel documents. We’ll talk about all
of these options later in this chapter.

 The big question at this point is how a logical view name given to a Mode-
lAndView object gets resolved into a View bean that will render output to the
user. That’s where view resolvers come into play. Figure 14.1 shows how view
resolvers work.

 A view resolver is any bean that implements org.springframework.web.serv-
let.ViewResolver. Spring MVC regards these beans as special and consults them

Resolving views 535
when trying to determine which View bean to use. Spring comes with several
implementations of ViewResolver, as listed in table 14.1.

 Let’s have a look at a few of the most useful view resolvers, starting with Inter-
nalResourceViewResolver.

14.1.1 Using template views

Odds are good that most of the time templates will render the results of your con-
trollers. For example, suppose that after RantsForVehicleController is finished,
you’d like to display the list of rants using the following JSP:

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

Table 14.1 Spring MVC’s view resolvers help DispatcherServlet find view implementations based
on a logical view name that was returned from a controller.

View resolver How it works

InternalResourceViewResolver Resolves logical view names into View objects that are
rendered using template file resources (such as JSPs
and Velocity templates)

BeanNameViewResolver Looks up implementations of the View interface as
beans in the Spring context, assuming that the bean
name is the logical view name

ResourceBundleViewResolver Uses a resource bundle (e.g., a properties file) that maps
logical view names to implementations of the View inter-
face

XmlViewResolver Resolves View beans from an XML file that is defined
separately from the application context definition files

View
Resolver

Dispatcher
Servlet

view
 N

am
e

V
ie

w

View Controller
ModelAndView

Figure 14.1
A view resolver uses the logical view name in
the ModelAndView returned from a
controller to look up a view to render results
to the user.

536 CHAPTER 14

Rendering web views
<html>
 <head><title>Rantz For Vehicle</title></head>

 <body>
 <h2>Rantz for: ${vehicle.state} ${vehicle.plateNumber}</h2>

 <c:forEach items="${rants}" var="rant">
 <c:out value="${rant.vehicle.state}"/>/
 <c:out value="${rant.vehicle.plateNumber}"/> --
 <c:out value="${rant.rantText}"/>
 </c:forEach>

 </body>
</html>

Aesthetics aside, this JSP renders a list of the rants retrieved by RantsForVehicle-
Controller. Knowing that RantsForVehicleController’s handle() method con-
cludes with the following return:

return new ModelAndView("vehicleRants", "rants", vehicleRants);

how can you tell Spring MVC that the logical view name vehicleRants means to
use the rant-listing JSP to render the results?

 InternalResourceViewResolver resolves a
logical view name into a View object that dele-
gates rendering responsibility to a template
located in the web application’s context. As
illustrated in figure 14.2, it does this by taking
the logical view name returned in a ModelAnd-
View object and surrounding it with a prefix
and a suffix to arrive at the path of a template
within the web application.

 Let’s say that you’ve placed all of the JSPs
for the RoadRantz application in the /WEB-
INF/jsp/ directory. Given that arrangement,
you’ll need to configure an InternalRe-

sourceViewResolver bean in roadrantz-
servlet.xml as follows:

<bean id="viewResolver" class=
 "org.springframework.web.servlet.view.
 ➥ InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/jsp/" />
 <property name="suffix" value=".jsp" />
</bean>

/WEB-INF/jsp/vehicleRants.jsp

Logical View Name

Prefix Suffix

Figure 14.2
InternalResourceViewResolver
resolves a view template’s path by
attaching a specified prefix and suffix to
the logical view name.

Resolving views 537
When InternalResourceViewResolver is asked to resolve a view, it takes the logi-
cal view name, prefixes it with /WEB-INF/jsp/, and suffixes it with .jsp to arrive at
the path of the JSP that will render the output. It then hands that path over to a
View object that dispatches the request to the JSP.

 So, when RantsForVehicleController returns a ModelAndView object with
vehicleRants as the logical view name, it ends up resolving that view name to the
path of a JSP: /WEB-INF/jsp/vehicleRants.jsp.

 InternalResourceViewResolver then loads a View object with the path of the
JSP. This implies that the rant list template must be named vehicleRants.jsp.

 By default the View object is an InternalResourceView, which simply dis-
patches the request to the JSP to perform the actual rendering. But since vehi-
cleRants.jsp uses JSTL tags, you may choose to replace InternalResourceView
with JstlView by setting InternalResourceViewResolver’s viewClass property
as follows:

<bean id="viewResolver" class=
 "org.springframework.web.servlet.view.
 ➥ InternalResourceViewResolver">
 <property name="viewClass"
 value="org.springframework.web.servlet.view.JstlView" />
 <property name="prefix" value="/WEB-INF/jsp/" />
 <property name="suffix" value=".jsp" />
</bean>

JstlView dispatches the request to a JSP just like InternalResourceView. How-
ever, it also exposes JSTL-specific request attributes so that you can take advantage
of JSTL’s internationalization support.

 Although InternalResourceViewResolver is quite easy to use, it may not be
the most appropriate view for all circumstances. It assumes that your view is
defined in a template file within the web application. That may be the case in
most situations, but not always. Let’s look at some other ways to resolve views.

14.1.2 Resolving view beans

When you first looked at RantsForVehicleController (listing 11.3), you may
have assumed that the vehicleRants view would be rendered by a JSP. However,
nothing about that controller implies that JSP will be used to render the output.
What if instead of rendering the list of rants in HTML you want to offer the list as
an RSS feed that the user can subscribe to?

 Later, in section 14.5.3, you’ll learn how to create a custom view that produces
RSS feeds. But for now, pretend that you’ve already written that custom view.
Since the rant listing isn’t templated by JSP (or any other template resource for

538 CHAPTER 14

Rendering web views
that matter) in the web application, InternalResourceViewResolver isn’t going
to be of much help. Instead, you’re going to have to choose one of Spring’s other
view resolvers.

 BeanNameViewResolver is a view resolver that matches logical view names up
with names of beans in the application context. Figure 14.3 shows how this works.

<bean id="viewResolver" class=
 ➥ "org.springframework.web.servlet.view.BeanNameViewResolver"/>

Now when a controller returns a ModelAndView with a logical view name of
rantsRss, BeanNameViewResolver will look for a bean named rantsRss. This
means you must register RantRssView in the context configuration file as follows:

<bean id="rantsRss" class=
 ➥ "com.roadrantz.mvc.RantRssView"/>

Declaring view beans in a separate XML file
Another way to resolve View objects by their bean name is to use XmlFileView-
Resolver. XmlFileViewResolver works much like BeanNameViewResolver, but
instead of looking for View beans in the main application context, it consults a
separate XML file. To use XmlFileViewResolver, add the following XML to your
context configuration file:

<bean id="viewResolver" class="org.springframework.web.
 ➥ servlet.view.XmlFileViewResolver">
 <property name="location">
 <value>/WEB-INF/roadrantz-views.xml</value>
 </property>
</bean>

By default, XmlFileViewResolver looks for View definitions in /WEB-INF/
views.xml, but here we’ve set the location property to override the default with
/WEB-INF/roadrantz-views.xml.

 XmlFileViewResolver is useful if you end up declaring more than a handful of
View beans in DispatcherServlet’s context configuration file. To keep the main
context configuration file clean and tidy, you may separate the View declarations
from the rest of the beans.

BeanName
ViewResolver

Spring
Application

Context

getBean(view name)

View Bean

Figure 14.3
A BeanNameViewResolver looks up a
view bean from the Spring context that has
the same name as the logical view name.

Resolving views 539
Resolving views from resource bundles
Yet another way of resolving Views by name is to use ResourceBundleView-
Resolver. Unlike BeanNameViewResolver and XmlFileViewResolver, Resource-
BundleViewResolver manages view definitions in a properties file instead of XML
(as shown in figure 14.4).

 To use ResourceBundleViewResolver, configure ResourceBundleViewRe-
solver in roadrantz-servlet.xml as follows:

<bean id="viewResolver" class="org.springframework.web.
 ➥ servlet.view.ResourceBundleViewResolver">
 <property name="basename" value="views" />
</bean>

The basename property is used to tell ResourceBundleViewResolver how to con-
struct the names of the properties files that contain View definitions. Here it has
been set to views, which means that the View definitions could be listed in
views.properties. For example, to add the RantRssView, place the following line in
views.properties:

rantsRss.class=com.roadrantz.mvc.RantRssView

The name of this property can be broken down into two parts. The first part is
rantsRss, which is the logical name of the View as returned in ModelAndView. The
second part, class, indicates that you are setting the class name of the View
implementation that should render the output for the rantsRss view (in this
case, RantRssView).

 By employing properties files, ResourceBundleViewResolver has an advantage
over the other view resolvers with regard to internationalization. Whereas the
other view resolvers always resolved a logical view name to a single View imple-
mentation, ResourceBundleViewResolver could return a different View imple-
mentation for the same logical view name, based on the user’s Locale.

Resource
Bundle

ViewResolver

Properties File
rantsRss.class=com...RantRssView

Look Up View

rantsRss

RantRssView

Figure 14.4
ResourceBundleViewResolver resolves
views by consulting a properties file.

540 CHAPTER 14

Rendering web views
 For example, if the user’s browser is configured for English-speaking users in
the United States then the views definitions will be retrieved from
views_en_US.properties. Alternatively, for French users, the views would be
defined in views_fr_FR.properties. The benefit here is that you are able to define a
distinct set of views for different locales. Perhaps U.S. users prefer RSS 0.9 for
their feeds, but French users prefer Atom feeds. Using ResourceBundleView-
Resolver, you could satisfy both countries.

 Now that you have seen four different view resolvers that come with Spring,
which one do you choose? The next section provides some guidelines to help
you decide.

14.1.3 Choosing a view resolver

Many projects rely on JSP (or some other template language) to render the view
results. Assuming that your application isn’t internationalized or that you won’t
need to display a completely different view based on a user’s locale, we recom-
mend InternalResourceViewResolver because it is simply and tersely defined
(as opposed to the other view resolvers that require you to explicitly define
each view).

 If, however, your views will be rendered using a custom View implementation
(e.g., RSS, PDF, Excel, images, etc.), you’ll need to consider one of the other view
resolvers. We favor BeanNameViewResolver and XmlFileViewResolver over
ResourceBundleViewResolver because they let you define your View beans in a
Spring context configuration XML file. By defining the View in a Spring applica-
tion context, you’re able to configure it using the same syntax as you use for the
other components in your application.

 Given the choice between BeanNameViewResolver and XmlFileViewResolver,
I’d settle on BeanNameViewResolver only when you have a handful of View beans
that would not significantly increase the size of DispatcherServlet’s context file.
If the view resolver is managing a large number of View objects, I’d choose
XmlFileViewResolver to separate the View bean definitions into a separate file.

 In the rare case that you must render a completely different view depending
on a user’s locale, you have no choice but to use ResourceBundleViewResolver.

Using multiple view resolvers
Consider the case where most of an application’s views are JSP based but a hand-
ful require one of the other view resolvers. For example, most of the RoadRantz
application will use JSPs to render output, but (as you’ll see in section 14.5)
some responses will render RSS, PDF, and Excel output. Must you choose a

Resolving views 541
BeanNameViewResolver or XmlFileViewResolver and explicitly declare all of
your views just to handle the special cases of PDF and Excel?

 Fortunately, you aren’t limited to choosing only one view resolver for your
application. To use multiple view resolvers, simply declare all the view resolver
beans you will need in your context configuration file. For example, to use Inter-
nalResourceViewResolver, BeanNameViewResolver, and XmlFileViewResolver
all together, declare them as follows:

<bean id="viewResolver" class=
 "org.springframework.web.servlet.view.
 ➥ InternalResourceViewResolver">
 <property name="prefix"><value>/WEB-INF/jsp/</value></property>
 <property name="suffix"><value>.jsp</value></property>
</bean>

<bean id="beanNameViewResolver" class=
 ➥ "org.springframework.web.servlet.view.BeanNameViewResolver">
 <property name="order"><value>1</value></property>
</bean>

<bean id="xmlFileViewResolver" class=
 ➥ "org.springframework.web.servlet.view.XmlFileViewResolver">
 <property name="location">
 <value>/WEB-INF/views.xml</value>
 </property>
 <property name="order"><value>2</value></property>
</bean>

Because it’s quite possible that more than one view resolver may be able to resolve
the same logical view name, you should set the order property on each of your
view resolvers to help Spring determine which resolver has priority over the others
when a logical view name is ambiguous among more than one resolver. The
exception to this rule is InternalResourceViewResolver, which is always the last
view resolver in the chain.1

 View resolvers help DispatcherServlet find a view that will render output to
the user. Now we must define the views themselves. Spring MVC supports several
view layer template technologies, including JSP, Velocity, and FreeMarker. Let’s
start by looking at JSP. (We’ll pick up the discussion on Velocity and FreeMarker in
section 14.4.)

1 In case you’re wondering—InternalResourceViewResolver is the last in the chain because it will
always resolve to a view. While the other view resolvers may not find a view for a given view name,
InternalResourceViewResolver will always resolve to a view by using the prefix and suffix values
(even if the actual view template doesn’t exist). Therefore, it is necessary for InternalResource-
ViewResolver to always be last or the other view resolvers won’t get a chance to resolve the view.

542 CHAPTER 14

Rendering web views
14.2 Using JSP templates

JavaServer Pages (JSPs) are the most common way of developing dynamic web
pages in Java. In their simplest form, JSPs are HTML (or XML) files that are littered
with chunks of Java code (known as scriptlets) and custom tags. Although other
templating solutions have challenged JSP’s position as the standard template for
Java-based web applications, JSP remains dominant.

 Early versions of JSP relied heavily on scriptlets to render dynamic output. But
modern JSP specifications avoid the use of scriptlets in favor of custom JSP tags.
Many JSP tag libraries have emerged to perform all sorts of functionality—from
simple date formatting tags to complex table rendering tags (see http://display-
tag.sourceforge.net).

 From the beginning, Spring has always included a small set of tags useful for
things such as binding form values to fields and rendering externalized messages.
Spring 2 introduces a powerful new set of form-binding tags that greatly simplify
form binding in JSP pages.

 Let’s start our exploration of Spring’s JSP tag libraries with the new form-bind-
ing tags.

14.2.1 Binding form data

As we discussed in chapter 13, Spring’s command and form controllers all have a
command object associated with them. Request parameters are bound to proper-
ties of the command object for processing. And those command objects can be
validated to ensure that the data bound to them meets certain criteria.

 For example, recall that AddRantFormController (listing 13.4) has a Rant as
its command object. When the form is submitted, the properties in the Rant
object are set to the values of the corresponding request parameters. Then the
Rant is validated to ensure that all of the required fields have been entered and
that the vehicle’s plate number fits the format of a license plate number.

 What we didn’t show you is where the request parameters come from. As you’ll
recall, the formView property of AddRantFormController was set to addRant in
roadrantz-servlet.xml. This means that if we’re using InternalResourceView-
Resolver, the view will be resolved to a JSP found in /WEB-INF/jsp/addRant.jsp,
which is shown in listing 14.1.

Using JSP templates 543

<%@ page contentType="text/html" %>

<html>
 <head>
 <title>Add Rant</title>
 </head>

 <body>
 <h2>Enter a rant...</h2>
 <form method="POST" action="addRant.htm">
 State: <input type="text"
 name="rant.vehicle.state"/>

 Plate #:
 <input type="text" name="rant.vehicle.plateNumber"/>

 <textarea name="rant.rantText" rows="5" cols="50"></textarea>
 <input type="submit"/>
 </form>
 </body>
</html>

The main purpose of addRant.jsp is to render a form for entering a rant. Here the
names of the form fields are used to tell Spring which properties of the command
object (rant) to populate with the form data when the form is submitted. For
example, the first <input> tag’s value will be given to the state property of the
vehicle property of the command object.

 There’s only one problem with using plain HTML form tags. If any errors are
encountered after submitting the form, the user will be taken back to the form
view to correct the errors. But what will become of the values that were submitted?
With plain HTML form tags, the binding is one-way from the form fields to the
command properties. If the form is redisplayed after an error, there’s no way to
repopulate the form fields with the command properties. So the data entered will
be lost and the user will have to reenter it all from scratch.

 To address this problem, Spring 2 introduced a new tag library of form-bind-
ing JSP tags.2 To start using the new tags, add the following JSP directive at the top
of the addRant.jsp:

<%@ taglib prefix="form"
 uri="http://www.springframework.org/tags/form"%>

Listing 14.1 A JSP form for entering a rant

2 In versions of Spring prior to 2.0, you would use the <spring:bind> tag to bind command object prop-
erties to form fields. But the <spring:bind> tag was awkward to use. Since the new <form:xxx> tags
are so much better, the only mention of <spring:bind> will be in this footnote.

544 CHAPTER 14

Rendering web views
This tag library includes several JSP tags that render HTML form elements that are
bound to the controller’s command object. For example, here’s the rant entry
form, updated to use Spring’s form-binding tags:

<form:form method="POST" action="addRant.htm" commandName="rant">
 State: <form:input path="vehicle.state" />

 Plate #: <form:input path="vehicle.plateNumber" />

 <form:textarea path="rantText" rows="5" cols="50" />
 <input type="submit"/>
</form:form>

In this new version of the form, we’re using three of the form-binding tags. For
the state and plate number fields, we use the <form:input> tag. For the rant text
field we want the user to enter a lot of text, so a <form:textarea> is in order. In
both cases, the path attribute defines the command property that the field is to be
bound to. Finally, the <form:form> tag sets the command context for the form
tags contained within it through the value of the commandName attribute.

 When rendered, the JSP above is translated into the following HTML:

<form method="POST" action="addRant.htm">
 State: <input name="vehicle.state" type="text"
 value=""/>

 Plate #: <input name="vehicle.plateNumber"
 type="text" value=""/>

 <textarea name="rantText" rows="5" cols="50"></textarea>
 <input type="submit"/>
</form>

The nice thing about these form-binding tags is that, unlike regular HTML form
tags, the binding goes both ways. Not only is the command populated with the
field values, but if the form must be redisplayed after an error, the fields will be
automatically populated with the data that caused the error.

 This example only showed a few of the form-binding tags that come with
Spring. But forms are often more than text fields and Spring provides form-bind-
ing tags for all occasions. Refer to appendix B (available at www.manning.com/
walls3) for the complete catalog of Spring’s JSP tags.

 Binding form fields is only one of the many functions offered by Spring’s JSP
tag libraries. Next up, let’s have a look at how to externalize text on JSP pages.

14.2.2 Rendering externalized messages

In listing 14.1, the labels preceding the form fields are hard-coded in the JSP. This
presents several problems:

Using JSP templates 545
■ Any time that the same text appears on multiple pages, there exists a possi-
bility that each occurrence will be inconsistent with the others. For exam-
ple, what appears as Plate # in addRant.jsp may appear as Plate number
on another page.

■ If a decision is made to change the text, you must apply the change to every
single JSP page where the text appears. If it only appears in one JSP then no
problem—but it’s a much different story if the text appears in dozens of
pages.

■ Hard-coded text doesn’t lend itself to internationalization. Should you
need to expand your application’s audience across language boundaries,
you’ll have a hard time creating custom language versions of your applica-
tion’s templates.

To address these problems, Spring provides the <spring:message> tag. As shown
in figure 14.5, <spring:message> renders a message from an external message
properties file to the output. Using <spring:message> you can reference an
externalized message in your JSP and have the actual message rendered when the
view is rendered.

 For example, listing 14.2 shows the new version of addRant.jsp, which uses
the <spring:message> tag to render the field labels.

JSP File
<spring:message
 code="field.state" />
<spring:message
 code="field.plateNumber" />
<spring:message
 code="field.rantText" />

Results
State:

Plate #:

Rant text:

Message File
field.state=State:

field.plateNumber=Plate #:

field.rantText=Rant text:

Figure 14.5 The <spring:message> tag resolves messages from an external
message properties file.

546 CHAPTER 14

Rendering web views
<%@page contentType="text/html"%>
<%@taglib prefix="form"
 uri="http://www.springframework.org/tags/form"%>
<%@taglib prefix="spring"
 uri="http://www.springframework.org/tags"%>

<html>
 <head>
 <title><spring:message code="title.addRant" /></title>
 </head>
 <body>
 <h2><spring:message code="title.addRant" /></h2>
 <form:form method="POST" action="addRant.htm"
 commandName="rant">
 <spring:message code="field.state" />
 <form:input path="vehicle.state" />

 <spring:message code="field.plateNumber" />
 <form:input path="vehicle.plateNumber" />

 <spring:message code="field.rantText" />

 <form:textarea path="rantText" rows="5" cols="50" />
 <input type="submit"/>
 </form:form>
 </body>
</html>

To use the <spring:message> tag, you must import the spring tag library by
using the following <%@taglib %> directive on every JSP that will use the tag:

<%@taglib prefix="spring"
 uri="http://www.springframework.org/tags"%>

With this directive in place, you can reference externalized messages by passing
the message code to <spring:message>’s code attribute.

 Okay… so, <spring:message> renders externalized messages, but where
exactly are these messages externalized?

 Spring’s ResourceBundleMessageSource works hand in hand with
<spring:message> to resolve message codes to actual message values. The follow-
ing <bean> declaration registers a ResourceBundleMessageSource in roadrantz-
servlet.xml:

<bean id="messageSource" class=
 "org.springframework.context.support.
 ➥ ResourceBundleMessageSource">
 <property name="basename" value="messages" />
</bean>

Listing 14.2 Using externalized messages in addRant.jsp

Uses Spring tags

Renders
externalized
label text

Using JSP templates 547
The first thing to point out about this <bean> is its id. It’s important to name the
bean messageSource because that’s the name Spring will use to look for a mes-
sage source.

 As for the location of the message properties file, this is determined by the
basename property. Here the base name is set to messages. This means that, by
default, externalized messages will be retrieved from a file called messages.prop-
erties in the classpath. The following excerpt from /WEB-INF/classes/mes-
sages.properties shows how the messages in addRant.jsp are defined:

field.state=State:
field.plateNumber=Plate #:
field.rantText=Rant text:
title.addRant=Add a rant

These same properties could also be referenced by using <spring:message> on
another JSP. If so then the text rendered by these messages will be consistent
across all JSPs in the application. Moreover, changes to the values in mes-
sages.properties will be applied universally to all JSPs in the application.

 Another benefit of using externalized messages is that it makes it simple to
internationalize your application. For example, consider the following excerpt
from /WEB-INF/classes/messages_es.properties:

field.state=Estado:
field.plateNumber=Numero del plato:
field.rantText=Despotrique texto:

This version of the properties file provides a Spanish flair to the RoadRantz appli-
cation. If the user has their locale and language settings set for Spanish, the mes-
sage properties will be resolved from messages_es.properties instead of the
default messages.properties file and our Spanish-speaking users will be able to
rant about traffic to su contenido de corazón.

14.2.3 Displaying errors

In chapter 13, you saw how to validate command objects using either Spring’s
Validator interface (listing 13.5) or Commons Validator (listing 13.6). In those
examples, a failed validation resulted in a message code being placed in the
Errors object. But the actual error message resides in an external properties file.

 Where <spring:message> renders general messages from an external proper-
ties file, <form:errors> renders externalized error messages based on error codes
in the Errors object. The newest form of addRant.jsp in listing 14.3 shows how to
use <form:errors> to render validation errors.

548 CHAPTER 14

Rendering web views
<%@page contentType="text/html"%>
<%@taglib prefix="form"
 uri="http://www.springframework.org/tags/form"%>
<%@taglib prefix="spring"
 uri="http://www.springframework.org/tags"%>

<html>
 <head>
 <title>Add Rant</title>
 <style>
 .error {
 color: #ff0000;
 font-weight: bold;
 }
 </style>
 </head>

 <body>
 <h2>Enter a rant...</h2>
 <form:form method="POST" action="addRant.htm"
 commandName="rant">
 <spring:message code="field.state" />
 <form:input path="vehicle.state" />
 <form:errors path="vehicle.state" cssClass="error"/>

 <spring:message code="field.plateNumber" />
 <form:input path="vehicle.plateNumber" />
 <form:errors path="vehicle.plateNumber"
 cssClass="error"/>

 <spring:message code="field.rantText" />
 <form:errors path="rantText" cssClass="error"/>

 <form:textarea path="rantText" rows="5" cols="50" />
 <input type="submit"/>
 </form:form>
 </body>
</html>

When a field’s value is rejected during validation, an error message code is associ-
ated with the field in the Errors object. The <form:errors> tag looks for any error
message codes associated with the field (which is specified with the path attribute)
and then tries to resolve those messages from an external properties file.

 We could put the error messages in the same messages file as the other exter-
nalized messages. But let’s keep things neat and tidy and place the error messages
in their own properties file. To do this, we’ll tweak the messageSource bean to
have multiple base names instead of a single base name:

Listing 14.3 Using externalized messages in addRant.jsp

Defines error style

Renders
errors for
fields

Laying out pages with Tiles 549
<bean id="messageSource" class=
 "org.springframework.context.support.
 ➥ ResourceBundleMessageSource">
 <property name="basenames">
 <list>
 <value>messages</value>
 <value>errors</value>
 </list>
 </property>
</bean>

The following excerpt from /WEB-INF/classes/errors.properties shows the error
messages that could result from problems with validation when adding a rant:

required.state=State is required.
required.plateNumber=License plate number is required.
required.rantText=Rant text is required.
invalid.plateNumber={0} is an invalid license plate number.

Just like other externalized messages, error messages can also be international-
ized. For example, here’s the Spanish version of the errors file (/WEB-INF/
classes/errors_es.properties):

required.state=El estado se requiere.
required.plateNumber=El numero de la matricula se requiere.
required.rantText=El texto de lenguaje declamatorio se requiere.
invalid.plateNumber={0} es un numero invalido de matricula.

Now we’ve created a few JSP pages that define the view of the RoadRantz applica-
tion. Up until now, we’ve kept the look and feel of the RoadRantz application very
generic. We’ve focused on how to write Spring-enabled web applications with little
regard for aesthetics. But how an application looks often dictates its success. To
make the RoadRantz application visually appealing, it needs to be placed in a tem-
plate that frames its generic pages with eye-popping graphics. Let’s see how to use
Jakarta Tiles, a page layout framework, with Spring MVC to dress up the applica-
tion’s appearance.

14.3 Laying out pages with Tiles

Jakarta Tiles is a framework for laying out pieces of a page in a template. Although
originally created as part of Jakarta Struts, Tiles can be used even when the MVC
framework isn’t Struts. For our purposes, we’re going to use Tiles alongside
Spring’s MVC framework.

550 CHAPTER 14

Rendering web views
 Although we’ll give a brief overview of working with Tiles, we will not go into
too many details of how Tiles works. For more information on Tiles, we recom-
mend that you read Struts in Action (Manning, 2002).

14.3.1 Tile views

The template for the RoadRantz application will be kept reasonably simple for the
sake of brevity. It will have a header where the company logo and motto will be
displayed, a footer where contact and copyright information will be displayed,
and a larger area in the middle where the main content will be displayed.
Figure 14.6 shows a box diagram of how the template will be laid out.

 The template for the RoadRantz application is defined in rantzTemplate.jsp
(listing 14.4).

<%@ taglib prefix="tiles"
 uri="http://jakarta.apache.org/struts/tags-tiles" %>

<html>
 <head>
 <title><tiles:getAsString name="title"/></title>
 </head>
 <body>
 <table width="100%" border="0">
 <tr>
 <td><tiles:insert name="header"/></td>
 </tr>
 <tr>
 <td valign="top" align="left">
 <tiles:insert name="content"/>
 </td>
 </tr>
 <tr>
 <td>
 <tiles:insert name="footer"/>
 </td>
 </tr>
 </table>
 </body>
</html>

rantzTemplate.jsp uses the Tiles <tiles:insert> JSP tag to include content into
this template. The details of where the included content originates are specified
in the Tiles definition file. A Tiles definition file is XML that describes how to fill

Listing 14.4 Using Tiles to put a skin on RoadRantz

Displays page title

Displays tile
components

Laying out pages with Tiles 551
in the template. The file can be named anything you want, but for the purposes of
the RoadRantz application, roadrantz-tiles.xml seems appropriate.

 The following excerpt from roadrantz-tiles.xml outlines the main template
(called template), filling in each of its components with some default values:

<tiles-definitions>
 <definition name="template"
 page="/WEB-INF/jsp/rantzTemplate.jsp">
 <put name="title" value="RoadRantz"/>
 <put name="header" value="/WEB-INF/jsp/header.jsp"/>
 <put name="content"
 value="/WEB-INF/jsp/defaultContentPage.jsp"/>
 <put name="footer" value="/WEB-INF/jsp/footer.jsp"/>
 </definition>
…
</tiles-definitions>

Here, the header and footer components are given the path to JSP files that
define how the header and footer should look. When Tiles builds a page, it will
replace the <tiles:insert> tags named header and footer with the output
resulting from header.jsp and footer.jsp, respectively.

 As for the title and content components, they are just given some dummy
values. Because it’s just a template, you’ll never view the template page directly.
Instead, when you view another page that is based on template, the dummy val-
ues for title and content will be overridden with real values.

Figure 14.6 The RoadRantz application uses Tiles for page layout. To keep
things simple, there are only three tiles: header, content, and footer.

552 CHAPTER 14

Rendering web views
 The homepage is a typical example of the pages in the application that will be
based on template. It is defined in roadrantz-tiles.xml like this:

<definition name="home" extends="template">
 <put name="title" value="Welcome to RoadRantz" />
 <put name="content" value="/WEB-INF/jsp/home.jsp"/>
</definition>

Extending template ensures that the homepage will inherit all of its component
definitions. However, we want each page to have a unique title and certainly need
each page to have unique content. So, we have overridden the template’s title
component with “Welcome to RoadRantz” so that the page will have an appropri-
ate title in the browser’s title bar. And the main content for the homepage is
defined by home.jsp, so the content component is overridden to be /WEB-INF/
jsp/home.jsp.

 So far, this is a typical Tiles-based application. You’ve seen nothing Spring-spe-
cific yet. But now we’re ready to integrate Tiles into Spring MVC by performing
these two steps:

■ Configuring a TilesConfigurer to load the Tiles definition file

■ Declaring a Spring MVC view resolver to resolve logical view names to Tiles
definitions

Configuring Tiles
The first step in integrating Tiles into Spring MVC is to tell Spring to load the
Tiles configuration file(s). Spring comes with TilesConfigurer, a bean that
loads Tiles configuration files and makes them available for rendering Tiles
views. To load the Tiles configuration into Spring, declare a TilesConfigurer
instance as follows:

<bean id="tilesConfigurer" class="org.springframework.
 ➥ web.servlet.view.tiles.TilesConfigurer">

 <property name="definitions">
 <list>
 <value>/WEB-INF/roadrantz-tiles.xml</value>
 </list>
 </property>
</bean>

The definitions property is given a list of Tiles definition files to load. But in the
case of the RoadRantz application, there’s only one definition file: roadrantz-
tiles.xml.

Laying out pages with Tiles 553
Resolving Tiles views
The second and final step to integrate Tiles into Spring MVC is to configure a view
resolver that will send the user to a page defined by Tiles. InternalResourceVie-
wResolver will do the trick:

<bean id="viewResolver"
 class="org.springframework.web.servlet.
 ➥ view.InternalResourceViewResolver">
 <property name="viewClass"
 value="org.springframework.web.servlet.view.tiles.
 ➥ TilesJstlView"/>
</bean>

Normally, InternalResourceViewResolver resolves logical views from resources
(typically JSPs) in the web application. But for Tiles, you’ll need it to resolve views
as definitions in a Tiles definition file. For that, the viewClass property has been
set to use a TilesJstlView.

 There are actually two view classes to choose from when working with Tiles:
TilesView and TilesJstlView. The difference is that TilesJstlView will place
localization information into the request for JSTL pages. Even though we’re using
JSTL, we’re not taking advantage of JSTL’s support for internationalization. Never-
theless, we may choose to internationalize RoadRantz in the future, so there’s no
harm in using TilesJstlView. If you’re not using JSTL-based views, you should
use TilesView instead.

 With InternalResourceViewResolver configured with TilesJstlView (or
TilesView), the rules have changed. Instead of trying to resolve a view by prefix-
ing and suffixing the logical view name, now InternalResourceViewResolver will
resolve views by looking in the Tiles definition file(s). If a <definition> in the
Tiles definition file has a same name that matches the logical view name, it will be
used to render the page to the user.

 For example, consider how the resulting view of HomeController is resolved.
When finished, HomeController returns the following ModelAndView:

return new ModelAndView("home", "rantz", recentRants);

The logical view name is home, so TilesView will look for the view definition in
the Tiles configuration. In this case, it finds the <definition> named home. Since
home is based on template, the resulting HTML page will be structured like rantz-
Template.jsp (listing 14.4), but will have its title set to “Welcome to RoadRantz”
and its content will be derived from the JSP in /WEB-INF/jsp/home.jsp.

554 CHAPTER 14

Rendering web views
 Nothing about the RoadRantz controller classes will need to change to support
Tiles. That’s because the page definitions in roadrantz-tiles.xml are cleverly
named to be the same as the logical view names returned by all the controllers.

14.3.2 Creating Tile controllers

Now let’s make the RoadRantz application a bit more personable. As it exists, the
header is somewhat plain and boring. To make it more interesting, we’d like to
put a message in the header that indicates the number of rants that have been
posted for the current day.

 One way to accomplish this is to place the following code in each of the con-
trollers:

modelMap.add("rantsToday",
 rantService.getRantsForDay(new Date()).size();

This would place the number of rants for today into the request so that it can be
displayed in header.jsp like this:

Helping ${rantsToday} motorists deal
 with road rage today!

But for this to work on all pages, you’d need to repeat the rant count code in all of
the application’s controller classes. There are options to eliminate the redundant
code, including creating a common base controller for all other controllers to
subclass or putting this functionality in a utility class used by all controllers. But all
of these options add complexity that you’d like to avoid.

 A unique feature of Tiles is that each component on a page can have its own
controller. Be aware that this is a Tiles-specific controller, not to be confused with
a Spring MVC controller. Unfortunately, the word “controller” has been over-
loaded here, which can lead to some confusion. As we saw in chapter 13, Spring
MVC controllers process a request on behalf of DispatcherServlet. Tiles control-
lers, on the other hand, can be associated with Tiles components so that each
component can perform functionality specific to that component.

 To include the rant count message on each page of the RoadRantz application,
we will need to build a controller for the header component. HeaderTileCon-
troller (listing 14.5) retrieves the number of rants that have been posted for the
current day and places that information into the component context for display
in the banner.

Laying out pages with Tiles 555

package com.roadrantz.tiles;
import java.util.Date;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.struts.tiles.ComponentContext;
import org.springframework.web.servlet.
 view.tiles.ComponentControllerSupport;
import com.roadrantz.domain.Motorist;
import com.roadrantz.service.RantService;

public class HeaderTileController
 extends ComponentControllerSupport {
 public HeaderTileController() {}

 protected void doPerform(ComponentContext componentContext,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {

 RantService rantService = getRantService();
 int rantsToday = rantService.getRantsForDay(new Date()).size();
 componentContext.putAttribute("rantsToday", rantsToday);
 }

 private RantService getRantService() {
 return (RantService) getApplicationContext().getBean(
 "rantService");
 }
}

HeaderTileController extends ComponentControllerSupport, a Spring-specific
extension of Tiles’s ControllerSupport class. ComponentControllerSupport
makes the Spring application context available via its getApplicationContext()
method. This is perfect, because HeaderTileController is going to need the
Spring application context to look up the rantService bean.

 HeaderTileController makes a call to getApplicationContext() and uses
the application context to look up a reference to the rantService bean so that it
can find out how many rants have been posted today. Once it has the information,
it places it into the Tiles component context so that the header component can
display it.

 The only thing left to do is to associate this component controller with the
header component. Revisiting the header definition in roadrantz-tiles.xml,
extract the header definition and set its controllerClass attribute to point to the
HeaderTileController:

Listing 14.5 Counting rants for the day using a Tiles controller

Places rant count
in Tiles context

Looks up
RantService

556 CHAPTER 14

Rendering web views
<definition name=".header" page="/WEB-INF/jsp/header.jsp"
 controllerClass="com.roadrantz.tiles.HeaderTileController" />

<definition name="template" page="/WEB-INF/jsp/rantzTemplate.jsp">
 <put name="title" value="RoadRantz"/>
 <put name="header" value=".header"/>
 <put name="content" value="/WEB-INF/jsp/defaultContentPage.jsp"/>
 <put name="footer" value="/WEB-INF/jsp/footer.jsp"/>
</definition>

Now, as the page is constructed, Tiles will use HeaderTileController to set up
the component context prior to displaying the header component. In header.jsp,
the rant count can be displayed like this:

Helping <tiles:getAsString name="rantsToday"/> motorists deal
with road rage today!

At this point, we’ve developed most of the view layer of the RoadRantz application
using JSP and Tiles. Now let’s do it again!

 JSP is the standard way of building the web layer in Java-based web applications.
But, as it turns out, not everybody’s a fan of JSP. Many believe that it’s bloated and
unnecessarily complex. If you’re a JSP dissenter then read on… in the next sec-
tion, we’re going to look at how Spring MVC can use JSP alternatives such as Veloc-
ity and FreeMarker.

14.4 Working with JSP alternatives

In October 1908, Henry Ford rolled out the “car for the great multitude”: the
Model-T Ford. The sticker price: $950. To speed assembly, all Model-Ts were
painted black because black paint dried the fastest. Legend quotes Henry Ford
as saying, “Any customer can have a car painted any color that he wants so long
as it is black.”

 Automobiles have come a long way since 1908. In addition to a dizzying selec-
tion of body styles, you also get to choose among several options, including the
type of radio/CD player, whether or not you get power windows and door locks,
and cloth versus leather upholstery. And nowadays any customer can have any
color that they want—including, but not limited to, black.

 Up to now we’ve used JSP to define the view of the RoadRantz application. But
unlike Henry Ford’s black paint, JSP isn’t the only choice when it comes to the
view layer of your application. Two other popular templating engines are Velocity
and FreeMarker. Let’s have a look at how to use these templating engines with
Spring MVC.

Working with JSP alternatives 557
14.4.1 Using Velocity templates

Velocity is an easy-to-use template language for Java applications. Velocity tem-
plates contain no Java code, thus making them easy to understand by nondevelop-
ers and developers alike. From Velocity’s user guide: “Velocity separates Java code
from the web pages, making the web site more maintainable over the long run
and providing a viable alternative to JavaServer Pages.”

 Aside from JSP, Velocity is probably the most popular template language for
web-based applications. So it is highly likely that you may want to develop your
Spring-based application using Velocity as the view-layer technology. Fortunately,
Spring supports Velocity as a view-layer templating language for Spring MVC.

 Let’s see how to use Velocity with Spring MVC by reimplementing the view
layer of the RoadRantz application so that it’s based on Velocity.

Defining the Velocity view
Suppose that you’ve chosen to use Velocity, instead of JSP, as the view-layer tech-
nology for the RoadRantz application. In listing 11.2, we created a JSP version of
the RoadRantz homepage. But now let’s look at home.vm (listing 14.6), a Velocity
template that renders the home page.

<html>
 <head><title>Rantz</title></head>

 <body>
 <h2>Rantz:</h2>

 Add rant

 Register new motorist

 #foreach($rant in $rants)
 ${rant.vehicle.state}/
 ${rant.vehicle.plateNumber} --
 ${rant.rantText}
 #end

 </body>
</html>

Not much is different between the Velocity template and the original JSP. But one
thing you’ll notice about this template is that there are no template tags. That’s
because Velocity isn’t tag-based like JSP. Instead, Velocity employs its own lan-

Listing 14.6 A Velocity version of the RoadRantz home page

Iterates over
list of rants

558 CHAPTER 14

Rendering web views
guage—known as Velocity Template Language (VTL)—for control flow and other
directives. In home.vm, the #foreach directive is used to loop through a list of
rants, displaying rant details with each iteration.

 Despite this basic difference between Velocity and JSP, you’ll find that Veloc-
ity’s expression language resembles that of JSP. In fact, JSP merely followed in
Velocity’s footsteps when using the ${} notation in its own expression language.

 This template demonstrates only a fraction of what you can do with Velocity.
To learn more, visit the Velocity homepage at http://jakarta.apache.org/velocity.

 Now that the template has been created, you’ll need to configure Spring to use
Velocity templates for the view in MVC applications.

Configuring the Velocity engine
The first thing to configure is the Velocity engine itself. To do this, declare a
VelocityConfigurer bean in the Spring configuration file, as follows:

<bean id="velocityConfigurer" class=
 ➥ "org.springframework.web.servlet.view.velocity.
 ➥ VelocityConfigurer">
 <property name="resourceLoaderPath" value="WEB-INF/velocity/" />
</bean>

VelocityConfigurer sets up the Velocity engine in Spring. Here, we’ve told
Velocity where to find its templates by setting the resourceLoaderPath property. I
recommend placing the templates in a directory underneath the WEB-INF direc-
tory so that the templates can’t be accessed directly.

 If you’re familiar with Velocity, you already know that you can configure
the behavior of Velocity using a velocity.properties file. But with VelocityCon-
figurer, you can also set those configuration details by setting the velocity-
Properties property. For example, consider the following declaration of
VelocityConfigurer:

<bean id="velocityConfigurer" class=
 ➥ "org.springframework.web.servlet.view.velocity.
 ➥ VelocityConfigurer">
 <property name="resourceLoaderPath" value="WEB-INF/velocity/" />
 <property name="velocityProperties">
 <props>
 <prop key="directive.foreach.counter.name">loopCounter</prop>
 <prop key="directive.foreach.counter.initial.value">0</prop>
 </props>
 </property>
</bean>

Working with JSP alternatives 559
Here we’ve configured the Velocity engine, changing the behavior of the
#foreach loop. By default, Velocity’s #foreach loop maintains a counter variable
called $velocityCount that starts with a value of 1 on the first iteration of the
loop. But here we’ve set the directive.foreach.counter.name property to
loopCounter so that the loop counter can be referred to with $loopCounter.
We’ve also made the loop counter zero-based by setting the direc-

tive.foreach.counter.initial.value property to 0. (For more on Velocity
configuration properties, refer to Velocity’s developer guide at http://
jakarta.apache.org/velocity/developer-guide.html.)

Resolving Velocity views
The final thing you must do to use Velocity template views is to configure a view
resolver. Specifically, declare a VelocityViewResolver bean in the context config-
uration file as follows:

<bean id="viewResolver"
 class="org.springframework.web.servlet.view.
 ➥ velocity.VelocityViewResolver">
 <property name="suffix" value=".vm" />
</bean>

VelocityViewResolver is to Velocity what InternalResourceViewResolver is to
JSP. Just like InternalResourceViewResolver, it has prefix and suffix proper-
ties that it uses with the view’s logical name to construct a path to the template.
Here, only the suffix property is set with the .vm extension. No prefix is required
because the path to the template directory has already been set through Veloci-
tyConfigurer’s resourceLoaderPath property.

NOTE Here the bean’s ID is set to viewResolver. This is significant when
DispatcherServlet is not configured to detect all view resolvers. If you
are using multiple view resolvers, you’ll probably need to change the
ID to something more appropriate (and unique), such as velocity-
ViewResolver.

At this point, your application is ready to render views based on Velocity tem-
plates. All you need to do is return a ModelAndView object that references the view
by its logical name. In the case of HomeController, there’s nothing to do because
it already returns a ModelAndView as follows:

return new ModelAndView("home", "rants", recentRants);

560 CHAPTER 14

Rendering web views
The view’s logical name is home. When the view is resolved, home will be suffixed
with .vm to create the template name of home.vm. VelocityViewResolver will find
this template in the WEB-INF/velocity/ path.

 As for the rants model object, it will be exposed in the Velocity template as a
Velocity property. In listing 14.6, it is the collection that the #foreach directive
iterates over.

Formatting dates and numbers
Although the application is now set to render Velocity views, we have a few loose
ends to tie up. If you compare home.vm from listing 14.6 to home.jsp, you’ll
notice that home.vm doesn’t apply the same formatting to the rant’s posted date
as in home.jsp. In home.jsp, the posted date is displayed in “full” format. For
home.vm to be complete, you’ll need to tweak it to properly format the date.

 The VTL doesn’t directly support date formatting. However, Velocity does have
tools for date and number formatting. To enable these tools, you’ll need to tell
the VelocityViewResolver the name of the attributes to expose them through.
These attributes are specified through VelocityViewResolver’s dateToolAt-
tribute and numberToolAttribute properties:

<bean id="viewResolver"
 class="org.springframework.web.servlet.view.
 ➥ velocity.VelocityViewResolver">
 <property name="suffix" value=".vm" />
 <property name="dateToolAttribute">
 <value>dateTool</value>
 </property>
 <property name="numberToolAttribute">
 <value>numberTool</value>
 </property>
</bean>

Here, the date tool is assigned to a $dateTool attribute in Velocity. So, to format
the rant’s posted date, all you need to do is reference the date through the num-
ber tool’s format() function. For example:

$dateTool.format("FULL", rant.postedDate)

The first parameter is the pattern string. This string adheres to the same syntax
as that of java.text.SimpleDateFormat. In addition, you can specify one of the
standard java.text.DateFormat patterns by setting the pattern string to one of
FULL, LONG, MEDIUM, SHORT, or DEFAULT. Here we’ve set it to FULL to indicate the
full date format.

Working with JSP alternatives 561
 As mentioned, the $numberTool attribute provides a tool for formatting num-
bers in the Velocity template. Refer to Velocity’s documentation for more infor-
mation on this tool’s and the date tool’s functions.

Exposing request and session attributes
Although most data that needs to be displayed in a Velocity template can be
passed to the view through the model Map given to the ModelAndView object, there
are times when you may wish to display attributes that are in the servlet’s request
or session. For example, if a user is logged into the application, that user’s infor-
mation may be carried in the servlet session.

 It would be clumsy to copy attributes out of the request or session into the model
Map in each controller. Fortunately, VelocityViewResolver can copy the attributes
into the model for you. The exposeRequestAttributes and exposeSessionAt-
tributes properties tell VelocityViewResolver whether or not you want servlet
request and session attributes copied into the model. For example:

<bean id="viewResolver" class="org.springframework.
 ➥ web.servlet.view.velocity.VelocityViewResolver">
…
 <property name="exposeRequestAttributes">
 <value>true</value>
 </property>
 <property name="exposeSessionAttributes">
 <value>true</value>
 </property>
</bean>

By default, both of these properties are false. But here we’ve set them both to true
so that both request and session attributes will be copied into the model and
therefore will be visible in the Velocity template.

Binding form fields in Velocity
Earlier in this chapter, you saw how to use Spring’s JSP tag libraries to bind form
fields to properties of a command object and to display error messages. Although
Velocity doesn’t have tags, Spring does provide a set of Velocity macros that pro-
vide equivalent functionality to Spring’s JSP tag libraries. Table 14.2 lists the Veloc-
ity macros that come with Spring.

 Most of the macros in table 14.2 are form-binding macros. That is, they render
HTML form elements whose values are bound to a property of a command object.
The specific property that they’re bound to is specified in the first parameter
(called path in the table). Most of the macros also have a parameter that allows

562 CHAPTER 14

Rendering web views
you to specify additional attributes to be placed on the rendered HTML elements
(e.g., length='20').

 As an illustration of how to use Spring’s Velocity macros, let’s revisit the
addRant view. Earlier in this chapter we defined that view as a JSP. However,
listing 14.7 shows addRant.vm, the Velocity version of that view.

Table 14.2 Spring MVC provides a handy collection of Velocity macros that bind form fields to a
controller’s command object.

Macro Purpose

#springFormCheckboxes(path
options separator attributes)

Renders a set of check boxes. Checks the box(es)
whose value matches that of a command object
property.

#springFormHiddenInput(path
attributes)

Renders a hidden field bound to a command
object property.

#springFormInput(path attributes) Renders a text field bound to a command object
property.

#springFormMultiSelect(path
options attributes)

Renders a selection list allowing multiple selec-
tion. Selected values are bound to a command
object property.

#springFormPasswordInput(path
attributes)

Renders a password field bound to a command
object property.

#springFormRadioButtons(path
options separator attributes)

Renders a set of radio buttons where the selected
radio button is bound to a command object prop-
erty.

#springFormSingleSelect(path
options attributes)

Renders a selection list, allowing only a single
entry to be selected. The selected value is bound
to a command object property.

#springFormTextarea(path
attributes)

Renders a text area bound to a command object
property.

#springMessage(messageCode) Renders a message externalized in a resource
bundle.

#springMessageText(messageCode
text)

Renders a message externalized in a resource
bundle, with a default value if the message isn’t
found in the resource bundle.

#springShowErrors(separator
class/style)

Renders validation errors.

#springUrl(relativeUrl) Renders an absolute URL given a relative URL.

Working with JSP alternatives 563

<html>
 <head>
 <title>#springMessage("title.addRant")</title>
 </head>

 <body>
 <h2>#springMessage("title.addRant")</h2>
 <form method="POST" action="addRant.htm">
 #springMessage("field.state")#springFormInput(
 "rant.vehicle.state" "")

 #springMessage("field.plateNumber") #springFormInput(
 "rant.vehicle.plateNumber" "")

 #springMessage("field.rantText")
 #springFormTextarea("rant.rantText" "rows='5' cols='50'")
 <input type="submit"/>
 </form>
 </body>
</html>

 For the state and plate number fields, we’re using #springFormInput bound to
rant.vehicle.state and rant.vehicle.plateNumber, respectively. This means
that when the form is submitted, the values will be bound to the state and
plateNumber properties of the vehicle property of the command object (rant).
In both cases, there’s no need to set additional attributes on the HTML, so the sec-
ond parameter is empty. The resulting HTML for these two fields looks like this:

State: <input type="text" id="vehicle.state"
 name="vehicle.state" value="" />

Plate #: <input type="text" id="vehicle.plateNumber"
 name="vehicle.plateNumber" value="" />

For the text area where the user enters the rant text, an HTML <textarea> is in
order. The #springFormTextarea macro renders a <textarea> that is bound to
rant.rantText. When the form is submitted, the value will be bound to the rant-
Text property of the command object. In this case, however, we need to set the
size of the <textarea>, so we’re passing additional attributes in the second
parameter. The HTML for the text area is as follows:

<textarea id="rantText" name="rantText"
 rows='5' cols='50'></textarea>

To be able to use the Spring macros in your templates, you’ll need to enable the
macro using the exposeSpringMacroHelpers property of VelocityViewResolver:

Listing 14.7 Adding a rant through a Velocity template

564 CHAPTER 14

Rendering web views
<bean id="viewResolver"
 class="org.springframework.web.servlet.view.
 ➥ velocity.VelocityViewResolver">
 <property name="suffix" value=".vm" />
 <property name="exposeSpringMacroHelpers" value="true" />
</bean>

By setting the exposeSpringMacroHelpers property to true, you’ll ensure that
your Velocity templates will have access to Spring’s macros for Velocity.

 Although Velocity is a widely used alternative to JSP, it is not the only alternate
templating option available. FreeMarker is another well-known template language
that aims to replace JSP in the view layer of MVC applications. Let’s see how to
plug FreeMarker into your Spring MVC application.

14.4.2 Working with FreeMarker

FreeMarker is slightly more complex than Velocity, but only as the result of being
slightly more powerful. FreeMarker comes with built-in support for several useful
tasks, such as date and number formatting and white-space removal. These fea-
tures are only available in Velocity through add-on tools.

 You’ll soon see how using FreeMarker with Spring MVC isn’t much different
than using Velocity with Spring MVC. But first things first—let’s start by writing a
FreeMarker template to be used in the RoadRantz application.

Constructing a FreeMarker view
Suppose that after further consideration, you decide that FreeMarker templates
are more suited to your tastes than Velocity. So, instead of developing the view
layer of the RoadRantz application using Velocity, you’d like to plug FreeMarker
into Spring MVC. Revisiting the home page, you produce home.ftl (listing 14.8),
the FreeMarker template that renders the home page.

<html>
 <head><title>Rantz</title></head>

 <body>
 <h2>Rantz:</h2>

 Add rant

 Register new motorist

 <#list rants as rant>
 ${rant.vehicle.state}/
 ${rant.vehicle.plateNumber} --
 ${rant.rantText}

Listing 14.8 A FreeMarker rendition of the RoadRantz homepage

Working with JSP alternatives 565
 </#list>

 </body>
</html>

You’ll notice that the FreeMarker version of the homepage isn’t dramatically dif-
ferent from the Velocity version from listing 14.6. Just as with Velocity (and JSP, for
that matter), the ${} notation is used as an expression language to display
attribute values.

 The home.ftl template barely scratches the surface of FreeMarker’s capabili-
ties. For more information on FreeMarker, visit the FreeMarker home page at
http://freemarker.sourceforge.net.

Configuring the FreeMarker engine
Just like Velocity, FreeMarker’s engine must be configured in order for Spring’s
MVC to use FreeMarker templates for rendering views. Declare a FreeMarkerCon-
figurer in the context configuration file like this:

<bean id="freemarkerConfig"
 class="org.springframework.web.servlet.view.
 ➥ freemarker.FreeMarkerConfigurer">
 <property name="templateLoaderPath" value="WEB-INF/freemarker/" />
</bean>

FreeMarkerConfigurer is to FreeMarker as VelocityConfigurer is to Velocity.
You use it to configure the FreeMarker engine. As a minimum, you must tell
FreeMarker where to find the templates. You do this by setting the templateLoad-
erPath property (here set to look for templates in WEB-INF/freemarker/).

 You can configure additional FreeMarker settings by setting them as properties
through the freemarkerSettings property. For example, FreeMarker reloads
and reparses templates if five seconds (by default) have elapsed since the template
was last checked for updates. But checking for template changes can be time con-
suming. If your application is in production and you don’t expect the template to
change very often, you may want to stretch the update delay to an hour or more.

 To do this, modify FreeMarker’s template_update_delay setting through the
freemarkerSettings property. For example:

<bean id="freemarkerConfig"
 class="org.springframework.web.servlet.view.
 ➥ freemarker.FreeMarkerConfigurer">
 <property name="templateLoaderPath" value="WEB-INF/freemarker/" />
 <property name="freemarkerSettings">
 <props>

566 CHAPTER 14

Rendering web views
 <prop key="template_update_delay">3600</prop>
 </props>
 </property>
</bean>

Notice that as with VelocityConfigurer’s velocityProperties property, the
freemarkerSettings property takes a <props> element. In this case, the only
<prop> is one to set the template_update_delay setting to 3600 (seconds) so that
the template will only be checked for updates after an hour has passed.

Resolving FreeMarker views
The next thing you’ll need to do is to declare a view resolver for FreeMarker:

<bean id="viewResolver"
 class="org.springframework.web.servlet.view.
 ➥ freemarker.FreeMarkerViewResolver">
 <property name="suffix" value=".ftl" />
</bean>

FreeMarkerViewResolver works just like VelocityViewResolver and Internal-
ResourceViewResolver. Template resources are resolved by prefixing a view’s log-
ical name with the value of the prefix property and are suffixed with the value of
the suffix property. Again, just as with VelocityViewResolver, we’ve only set the
suffix property because the template path is already defined in FreeMarkerCon-
figurer’s templateLoaderPath property.

Exposing request and session attributes
In section 14.4.1, you saw how to tell VelocityViewResolver to copy request
and/or session attributes into the model map so that they’ll be available as vari-
ables in the template. You can do the same thing with FreeMarkerViewResolver
to expose request and session attributes as variables in a FreeMarker template. To
do so, set either the exposeRequestAttributes or exposeSessionAttributes
property (or both) to true:

<bean id="viewResolver"
 class="org.springframework.web.servlet.view.
 ➥ freemarker.FreeMarkerViewResolver">
…
 <property name="exposeRequestAttributes">
 <value>true</value>
 </property>
 <property name="exposeSessionAttributes">
 <value>true</value>
 </property>
</bean>

Working with JSP alternatives 567
Here, both properties have been set to true. As a result, both request and session
attributes will be copied into the template’s set of attributes and will be available
to display using FreeMarker’s expression language.

Binding form fields in FreeMarker
One last thing you may want to do with FreeMarker is to bind form fields to com-
mand properties. You’ve already seen how to use JSP binding tags and Velocity
binding macros in this chapter. Not to be unfair, Spring provides a set of
FreeMarker macros that mirror the functionality of the Velocity macros. The
FreeMarker macros are listed in table 14.3.

Table 14.3 Spring comes with a set of FreeMarker macros useful for binding form fields to a
controller’s command object.

Macro Purpose

<@spring.formCheckboxes path,
options, separator, attributes />

Renders a set of check boxes. Checks the
box(es) whose value matches that of a com-
mand object property.

<@spring.formHiddenInput path,
attributes />

Renders a hidden field bound to a command
object property.

<@spring.formInput path, attributes,
fieldType />

Renders a text field bound to a command
object property.

<@spring.formMultiSelect path,
options, attributes />

Renders a selection list allowing multiple
selection. Selected values are bound to a
command object property.

<@spring.formPasswordInput path,
attributes />

Renders a password field bound to a com-
mand object property.

<@spring.formRadioButtons path,
options, separator, attributes />

Renders a set of radio buttons where the
selected radio button is bound to a command
object property.

<@spring.formSingleSelect path,
options, attributes />

Renders a selection list allowing only a single
entry to be selected. The selected value is
bound to a command object property.

<@spring.formTextarea path,
attributes />

Renders a text area bound to a command
object property.

<@spring.message messageCode /> Render a message externalized in a resource
bundle.

<@spring.messageText messageCode,
text />

Renders a message externalized in a resource
bundle, with a default value if the message
isn’t found in the resource bundle.

568 CHAPTER 14

Rendering web views
Except for a few minor syntactical differences, the FreeMarker macros are identi-
cal to the Velocity macros. Listing 14.9 shows them in action in addRant.ftl, the
FreeMarker version of the addRant view.

<#import "/spring.ftl" as spring />
<html>
 <head>
 <title><@spring.message "title.addRant"/></title>
 <style>
 .error {
 color: #ff0000;
 font-weight: bold;
 }
 </style>
 </head>

 <body>
 <h2><@spring.message "title.addRant"/></h2>
 <form method="POST" action="addRant.htm">
 <@spring.message "field.state"/> <@spring.formInput
 "rant.vehicle.state", "" />

 <@spring.message "field.plateNumber"/><@spring.formInput
 "rant.vehicle.plateNumber", "" />

 <@spring.message "field.rantText"/>
 <@spring.formTextarea "rant.rantText",
 "rows='5' cols='50'" />
 <input type="submit"/>
 </form>
 </body>
</html>

You may have noticed that listing 14.9 is very similar to the Velocity macro in
listing 14.7. But there are two subtle differences. Instead of #springFormInput, the
FreeMarker version uses <@spring.formInput>. And instead of #springFormText-
area, <@spring.formTextarea> is the way to go in FreeMarker.

<@spring.showErrors separator,
class/style />

Renders validation errors.

<@spring.url relativeUrl /> Renders an absolute URL given a relative URL.

Listing 14.9 Entering rants using FreeMarker templates

Table 14.3 Spring comes with a set of FreeMarker macros useful for binding form fields to a
controller’s command object. (continued)

Macro Purpose

Imports Spring macros
for FreeMarker

Binds form fields
to command

Generating non-HTML output 569
 Also, unlike Velocity in which the macros were automatically available,
FreeMarker macros must be imported. The first line of addRant.ftl imports the
Spring form-binding macros.

 Just as with Spring’s Velocity, macros, in order to use these macros you must
enable the FreeMarker macros by setting the exposeMacroHelpers property of
FreeMarkerViewResolver to true:

<bean id="viewResolver"
 class="org.springframework.web.servlet.view.
 ➥ freemarker.FreeMarkerViewResolver">
 <property name="suffix" value=".ftl" />
 <property name="exposeSpringMacroHelpers" value="true" />
</bean>

Now you have three capable templating options for building web applications in
Spring. But all of these options produce HTML. Sometimes HTML isn’t enough
and you need something a bit richer. Let’s switch gears and look at how to gener-
ate non-HTML output.

14.5 Generating non-HTML output

Up to now, the output produced by the RoadRantz web layer has been HTML
based. Indeed, HTML is the typical way to display information on the Web. But
HTML doesn’t always lend itself to the information being presented.

 For example, if the data you are presenting is in tabular format, it may be pref-
erable to present information in the form of a spreadsheet. Spreadsheets may also
be useful if you want to enable the users of your application to manipulate the
data being presented.

 Or perhaps you’d like precise control over how a document is formatted. For-
matting HTML documents precisely is virtually impossible, especially when viewed
across various browser implementations. But Adobe’s Portable Document Format
(PDF) has become the de facto standard for producing documents with precise
formatting that are viewable on many different platforms.

 Spreadsheets and PDF files are commonly static files. But Spring provides view
classes that enable you to dynamically create spreadsheets and PDF documents
that are based on your application’s data.

 Let’s explore Spring’s support for non-HTML views, starting with dynamic gen-
eration of Excel spreadsheets.

570 CHAPTER 14

Rendering web views
14.5.1 Producing Excel spreadsheets

If you’ve been developing software for any considerable length of time, you’ve
probably noticed that Microsoft Excel spreadsheets are the lifeblood of business.
For good or bad, businesspeople love their spreadsheets. They communicate, ana-
lyze, chart, plan, and budget using spreadsheets. If it weren’t for Excel, many busi-
nesses would come to a grinding halt.

 With such a fondness in the workplace for spreadsheets, it’s important to be
able to produce spreadsheets from your applications. And there’s good news:
Spring comes with AbstractExcelView, a custom view suitable for producing
spreadsheets.

 Although the data presented in RoadRantz is hardly mission-critical business
data, we can only assume that many motorists on the road are businesspeople.
And it’s quite possible that while driving they are thinking about facts and figures
(and spreadsheets) and aren’t driving well. Since these motorists have such a tight
connection with spreadsheets, it may prove worthwhile to provide those business-
people with a list of their vehicle’s rants in spreadsheet form.

 Spring supports the generation of Excel output through AbstractExcelView.
As its name implies, this is an abstract class that you must subclass to give the
details of the spreadsheet.

 As an example of how to subclass AbstractExcelView, consider RantExcel-
View (listing 14.10). This view implementation produces a list of rants within an
Excel spreadsheet.

package com.roadrantz.mvc;
import java.util.Collection;
import java.util.Iterator;
import java.util.Map;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.poi.hssf.usermodel.HSSFCellStyle;
import org.apache.poi.hssf.usermodel.HSSFDataFormat;
import org.apache.poi.hssf.usermodel.HSSFRow;
import org.apache.poi.hssf.usermodel.HSSFSheet;
import org.apache.poi.hssf.usermodel.HSSFWorkbook;
import org.springframework.web.servlet.view.document.
 ➥ AbstractExcelView;
import com.roadrantz.domain.Rant;
import com.roadrantz.domain.Vehicle;

public class RantExcelView extends AbstractExcelView {
 protected void buildExcelDocument(

Listing 14.10 Listing rants in a spreadsheet

Generating non-HTML output 571
 Map model, HSSFWorkbook workbook,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {

 Collection rants = (Collection) model.get("rants");
 Vehicle vehicle = (Vehicle) model.get("vehicle");

 HSSFSheet sheet = createSheet(workbook,
 vehicle.getPlateNumber());

 HSSFCellStyle cellStyle = workbook.createCellStyle();
 cellStyle.setDataFormat(
 HSSFDataFormat.getBuiltinFormat("m/d/yy h:mm"));

 int rowNum = 1;
 for (Iterator iter = rants.iterator(); iter.hasNext();) {
 Rant rant = (Rant) iter.next();
 rowNum = addRantRow(sheet, cellStyle, rowNum, rant);
 }
 }

 private int addRantRow(HSSFSheet sheet, HSSFCellStyle cellStyle,
 int rowNum, Rant rant) {
 HSSFRow row = sheet.createRow(rowNum++);
 row.createCell((short) 0).setCellValue(rant.getPostedDate());
 row.createCell((short) 1).setCellValue(rant.getRantText());
 row.getCell((short) 1).setCellStyle(cellStyle);
 return rowNum;
 }

 private HSSFSheet createSheet(HSSFWorkbook workbook,
 String plateNumber) {
 HSSFSheet sheet = workbook.createSheet(
 "Rants for " + plateNumber);

 HSSFRow header = sheet.createRow(0);
 header.createCell((short) 0).setCellValue("Date");
 header.createCell((short) 1).setCellValue("Text");
 return sheet;
 }
}

There’s a lot going on in RantExcelView, but the only method required by
AbstractExcelView is buildExcelDocument(). This method is given a Map of
model data to use when constructing the spreadsheet. It is also given an Http-
ServletRequest and HttpServletResponse, in case information is required that
isn’t available in the model data. Only the model data is used in RantExcel-
View, however.

 buildExcelDocument() is also provided with an HSSFWorkbook. HSSFWorkbook
is a component of Jakarta POI that represents an Excel workbook.3 Implementing

Sets date
format

Adds
rants to
spreadsheet

Adds header row

572 CHAPTER 14

Rendering web views
a custom Excel view in Spring MVC is simply a matter of using POI’s API to render
model data in a workbook. In RantExcelView, the list of rants is extracted from
the model data and is iterated over to add rows to the spreadsheet.

 To make RantExcelView available to Spring MVC, we need to register it with
either ResourceBundleViewResolver or XmlViewResolver. Since we’re using
XmlViewResolver, the following entry in roadrantz-views.xml will do the trick:

<bean id="vehicleRants.xls"
 class="com.roadrantz.mvc.RantExcelView" />

Now all we need to demonstrate RantExcelView is a controller that places a list of
rants into the model data. It just so happens that RantsForVehicleController
already does everything we need. The only problem is that RantsForVehicleCon-
troller is already being used to render HTML output. We’ll need to modify it a
bit to be more flexible with regard to its view choices.

 The first thing to do is to add a URL mapping for the Excel request. Add the
following <prop> entry to the mappings property of the urlMapping bean:

<prop key="/rantsForVehicle.xls">
 rantsForVehicleController
</prop>

So, if DispatcherServlet receives a request for /rantsForVehicle.xls, it knows to
dispatch the request to the rantsForVehicleController bean. This is the same
controller that’s mapped to /rantsForVehicle.htm. But how will it know to use the
Excel view instead of the JSP view?

 The request’s URI provides a clue as to the type of view. The request URI
already ends with htm for HTML requests. For Excel requests, we’ll map it to end
with xls. The following getViewName() method extracts the extension of the URI
and uses it to derive the view name:

private static final String BASE_VIEW_NAME = "vehicleRants";
private String getViewName(HttpServletRequest request) {
 String requestUri = request.getRequestURI();
 String extension = "." +
 requestUri.substring(requestUri.lastIndexOf("."));
 if("htm".equals(extension)) { extension=""; }
 return BASE_VIEW_NAME + extension;
}

3 The “HSSF” in HSSFWorkbook and other POI classes is an acronym for “Horrible SpreadSheet Format.”
Apparently, the POI developers have formed an opinion of the Excel file format.

Generating non-HTML output 573
If the URI ends with htm then it’s an HTML request and we’re going to let Inter-
nalResourceViewResolver resolve to a JSP view. Otherwise, the view name will be
vehicleRants followed by the extension of the URI.

 Next we need to modify the handle() method of RantsForVehicleControl-
ler to use the getViewName() method when choosing a view:

protected ModelAndView handle(HttpServletRequest request,
 HttpServletResponse response, Object command,
 BindException errors) throws Exception {
…
 return new ModelAndView(getViewName(request), model);
}

There’s just one more thing needed to make this work. DispatcherServlet will
never receive a request for /rantsForVehicle.xls because it is configured in
web.xml to handle *.htm requests. We’ll need to configure another <servlet-
mapping> as follows:

<servlet-mapping>
 <servlet-name>roadrantz</servlet-name>
 <url-pattern>*.xls</url-pattern>
</servlet-mapping>

Now DispatcherServlet will handle both *.htm and *.xls requests and the
RoadRantz application is capable of producing Excel lists of rants.

 The rant spreadsheet appeals to those businesspeople who are accustomed to
working in Excel. But spreadsheets may seem intimidating to some people. For
those users, a friendlier output is desirable. To make those users happy, let’s see
how Spring supports rendering of PDF documents.

14.5.2 Generating PDF documents

PDF documents are commonly used on the Internet to depict information in a
format that is both precise in layout and universal. Although Cascading Style
Sheets (CSS) go a long way to provide professional layout capabilities to HTML,
they have their limitations. Conversely, the contents of a PDF document can be
laid out in virtually any arrangement.

 Furthermore, CSS implementations vary across different browsers, whereas
PDF documents are rendered identically in Adobe’s Acrobat Viewer, regardless of
the platform.

 Suppose that in addition to rendering a rant list in Excel, you’d like to offer a
PDF version of the rant list. With PDF, you can dress up the output a bit and be cer-
tain that it will appear the same for all users.

574 CHAPTER 14

Rendering web views
 Spring’s AbstractPdfView supports rendering of PDF documents as a view in
Spring MVC. Much like AbstractExcelView, you’ll need to subclass Abstract-
PdfView and implement the buildPdfDocument() method to construct a PDF
document.

 RantPdfView (listing 14.11) is an example of a class that extends Abstract-
PdfView to produce a list of rants in PDF form.

package com.roadrantz.mvc;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.springframework.web.servlet.view.document.
 ➥ AbstractPdfView;
import com.lowagie.text.Document;
import com.lowagie.text.Table;
import com.lowagie.text.pdf.PdfWriter;
import com.roadrantz.domain.Rant;

public class RantPdfView extends AbstractPdfView {
 protected void buildPdfDocument(Map model, Document document,
 PdfWriter pdfWriter, HttpServletRequest request,
 HttpServletResponse response) throws Exception {

 List rants = (List) model.get("rants");
 Table rantTable = new Table(4);
 rantTable.setWidth(90);
 rantTable.setBorderWidth(1);

 rantTable.addCell("State");
 rantTable.addCell("Plate");
 rantTable.addCell("Date Posted");
 rantTable.addCell("Text");

 for (Iterator iter = rants.iterator(); iter.hasNext();) {
 Rant rant = (Rant) iter.next();

 rantTable.addCell(rant.getVehicle().getState());
 rantTable.addCell(rant.getVehicle().getPlateNumber());
 rantTable.addCell(rant.getPostedDate().toString());
 rantTable.addCell(rant.getRantText());
 }

 document.add(rantTable);
 }
}

Listing 14.11 Generating a PDF report of rants

Creates table

Adds
header
row

Adds row
for each
rant

Generating non-HTML output 575
Like AbstractExcelView’s buildExcelDocument() method, the buildPdfDocu-
ment() method is provided with a Map of model data, along with an HttpServlet-
Request and HttpServletResponse. But it is also provided with a Document and a
PdfWriter. These two classes are part of the iText PDF library (www.lowagie.com/
iText) and are used to construct a PDF document. For more information on iText,
I recommend iText in Action (Manning, 2006).

 The Document object passed to buildPdfDocument() is an empty iText docu-
ment waiting to be filled with content. In RantPdfView, the rant list is pulled from
the model and used to construct a table, with one row per rant. Once all rants
have been added to the table, the table is added to the Document.

 To make RantPdfView available to Spring MVC, let’s add it to roadrantz-
views.xml alongside RantExcelView:

<bean id="vehicleRants.pdf"
 class="com.roadrantz.mvc.RantPdfView" />

Now any controller that returns a ModelAndView whose view name is vehicle-
Rants.pdf will have its view rendered by RantPdfView.

 In section 14.5.1, we altered RantsForVehicleController to dynamically
choose its view based on the request URI’s extension. No further changes need
to be made to RantsForVehicleController to use RantPdfView. We just need
to register a URL mapping so that DispatcherServlet will dispatch requests for
/rantsForVehicle.pdf to RantsForVehicleController:

<prop key="/rantsForVehicle.pdf">
 rantsForVehicleController
</prop>

Also, as with Excel views, we need to create a <servlet-mapping> in web.xml that
will direct *.pdf requests to DispatcherServlet:

<servlet-mapping>
 <servlet-name>roadrantz</servlet-name>
 <url-pattern>*.pdf</url-pattern>
</servlet-mapping>

Spring’s AbstractExcelView and AbstractPdfView make quick work of produc-
ing Excel and PDF documents. But what if you need to produce output that isn’t
covered by Spring’s out-of-the-box solutions? Let’s look at how to develop custom
view implementations for Spring MVC.

576 CHAPTER 14

Rendering web views
14.5.3 Developing custom views

Excel and PDF documents are great. But syndication is all the rage on the Inter-
net. One of the requirements for the RoadRantz application is to syndicate a vehi-
cle’s rants as a Rich Site Summary (RSS) feed.

 RSS is an XML dialect that concisely describes website content so that it can be
subscribed to. It’s often used to subscribe to newsfeeds such as Fox (www.
foxnews.com/rss/index.html) and CNN (www.cnn.com/services/rss). And RSS
feeds are the best way to stay caught up on your favorite weblogs (such as www.
jroller.com/rss/habuma). RSS is a great way to keep RoadRantz users up-to-date
on the latest rants that are being written about their vehicle.

 Unfortunately, Spring doesn’t come prepackaged with RSS-producing view
classes. Fear not, however. This presents us with an opportunity to develop a cus-
tom RSS view.

 RantRssView (listing 14.12) is a view implementation that uses the Rome
(https://rome.dev.java.net) utility to produce RSS output for a list of rants.

package com.roadrantz.mvc;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.springframework.web.servlet.view.AbstractView;
import com.roadrantz.domain.Rant;
import com.sun.syndication.feed.synd.SyndContent;
import com.sun.syndication.feed.synd.SyndContentImpl;
import com.sun.syndication.feed.synd.SyndEntry;
import com.sun.syndication.feed.synd.SyndEntryImpl;
import com.sun.syndication.feed.synd.SyndFeed;
import com.sun.syndication.feed.synd.SyndFeedImpl;
import com.sun.syndication.io.SyndFeedOutput;

public class RantRssView extends AbstractView {
 private String author;
 private String title;
 private String description;
 private String link;

 public RantRssView() {}

 protected void renderMergedOutputModel(Map model,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {

 SyndFeed feed = createFeed();

Listing 14.12 Syndicating rants with RSS

Creates feed

Generating non-HTML output 577
 List rants = (List)model.get("rants");
 List entries = new ArrayList();

 for (Iterator iter = rants.iterator(); iter.hasNext();) {
 Rant rant = (Rant) iter.next();
 entries.add(createEntry(rant));
 }

 feed.setEntries(entries);

 SyndFeedOutput output = new SyndFeedOutput();
 output.output(feed, response.getWriter());
 }

 private SyndEntry createEntry(Rant rant) {
 SyndEntry entry = new SyndEntryImpl();

 entry.setTitle("Rant entry for " +
 rant.getVehicle().getPlateNumber());
 entry.setLink("http://www.roadrantz.com");
 entry.setPublishedDate(rant.getPostedDate());
 SyndContent content = new SyndContentImpl();
 content.setType("text/html");
 content.setValue(rant.getRantText());
 entry.setDescription(content);

 return entry;
 }

 private SyndFeed createFeed() {
 SyndFeed feed = new SyndFeedImpl();
 feed.setFeedType("rss_1.0");
 feed.setAuthor(author);
 feed.setTitle(title);
 feed.setDescription(description);
 feed.setLink(link);

 return feed;
 }

 public void setAuthor(String author) {
 this.author = author;
 }

 public void setDescription(String description) {
 this.description = description;
 }

 public void setLink(String link) {
 this.link = link;
 }

 public void setTitle(String title) {
 this.title = title;
 }
}

Adds rant
entries to
feed

Outputs feed

578 CHAPTER 14

Rendering web views
RantRssView extends Spring’s AbstractView class. The only method that
AbstractView requires RantRssView to implement is renderMergedOutput-
Model(). This method is given the Model object along with an HttpServlet-
Request and HttpServletResponse and is expected to render the output to the
HttpServletResponse’s writer.

 Here RantRssView uses Rome’s API to create a feed, populate it with rant
entries (expected to be passed in the model), and then render the output.

 Once again, RantsForVehicleController will be used to produce the list of
rants for this view. For the RSS feed, we’ll map this controller to /rantsForVehi-
cle.rss:

<prop key="/rantsForVehicle.rss">
 rantsForVehicleController
</prop>

Since the URI will end in rss, the view name returned from getViewName() will
be vehicleRants.rss. The following entry in roadrantz-views.xml will help Xml-
ViewResolver find the custom RSS view:

<bean id="vehicleRants.rss"
 class="com.roadrantz.mvc.RantRssView">
 <property name="title" value="RoadRantz" />
 <property name="description" value="RoadRantz.com" />
 <property name="author" value="RoadRantz.com" />
 <property name="link" value="http://www.roadrantz.com" />
</bean>

Notice that some of the feed details (title, description, author and link) are con-
figured on the view using dependency injection.

14.6 Summary

A web application isn’t a web application unless it interacts with the user. In an
MVC web application, the application interacts with the user through the view.

 In the previous chapter, you learned how to handle web requests with control-
lers and to produce model data to be presented to the user. In this chapter you’ve
seen several ways to render model data in the view layer.

 HTML is the primary means of rendering information on the web. Views based
on JSP, Velocity, or FreeMarker make simple work of dynamically producing
HTML output. And Spring provides a rich selection of custom JSP tags and Veloc-
ity/FreeMarker macros for binding form input to command objects.

 Once you’ve built a set of basic pages for your application using JSP, Velocity, or
FreeMarker, you’ll want to adorn them with a visually pleasant template. For that,

Summary 579
we’ve seen how TilesView and TilesJstlView help integrate Jakarta Tiles into
the view of a Spring MVC application.

 When HTML isn’t good enough, Spring steps up with built-in support for views
that produce Excel spreadsheets and PDF documents. You’ve also seen that it’s
possible to create custom views by implementing Spring’s View interface.

 Bridging the controllers in chapter 11 with the views in this chapter are
view resolvers. Spring offers several out-of-the-box view controllers from which
to choose.

 By now you’ve seen that Spring MVC maintains a loose coupling between
request handling, controller implementations, and views. This is a powerful con-
cept, allowing you to mix-‘n’-match different Spring MVC parts to build a web
layer most appropriate for your application.

 Coming up in the next chapter, we’re going to build on what we know about
Spring MVC by looking at an exciting new extension to Spring MVC called Spring
Web Flow. Spring Web Flow provides a new controller class for Spring MVC that
enables you to define a navigational flow to your web application, where the appli-
cation guides the user through a series of steps to achieve a certain goal.

Using Spring Web Flow
This chapter covers
■ Creating conversational web applications
■ Defining flow states and actions
■ Integrating Spring Web Flow with Struts and JSF
580

581
Have you ever given much thought to what might be the most important force
that drives successful software?

 There are many opinions out there on this topic. Some say proper methodol-
ogy leads to successful software projects. Others say that a cleverly schemed
architecture sets the foundation for software to flourish. Some might tell you it’s
the people on the project who determine its outcome. Depending on who you
ask, you might be told that certain technology choices lend themselves to trium-
phant software.

 As a seasoned software developer, I have given much thought to this question.
And I think I have the answer. Methodology, architecture, people, and technology
are certainly important factors that play into a project’s success. But I submit that
something else is far more critical to whether or not a project is a blockbuster or a
dud. And that something is…

 Pizza.
 That’s right… it’s pizza. (Go ahead. Get your highlighter out. You’ll want to

mark this for future reference.)
 Every successful project team I’ve been on has, at one time or another (some-

times frequently), enjoyed a meal together with pizza. Not only is pizza a universal
favorite food choice among programmers, but I believe that there’s something
about a warm slice of melted cheese over crust, adorned with meats and veggies,
that inspires a project to greatness. Nothing brings out design ideas and camara-
derie like breaking bread over a cardboard box full of pizza.

 For a moment, just for fun, imagine that you and your team have just released
the latest version of your product and want to treat your team to some pizza to
unwind. What would the phone call to the local pizzeria sound like?

 Ring… Ring… Ring…
 “Hello, this is Spring Pizza, home of the hottest slice in town. May I have your tele-

phone number, please?”
 “Sure, it’s 972-555-1312.”
 “Is this for 1414 Oak Drive?”
 “Yeah.”
 “Okay, will this be for carryout or delivery?”
 “Delivery.”
 “Great. What can we get for you?”
 “I need two large carnivores”
 “Okay, anything else?”
 “Yeah, how about two large veggie pizzas…”
 “Okay…”

582 CHAPTER 15

Using Spring Web Flow
 “…and a medium Canadian bacon with pineapple.”
 “Anything else?”
 “No, that’ll be it.”
 “Okay, that’s two large veggies, two large carnivores, and a medium Canadian

bacon with pineapple. Is that correct?”
 “That’s right.”
 “Okay, your total comes to $44.57. Will that be cash, check, or charge?”
 “I’ll pay cash.”
 “All right. Your order should be delivered in about 30 minutes. Have a good day and thank

you for calling Spring Pizza.”

Okay, I admit it. That was a bit corny. Nevertheless, this conversation (or one simi-
lar to it) takes place millions of times every day between pizza lovers and those
who bake the cherished Italian pie.

 This exchange isn’t much different from how a user might interact with a web
application. Some applications seem to follow a script, guiding the user along in a
conversation to achieve a certain goal. In the case of the phone call, the goal was
to have some pizzas delivered. Similarly, you’ve probably used the shopping cart
of an e-commerce site where the goal was to order and pay for a product. A con-
versation takes place in both scenarios: one between a customer and a pizzeria
employee and one between a customer and a web application.

 Spring Web Flow is an exciting new web framework based on the Spring
Framework that facilitates development of conversational web applications. In this
chapter, we’re going to explore Spring Web Flow and see how it fits into the
Spring web framework landscape. Along the way, we’ll build a conversational web
application that simulates the pizza order phone call.

 Before we get too carried away with taking pizza orders, however, there’s a bit
of groundwork to be laid. Let’s start by seeing what itch is scratched by Spring
Web Flow.

15.1 Getting started with Spring Web Flow

There are two kinds of interaction in web applications. Many websites are based
on free-flow navigation. That is, the user is given an array of links and buttons to
choose from and they’re in full control of the application’s flow. The conversation
between the user and the web application is very one-sided—the user tells the
application where to and the application goes there.

 But occasionally you come across web applications where the application
guides the user from one page to the next. There seems to be a conversation

Getting started with Spring Web Flow 583
where the application asks some questions to which the user responds, trigger-
ing some functionality in the application. Although the user may have several
choices to make, the application follows a predefined flow. The shopping cart
of most online shopping sites is a small, but typical, example of conversational
web interaction.

 Spring Web Flow is an extension to Spring MVC (actually, it’s just another con-
troller) that provides for the development of conversation-style navigation in a
web application. The key features provided for by Spring Web Flow are:

■ The ability to define an application’s flow external to the application’s logic

■ The ability to create reusable flows that can be used across multiple
applications

In chapter 13, we saw how to build web applications using Spring MVC. Spring
MVC’s controllers are great for developing free-flow applications but are ill-suited
for conversational web applications.

 To understand Spring MVC’s shortcomings with regard to conversational appli-
cations, let’s suppose that the phone call between the pizzeria employee and the
customer were to take place in an online pizza order entry application. If we were
to build the pizza order entry application using Spring MVC, we’d likely end up
coding the application’s flow into each controller and JSP.

 For example, we might end up with a JSP with a link that looks like this:

Add Pizza

As for the controller behind that link, it may be a form controller like this one:

public class AddPizzaController extends SimpleFormController {
 public AddPizzaController() {}

 protected ModelAndView onSubmit(Object command,
 BindException bindException) throws Exception {

 Pizza pizza = (Pizza) command;

 addPizzaToOrder(pizza);

 return new ModelAndView("orderDetail");
 }
}

While there’s nothing inherently wrong with that link or the controller, it isn’t
ideal when taken in the context of the conversational pizza application. That’s
because both the link and the controller know too much. The link’s URL and
the controller’s ModelAndView each hold a piece of information about the appli-

584 CHAPTER 15

Using Spring Web Flow
cation’s flow. But there’s no place to go to see the complete picture; instead,
the application’s flow is embedded and scattered across the application’s JSPs
and controllers.

 Because the flow definition is sprinkled throughout the application’s code, it’s
not easy to understand the overall flow of the application. To do so would require
viewing the code for several controllers and JSPs. Moreover, changing the flow
would be difficult because it would require changing multiple source files.}

As you’ll soon see, Spring Web Flow loosens the coupling between an applica-
tion’s code and its page flow by enabling you to define the flow in a separate, self-
contained flow definition. But before we can define an application flow, there’s a
little bit of groundwork that has to be dealt with. Let’s see how to set up the infra-
structural pieces of a Spring Web Flow application.

15.1.1 Installing Spring Web Flow

Spring Web Flow, although a subproject of the Spring Framework, isn’t part of the
Spring Framework proper. Therefore, before we can get started building flow-
based applications, we’ll need to add Spring Web Flow to our project’s classpath.

 You can download Spring Web Flow from the Spring Web Flow website
(http://www.springframework.org/webflow). Be sure to get the latest version (as
I write this, Spring Web Flow 1.0.3 has just been released). Once you’ve down-
loaded and unzipped the distribution zip file, you’ll find the Spring Web Flow
JAR files in the root directory. Add these to your application’s classpath and
you’re ready to go.

 It’s even easier to add Spring Web Flow to your application if you’re using
Maven 2. In the pom.xml file, add the following dependencies:

What about AbstractWizardFormController?
At this point, you may be wondering why Spring Web Flow is necessary when we
have AbstractWizardFormController (see section 13.3.4). At first glance,
AbstractWizardFormController seems to be a way to build conversation into
a Spring MVC application. But upon closer inspection you’ll realize that Ab-
stractWizardFormController is just a form controller where the form is
spread across multiple pages. Moreover, the “flow” of a subclass of Ab-
stractWizardFormController is still embedded directly within the controller
implementation, making it hard to discern flow logic from application logic.

Getting started with Spring Web Flow 585
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webflow</artifactId>
 <version>1.0.3</version>
 <scope>compile</scope>
</dependency>

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-binding</artifactId>
 <version>1.0.3</version>
 <scope>compile</scope>
</dependency>

With Spring Web Flow set up in the application’s classpath, we’re ready to start
configuring it in the Spring application context. We’ll start with FlowController,
the gateway controller to Spring Web Flow.

Setting up the FlowController
All interactions with Spring Web Flow go through Spring Web Flow’s FlowCon-
troller. FlowController is a Spring MVC controller that acts as a front controller
for Spring Web Flow applications. However, instead of performing a specific func-
tion like most Spring MVC controllers, FlowController is responsible for han-
dling all requests pertaining to a flow.

 As with any other Spring MVC controller, FlowController must be declared in
a Spring application context. The following XML shows a typical FlowController
<bean> declaration:

<bean id="flowController"
 class="org.springframework.webflow.executor.mvc.
 ➥ FlowController">
 <property name="flowExecutor" ref="flowExecutor" />
</bean>

The flowExecutor property is the only mandatory property. It must be wired with
a flow executor, which ultimately carries out the steps described in a flow. We’ll
declare a flow executor bean in a moment, but first we have some Spring MVC
plumbing to take care of with regard to FlowController.

 So that we’ll have a way of interacting with Spring Web Flow through a URL,
we’ll also need to configure a mapping to the FlowController. This mapping can
be created using any of the handler mappings described in chapter 13, but we
tend to favor SimpleUrlHandlerMapping:

<bean id="urlMapping"
 class="org.springframework.web.servlet.
 ➥ handler.SimpleUrlHandlerMapping">

586 CHAPTER 15

Using Spring Web Flow
 <property name="mappings">
 <props>
 <prop key="flow.htm">flowController</prop>
 </props>
 </property>
</bean>

The reason why we chose SimpleUrlHandlerMapping here is because we may end
up mapping other controllers in the same application. We think that SimpleUrl-
HandlerMapping is the most flexible of Spring MVC’s handler mappings, allowing
us to map virtually any URL pattern to any controller.

 As mapped here, FlowController will answer to the URL pattern flow.htm. It’s
worth noting that the same mapping could also be created in a more convention-
over-configuration approach using ControllerClassNameHandlerMapping:

<bean id="urlMapping"
 class="org.springframework.web.servlet.mvc.
 ➥ support.ControllerClassNameHandlerMapping" />

ControllerClassNameHandlerMapping may be an appealing choice if your appli-
cation will be completely flow-based or if your application’s other controllers are
named appropriately with respect to the URL patterns they’ll be mapped to.

 Because FlowController is a Spring MVC controller, you’ll also need to be
sure to configure DispatcherServlet in your application’s web.xml file as you
would do for any Spring MVC application. See section 13.1.2 for a refresher on
how DispatcherServlet should be configured.

Configuring a flow executor
While FlowController handles web requests destined for Spring Web Flow, it
doesn’t execute the flow. It is merely a courier between the user and a request exec-
utor. A flow executor’s job is like that of an air traffic controller. It keeps track of
all of the flows that are currently being executed and directs each flow to the state
they should go to next.

 As you’ve seen already, the FlowController must be wired with a reference to
a flow executor. This means that we’ll need to configure a flow executor in Spring.

 If you’re using Spring 2.0, the easiest way to configure a flow executor is to use
Spring Web Flow’s custom configuration schema. The first thing you must do is
add Spring Web Flow’s schema to your Spring application context’s XML file:

<beans xmlns=
 "http://www.springframework.org/schema/beans"
 xmlns:xsi=
 "http://www.w3.org/2001/XMLSchema-instance"
 xmlns:flow=

Getting started with Spring Web Flow 587
 "http://www.springframework.org/schema/
 ➥ webflow-config"
 xsi:schemaLocation=
 "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 ➥ spring-beans-2.0.xsd
 http://www.springframework.org/schema/webflow-config
 http://www.springframework.org/schema/webflow-config/
 ➥ spring-webflow-config-1.0.xsd">
…
</beans>

Once you’ve added the schema declaration, declaring a flow executor is as simple
as using the <flow:executor> element like this:

<flow:executor id="flowExecutor"
 registry-ref="flowRegistry" />

Under the covers, the <flow:executor> element will be used to declare a
FlowExecutorFactoryBean in the Spring application context. If you’re using a
pre-2.0 version of Spring (or if typing large amounts of XML gives you a warm
feeling of satisfaction) then you can manually declare a FlowExecutorFactory-
Bean as follows:

<bean id="flowExecutor"
 class="org.springframework.webflow.config.
 ➥ FlowExecutorFactoryBean">
 <property name="definitionLocator"
 ref="flowRegistry"/>
 <property name="executionAttributes">
 <map>
 <entry key="alwaysRedirectOnPause">
 <value type="java.lang.Boolean">true
 ➥ </value>
 </entry>
 </map>
 </property>
 <property name="repositoryType"
 value="CONTINUATION"/>
</bean>

In Spring Web Flow, flow definitions are defined in separate XML files. FlowExec-
utorFactoryBean uses a flow registry to keep track of all of the flow definitions
that it may need. The flow registry is given to the flow executor through
<flow:executor>’s registry-ref attribute or through FlowExecutorFactory-
Bean’s definitionLocator property.

588 CHAPTER 15

Using Spring Web Flow
Registering flow definitions
The flow registry is effectively a librarian that curates a collection of flow defini-
tions. When the flow executor needs a flow, it will ask the flow registry for it.

 A flow registry can be configured in Spring 2.0 using the <flow:registry> ele-
ment, as follows:

<flow:registry id="flowRegistry">
 <flow:location
 path="/WEB-INF/flows/**/*-flow.xml" />
</flow:registry>

The <flow:registry> element must contain one or more <flow:location> ele-
ments. Each <flow:location> element identifies the path to one or more flow
definitions that the flow registry should manage. Notice that in the example
above, the path is defined using Ant-style wildcards. This indicates that all files
ending with -flow.xml that are in the /WEB-INF/flows/ directory (and subdirector-
eis) should be loaded by the flow registry.

 When a flow definition is loaded into the flow registry, it is registered with a
name that is equal to the filename of the flow definition after chopping off the
file extension. For example, if a flow definition file is named Pizza-flow.xml, it will
be registered in the flow registry with the name Pizza-flow. This name will be used
to refer to the flow when constructing URLs.

 If you’re not using Spring 2.0 or would just prefer to configure Spring Web
Flow using the traditional <bean> element, you can also configure a flow registry
as a <bean> using the following XML:

<bean id="flowRegistry"
 class="org.springframework.webflow.engine.
 ➥ builder.xml.XmlFlowRegistryFactoryBean">
 <property name="flowLocations">
 <list>
 <value>/WEB-INF/flows/**/*-flow.xml </value>
 </list>
 </property>
</bean>

As you can see, XmlFlowRegistryFactoryBean is the class that hides behind the
curtain of the <flow:registry> element. And its flowLocations property is the
pre-2.0 means of itemizing the flow definitions to be loaded into the registry.

 With the core Spring Web Flow configuration in place, we’re almost ready to
build our pizza order flow. But first, let’s establish the core concepts of a flow.

Getting started with Spring Web Flow 589
15.1.2 Spring Web Flow essentials

In Spring Web Flow, three main elements make up an application flow: states,
events, and transitions.

 States are points in a flow where some activity takes place. This activity could be
the application performing some logic (perhaps saving customer information to a
database), or it could be where the user is presented with a page and asked to take
some action.

 Spring Web Flow defines six different kinds of state, as shown in table 15.1.

The selection of states provided by Spring Web Flow makes it possible to construct
virtually any arrangement of functionality into a conversational web application.
While not all flows will require all of the states described in table 15.1, you’ll prob-
ably end up using most of them at one time or another.

 Of all the states in table 15.1, you’ll probably find that your flow is mostly com-
posed of view states and action states. These two states represent each side of a
conversation between the user and the application. View states are the user’s side

Table 15.1 Spring Web Flow’s selection of states.

State type XML element What it’s for

Action <action-state> Action states are where the logic of the flow takes place.
Action states typically store, retrieve, derive, or otherwise
process information to be displayed or processed by subse-
quent states.

Decision <decision-state> Decision states branch the flow in two or more directions.
They examine information within flow scope to make flow
routing decisions.

End <end-state> The end state is the last stop for a flow. Once a flow has
reached end state, the flow is terminated and the user is
sent to a final view.

Start <start-state> The start state is the entry point for a flow. A start state
does not do anything itself and effectively serves as a refer-
ence point to bootstrap a flow.

Subflow <subflow-state> A subflow state starts a new flow within the context of a flow
that is already underway. This makes it possible to create
flow components that can be composed together to make
more complex flows.

View <view-state> A view state pauses the flow and invites the user to partici-
pate in the flow. View states are used to communicate infor-
mation to the user or to prompt them to enter data.

590 CHAPTER 15

Using Spring Web Flow
of the conversation, presenting information to the user and awaiting their
response. Action states are the application’s side of the conversation, where the
application performs some application logic in response to a user’s input or the
results of another action state.

 Once a state has completed, it fires an event. The event is simply a String value
that indicates the outcome of the state. By itself, the event fired by a state has no
meaning. For it to serve any purpose, it must be mapped to a transition. Whereas a
state defines an activity within a flow, transitions define the flow itself. A transition
indicates which state the flow should go to next.

 To illustrate these concepts, consider the simple flow diagram in figure 15.1.
 The flow in figure 15.1 is intended to show a typical “hello world” flow. The

flow starts by transitioning to a view state named “hello” that displays the familiar
“hello world” greeting. Once the user indicates that they are finished, a “con-
tinue” event is fired, triggering a transition to the end state.

 This simple flow can be expressed in Spring Web Flow with the following XML:

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.springframework.org/schema/webflow
 http://www.springframework.org/schema/webflow/
 ➥ spring-webflow-1.0.xsd">

 <start-state idref="hello" />

 <view-state id="hello"
 view="hello">
 <transition on="continue" to="finish"/>
 </view-state>

 <end-state id="finish"
 view="flowRedirect:Hello-flow" />
</flow>

Observe that all three states are clearly defined in this XML document. Further-
more, the transitions from one state to the next are also easy to spot.

 The “hello” flow is a good introduction to Spring Web Flow, but it’s only a
small taste of what’s in store. Rather than dwell on this flow too long, let’s see how
to put Spring Web Flow to work in a more sizable example. Let’s build a pizza
order entry application using Spring Web Flow.

hello
start endstart continue

Figure 15.1
A flow is made up of states, events, and
transitions. This flow has three states,
two transitions, and two events.

Laying the flow groundwork 591
15.1.3 Creating a flow

In the next section, we’re going to build an application for pizza order entry using
Spring Web Flow. In doing so, you’ll see that we’ll be able to define the applica-
tion’s flow completely external to the application code and views. This will make it
possible to rearrange the flow without requiring any changes to the application
itself. It will also aid in understanding the overall flow of the application because
the flow’s definition is contained in a single location.

15.2 Laying the flow groundwork

To define the pizza order flow, we’ll start by creating a skeleton flow definition
file. It’ll start out rather empty, but it will be full of state and transition definitions
before this chapter is done.

 Flows in Spring Web Flow are defined in XML. Regardless of the specifics of
the flow, all flow definition files are rooted with the <flow> element:

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns=
 "http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.springframework.org/schema/webflow
 http://www.springframework.org/schema/webflow/
 ➥ spring-webflow-1.0.xsd">

…
</flow>

The first thing you should understand about Spring Web Flow definition files is
that they are based on a completely different XML schema than the Spring con-
tainer configuration file. Where the Spring configuration file is used to declare
<bean>s and how they are related to each other, a Spring Web Flow definition
declares flow states and transitions.

15.2.1 Flow variables

The whole purpose of the pizza order flow is to build a pizza order. Therefore,
we’ll need a place to store the order information. Listing 15.1 shows the Order
class, a simple domain bean for carrying pizza order information.

package com.springinaction.pizza.domain;
import java.io.Serializable;
import java.util.ArrayList;

Listing 15.1 The Order class represents an order in the pizza flow

592 CHAPTER 15

Using Spring Web Flow
import java.util.List;

public class Order implements Serializable {
 private Customer customer;
 private List<Pizza> pizzas;
 private Payment payment;

 public Order() {
 pizzas = new ArrayList<Pizza>();
 customer = new Customer();
 }

 public Customer getCustomer() {
 return customer;
 }

 public void setCustomer(Customer customer) {
 this.customer = customer;

 }

 public List<Pizza> getPizzas() {
 return pizzas;
 }

 public void setPizzas(List<Pizza> pizzas) {
 this.pizzas = pizzas;
 }

 public void addPizza(Pizza pizza) {
 pizzas.add(pizza);
 }

 public Payment getPayment() {
 return payment;
 }

 public void setPayment(Payment payment) {
 this.payment = payment;
 }
}

So that the Order object is available to all of the states in the flow, we’ll need to
declare it in the flow definition file with a <var> element:

<var name="order"
 class="com.springinaction.pizza.domain.Order"
 scope="flow"/>

Notice that the scope attribute is set to flow. Flow variables can be declared to live
in one of four different scopes, as listed in table 15.2.

 Since we’ll need the Order object throughout the entire life of the flow, we’ve
set the scope attribute to flow.

Laying the flow groundwork 593
Now let’s add the first states to our flow.

15.2.2 Start and end states

All flows begin with a start state. A start state is to a flow what a main() method is
to a Java program. That is to say, it exists only as a marker of where the flow should
begin. The only thing that occurs within a start state is that a transition is per-
formed to the next state.

 In Spring Web Flow, a start state is defined in XML with a <start-state> ele-
ment. All flows must have exactly one <start-state> to indicate where the flow
should begin. Here’s how we’ve defined the start state for the pizza order flow:

<start-state idref="askForPhoneNumber" />

This <start-state> definition is very typical of any <start-state> in any flow
definition. In fact, the idref attribute, which indicates the beginning state of the
flow, is the only attribute available to <start-state>. In this case, we’re indicating
that the flow should begin with a state named askForPhoneNumber. (We’ll define
askForPhoneNumber state in a moment.)

 Just as all flows must start somewhere, they all eventually must come to an end.
Therefore, we must also define an end state in the flow:

<end-state id="finish"
 view="orderComplete" />

The <end-state> element defines the hopping-off point for a flow. When a flow
transitions to this state, there’s no turning back. An end state terminates the flow
and then displays a view specified by the view attribute. In this case, we’ve asked
the flow to send the user to the view whose name is orderComplete. This logical

Table 15.2 Scopes that data can live in within a flow.

Scope Visibility

Request If an object is created in Request scope, it is only visible within the context of the
current request. Request-scoped variables do not survive redirects.

Flash An object created in Flash scope is visible within the context of the current request
and until the next user event is triggered. Flash-scoped variables live beyond redi-
rects.

Flow If an object is created in Flow scope, it will be visible within the context of the current
flow execution, but will not be visible to subflows.

Conversation Objects created in Conversation scope are visible within the context of the current
flow execution as well as in the context of subflow executions.

594 CHAPTER 15

Using Spring Web Flow
view name is ultimately mapped to an actual view implementation using a Spring
MVC view resolver.

 For example, suppose that we have configured an InternalResourceViewRe-
solver in Spring like this:

<bean id="viewResolver"
 class="org.springframework.web.servlet.view.
 ➥ InternalResourceViewResolver">
 <property name="prefix" value="/WEB-INF/jsp/" />
 <property name="suffix" value=".jsp" />
</bean>

When the flow ends, the orderComplete view name will be resolved by Internal-
ResourceViewResolver to the actual view implementation in /WEB-INF/jsp/
orderComplete.jsp. (For a review of InternalResourceViewResolver, see
section 14.1. 1.)

 As an alternative to jumping out of the flow completely, we could define the
end state to start over with a brand new flow. For example, consider the following
<end-state> definition:

<end-state id="finish"
 view="flowRedirect:PizzaOrder-flow" />

Now, instead of setting the view attribute to the logical name of a view, we’re
using the flowRedirect: directive to tell Spring Web Flow to redirect the user to
the beginning of a flow. In this case, we’re redirecting to the same flow we just fin-
ished, so that the user can enter another pizza order.

 Although all flows must have exactly one <start-state>, a flow can have as
many <end-state>s as you want to define alternate endings for a flow. Each flow
can take the user to a different view after the flow ends. In the case of the pizza
order flow, we only need one <end-state>. Nevertheless, we thought you might
like to know that a flow can have more than one.

 The basic shell of the pizza order flow is in place. The state diagram in
figure 15.2 illustrates what we’ve built thus far.

 We’re now ready to start adding basic functionality in the form of states and
transitions. Since the flow’s <start-state> indicates that the flow should start
with a state named askForPhoneNumber, that’s where we’ll also start in defining
the part of the flow that collects customer information.

15.2.3 Gathering customer information

A key step in taking a pizza order is to find out who the customer is and where
they live. After all, if you don’t know where they live, how can you possibly deliver

Laying the flow groundwork 595
their pizza to them? In figure 15.3, we’ve fleshed out the flow diagram from
figure 15.2 a bit to describe the portion of the flow that collects the customer
information.

 As is customary in the pizza delivery trade, we’ll start by asking the customer
for their phone number. If the customer has placed an order with us before, we’ll
already have the rest of their information and the phone number is all we’ll need
to look up their address. If the phone number doesn’t turn up any customer data,
we’ll need to ask the user for their address.

Asking the customer for their phone number
The first step in acquiring customer information is to ask the user for their phone
number. This is a simple matter of presenting the user with a web page with a
form for entering the phone number.

 View states are used to involve a user in a flow by displaying information and
possibly asking the user for input. This makes a view state the perfect choice for
presenting the phone number form to the user. The following <view-state> ele-
ment should do the trick:

<view-state id="askForPhoneNumber"
 view="phoneNumberForm">

Pizza Order Flow

start end
Flow States

Figure 15.2
The start and end states bookend all
Spring Web Flow definitions.

Ask for
Phone

Number

Look Up
Customer

Add New
Customer

Show
Order

Figure 15.3
Find out where to deliver the pizza
by gathering customer information
in the flow.

596 CHAPTER 15

Using Spring Web Flow
 <transition on="submit" to="lookupCustomer" />
</view-state>

The view attribute of <view-state> specifies the logical name of a view to be dis-
played to the user. In this case phoneNumberForm is resolved to /WEB-INF/jsp/
phoneNumberForm.jsp by the InternalResourceViewResolver we declared ear-
lier. A simplified form of phoneNumberForm.jsp is shown in listing 15.2.

<h2>Customer Lookup</h2>
<form method="post" action="flow.htm">
 <input type="hidden" name="_flowExecutionKey"
 value="${flowExecutionKey}">

 Phone number:
 <input type="text" name="phoneNumber"/>

 <input type="submit" class="button"
 name="_eventId_submit" value="Submit"/>
</form>

Listing 15.2 contains a basic HTML form with a text field to prompt for the phone
number and a submit button. There are, however, a few details of this form that
are specific to Spring Web Flow.

 Recall that all links within a Spring Web Flow application should go through
FlowController’s URL mapping. Likewise, forms should also be submitted to the
same URL. Therefore, the action parameter of the <form> element is set to
flow.htm, which as we know from section 15.1.1 is the URL pattern mapped to the
FlowController.

 So that FlowController will know which flow the request is for, we must also
identify the flow by setting the _flowExecutionKey parameter. For that reason,
we’ve added a hidden field named _flowExecutionKey that holds the flow execu-
tion key that will be submitted along with the form data.

 The final thing to note is the odd name given to the submit button. Clicking
this button triggers an event to Spring Web Flow from a form submission. When
the form is submitted, the name of this parameter is split into two parts. The first
part, _eventId, signals that we’re identifying the event. The second part, submit,
is the name of the event to be triggered when the form is submitted.

 Looking back at the askForPhoneNumber <view-state> declaration, we see
that the submit event triggers a transition to a state named lookupCustomer,
where the form will be processed to look up the customer information.

Listing 15.2 A form that asks for a customer’s phone number

Submits to
flow.htm

Identifies flow

Triggers
submit event

Laying the flow groundwork 597
Looking up customer data
When using <view-state> to prompt the user for a phone number, we allowed
the user to take part in the flow. Now it’s the application’s turn to perform some
work as it attempts to look up the customer data in an action state.

 The lookupCustomer state is defined as an <action-state> with the following
excerpt of XML:

<action-state id="lookupCustomer">
 <action bean="lookupCustomerAction" />

 <transition on="success"
 to="showOrder" />

 <transition on-exception=
 "com.springinaction.pizza.service.
 ➥ CustomerNotFoundException"
 to="addNewCustomer" />
</action-state>

The action implementation is referenced by the bean attribute of the <action>
subelement. Here, we’ve specified that the functionality behind the lookupCus-
tomer action state is defined in a bean named lookupCustomerAction. The look-
upCustomerAction bean is configured in Spring as follows:

<bean id="lookupCustomerAction"
 class="com.springinaction.pizza.flow.
 ➥ LookupCustomerAction">
 <property name="customerService"
 ref="customerService" />
</bean>

The bean referenced by the bean attribute of <action> must implement Spring
Web Flow’s Action interface. As you can see in LookupCustomerAction

(listing 15.3), the only compulsory method of the Action interface is the exe-
cute() method.

package com.springinaction.pizza.flow;
import org.springframework.webflow.execution.Action;
import org.springframework.webflow.execution.Event;
import org.springframework.webflow.execution.RequestContext;
import com.springinaction.pizza.domain.Customer;
import com.springinaction.pizza.domain.Order;
import com.springinaction.pizza.service.CustomerService;

public class LookupCustomerAction implements Action {
 public Event execute(RequestContext context)
 throws Exception {

Listing 15.3 A flow action for looking up customer information

598 CHAPTER 15

Using Spring Web Flow
 String phoneNumber =
 context.getRequestParameters().get("phoneNumber");

 Customer customer =
 customerService.lookupCustomer(phoneNumber);

 Order order =
 (Order) context.getFlowScope().get("order");
 order.setCustomer(customer);

 return new Event(this, "success");
 }

 // injected
 private CustomerService customerService;
 public void setCustomerService(
 CustomerService customerService) {
 this.customerService = customerService;
 }
}

LookupCustomerAction assumes that it will be processing the submission of the
askForPhoneNumber view state and retrieves the phone number from the request
parameters. It then passes that phone number to the lookupCustomer() method
of the injected CustomerService object to retrieve a Customer object. If a Cus-
tomer is found, the pizza order is retrieved from flow scope and its customer
property is set accordingly.

 At this point, we have all of the customer information we need, so we’re ready
to start adding pizzas to the order. So the execute() method concludes by return-
ing a success event. Looking back at the definition of the lookupCustomer
<action-state>, we see that a success event results in a transition to the show-
Order event.

 If, however, lookupCustomer() can’t find a Customer based on the given
phone number, it will throw a CustomerNotFoundException. In that case, we need
the user to add a new customer. Therefore, the lookupCustomer <action-state>
is also declared with an exception transition that sends the flow to the addNewCus-
tomer state if a CustomerNotFoundException is thrown from LookupCustomerAc-
tion’s execute() method.

Adding a new customer
As for the addNewCustomer state itself, it’s a view state that prompts the user for
customer information. The following <view-state> definition specifies that the
newCustomerForm view should be displayed by this state:

Gets phone number from
request parameters

Looks up
customer

Sets customer to
flow-scoped order

Returns
success event

Laying the flow groundwork 599
<view-state id="addNewCustomer" view="newCustomerForm">
…
</view-state>

As configured here, the addNewCustomer view state will display the view defined in
/WEB-INF/jsp/newCustomerForm.jsp (listing 15.4).

<%@ taglib prefix="form"
 uri="http://www.springframework.org/tags/form" %>

<h2>New customer</h2>
<form:form action="flow.htm"
 commandName="order.customer">
 <input type="hidden" name="_flowExecutionKey"
 value="${flowExecutionKey}"/>

 Phone: ${requestParameters.phoneNumber}

 Name: <form:input path="name" />

 Street address:
 <form:input path="streetAddress" />

 City: <form:input path="city" />

 State: <form:input path="state" />

 Zip: <form:input path="zipCode" />

 <input type="submit" class="button"
 name="_eventId_submit" value="Submit"/>
 <input type="submit" class="button"
 name="_eventId_cancel" value="Cancel"/>
</form:form>

Although the addNewCustomer state will display the new customer form, it’s not
able to process the form data. Eventually the user will submit the form and we’ll
need a way to bind the form data to a back-end Customer object. Fortunately,
Spring Web Flow provides FlowAction, a special Spring Web Flow Action imple-
mentation that knows how to deal with common form-binding logic. To use
FlowAction, the first thing we’ll need to do is configure it as a <bean> in the
Spring application context:

<bean id="customerFormAction"
 class="org.springframework.webflow.action.FormAction">
 <property name="formObjectName" value="customer" />
 <property name="formObjectScope" value="REQUEST" />
 <property name="formObjectClass"
 value="com.springinaction.pizza.domain.Customer" />
</bean>

Listing 15.4 A form for creating a new customer

Submits form to
FlowController

Identifies current
flow execution

Uses Spring
form-binding
JSP tags

Submits form and
fires submit event

Submits form and
fires cancel event

600 CHAPTER 15

Using Spring Web Flow
FormAction has three important properties that describe the object that will be
bound to the form. The formObjectName property specifies the name of the
object, formObjectScope specifies the scope, and formObjectClass specifies the
type. In this case we’re asking FormAction to work with a Customer object in
request scope as customer.

 When the form is first displayed, we’ll need FormAction to produce a blank
Customer object so that we’ll have an object to bind the form data to. To make
that happen, we’ll add FormAction’s setupForm() method as a render action in
the addNewCustomer state:

<view-state id="addNewCustomer" view="newCustomerForm">
 <render-actions>
 <action bean="customerFormAction"
 method="setupForm"/>
 </render-actions>
…
</view-state>

Render actions are a way of associating an action with the rendering of a view. In
this case, the FormAction’s setupForm() method will be called just before the cus-
tomer form is displayed and will place a fresh Customer object in request scope. In
a sense, FormAction’s setupForm() is a lot like a Spring MVC form controller’s
formBackingObject() (see section 13.3.3) in that it prepares an object to be
bound to a form.

 When the new customer form is submitted, we’ll need a transition to handle
the submit event. The following <transition> addition to addNewCustomer
describes what should happen:

<view-state id="addNewCustomer" view="newCustomerForm">
 <render-actions>
 <action bean="customerFormAction"
 method="setupForm"/>
 </render-actions>
 <transition on="submit" to="showOrder">
 <action bean="customerFormAction" method="bind" />
 <evaluate-action expression=
 "flowScope.order.setCustomer(requestScope.customer)" />
 </transition>
</view-state>

The <transition> element itself is mostly straightforward. It simply says that a
submit event should trigger a transition to the state named showOrder. But before
we go to the showOrder state, we must first bind the form data to the form-backing

Laying the flow groundwork 601
Customer object and set the customer property of the flow-scoped Order. This is a
two-step process:

1 First, we use an <action> element to ask FormAction’s bind() method to
bind the submitted form data to the form-backing Customer object that is in
request scope.

2 Next, with a fully populated Customer object in request scope, we use
<evaluate-action> to copy the request-scoped Customer object to the
Order object’s customer property.

Our pizza order flow now has all of the customer information gathering states it
needs. At this point, the overall flow looks little like what you see in figure 15.4.

 Unfortunately, there’s still that fuzzy cloud of yet-to-be-defined “flow states”
that needs to be addressed. Let’s add a few more states to the flow that enable us
to add pizzas to the order.

15.2.4 Building a pizza order

When it comes to defining a flow for creating a pizza order, the most critical part
is where the pizzas get added to the order. Without that, we’re not really deliver-
ing anything to the customer (which in most businesses results in there being no
customer).

Ask for
Phone

Number

Look Up
Customer Flow States

Add New
Customer

start

end

Pizza Order Flow

Figure 15.4 Where the customer information states fit into the pizza order flow.

602 CHAPTER 15

Using Spring Web Flow
 So, the next couple of states we introduce
to the flow will serve to build the pizza order.
Figure 15.5 shows the new states and how
they’ll relate to one another.

 In this section, we’ll add two states to our
flow: one that displays the current order and
one to let the user add a pizza to the order.

Displaying the order
The showOrder state is a simple <view-state>
that renders a view to display the current order
information. It is defined as follows:

<view-state id="showOrder" view="orderDetails">
 <transition on="addPizza" to="addPizza" />
 <transition on="continue" to="takePayment" />
</view-state>

There’s nothing particularly special about this <view-state> definition. Com-
pared to some <view-state>s we’ve seen already, this one is plain vanilla. It simply
renders the view whose name is orderDetails. InternalResourceViewResolver
will resolve this view name to /WEB-INF/jsp/orderDetails.jsp, which is the JSP file
shown in listing 15.5.

<%@ taglib prefix="c"
 uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt"
 uri="http://java.sun.com/jstl/fmt" %>

<h2>${order.customer.name}</h2>
${order.customer.streetAddress}

${order.customer.city}, ${order.customer.state}
 ${order.customer.zipCode}

${order.customer.phoneNumber}

<a
href="flow.htm?_flowExecutionKey=${flowExecutionKey}

 ➥ &_eventId=continue">Place Order

<a href="flow.htm?_flowExecutionKey=${flowExecutionKey}
 ➥ &_eventId=cancel">Cancel
<hr/>
<h3>Order total: <fmt:formatNumber type="currency"
 value="${order.total}"/></h3>

Listing 15.5 orderDetails.jsp, which displays the current pizza order to the user

Show
Order

Take
Payment

Add
Pizza

Figure 15.5 Adding states to the flow
to build the pizza order.

Displays
customer
info

Links to fire
continue event

Links to fire
cancel event

Laying the flow groundwork 603
<hr/>
<h3>Pizzas:</h3>
<small>
 <a href="flow.htm?_flowExecutionKey=${flowExecutionKey}
 ➥ &_eventId=addPizza">Add Pizza
</small>

<c:forEach items="${order.pizzas}" var="pizza">
${pizza.size} :
 <c:forEach items="${pizza.toppings}" var="topping">
 ${topping},
 </c:forEach>

</c:forEach>

The main things I’d like to draw your attention to in listing 15.5 are the three
links that are being created to fire Spring Web Flow events. One fires a continue
event to proceed with checkout. Another fires a cancel event to cancel the order
and start over. Another fires an addPizza event so that we can add a new pizza to
the order.

 Notice that all three of these links are very similar. Consider the addPizza link,
for example:

<a href="flow.htm?_flowExecutionKey=${flowExecutionKey}
 ➥ &_eventId=addPizza">Add Pizza

There are three very important elements of the link’s href attribute that guide
Spring Web Flow:

■ As we’ve discussed before, all links within a flow must go through the Flow-
Controller. Therefore the root of the link is flow.htm, the URL pattern
mapped to the FlowController.

■ To identify the flow execution to Spring Web Flow, we’ve set the
_flowExecutionKey parameter to the page-scoped ${flowExecutionKey}
variable. This way FlowController will be able to distinguish one user’s flow
execution from another.

■ Finally, the _eventId parameter identifies the event to fire when this link is
clicked on. In this case, we’re firing the addPizza event, which, as defined
in the showOrder state, should trigger a transition to the addPizza state.

Speaking of the addPizza state, let’s go ahead and add it to the flow.

Links to fire
addPizza event

Displays
pizzas

604 CHAPTER 15

Using Spring Web Flow
Adding a pizza to the order
Since we’ll be prompting the user to choose a pizza, it makes sense for the
addPizza state to be a view state. Here’s the <view-state> definition we’ll use:

<view-state id="addPizza" view="newPizzaForm">
 <render-actions>
 <action bean="pizzaFormAction" method="setupForm"/>
 </render-actions>
 <transition on="submit" to="showOrder">
 <action bean="pizzaFormAction" method="bind" />
 <evaluate-action expression=
 "flowScope.order.addPizza(requestScope.pizza)" />
 </transition>
</view-state>

If this <view-state> definition looks familiar, it’s because we used a similar pat-
tern when adding a new customer. Just as with the customer form, we’re using a
FormAction to set up and bind the form data. As you can see from the definition
of the pizzaFormAction bean, this time the form-backing object is a Pizza object:

<bean id="pizzaFormAction"
 class="org.springframework.webflow.action.FormAction">
 <property name="formObjectName" value="pizza" />
 <property name="formObjectClass"
 value="com.springinaction.pizza.domain.Pizza" />
 <property name="formObjectScope" value="REQUEST" />
</bean>

When the new pizza form is submitted, the <evaluate-action> copies the
request-scoped Pizza into the order by calling the flow-scoped Order object’s

Pizza Order Flow

start

end

Flow States
Ask for
Phone

Number

Look Up
Customer

Add New
Customer

Show
Order

Add Pizza

Figure 15.6 The pizza order flow after adding the showOrder and addPizza states.

Laying the flow groundwork 605
addPizza() method. Once the pizza has been added to the order, the flow transi-
tions back to the showOrder view state to display the order’s status.

 Our flow is really starting to take shape. Figure 15.6 shows how the overall flow
looks at this point.

 We’re almost finished with our pizza order flow definition. But there are still a
few more states left to wrap up the order process. Let’s complete the flow defini-
tion by defining the states that complete the pizza order.

15.2.5 Completing the order

In the last section I stated that building the pizza
order is the most critical part of the flow. After fur-
ther contemplation, however, I think that is the
most critical part only from the customer’s point of
view. From the pizzeria’s point of view, the most crit-
ical part of the flow is the part where we get paid for
making and delivering the pizzas. (You didn’t think
we were giving pizzas away, did you?)

 To complete the pizza order flow (and to take the
money out of our customer’s pockets), we’ll add two
more states to the flow, as illustrated in figure 15.7.

 Let’s start by adding that all-important flow
state—the one that sucks money right out of the customer’s credit card.

Taking payment
In order to take payment, we must prompt the user for credit card information.
Since we’re asking the user to get involved again, this means that a view state is in
order. The following <view-state> displays the payment form to the user and
processes the credit card payment:

<view-state id="takePayment" view="paymentForm">
 <transition on="submit" to="submitOrder">
 <bean-action bean="paymentProcessor"
 method="approveCreditCard">
 <method-arguments>
 <argument expression=
 "${requestParameters.creditCardNumber}"/>
 <argument expression=
 "${requestParameters.expirationMonth}"/>
 <argument expression=
 "${requestParameters.expirationYear}"/>
 <argument expression=
 "${flowScope.order.total}" />

End

Take
Payment

Submit
Order

Figure 15.7 The final two states
in the flow take payment and
submit the order.

606 CHAPTER 15

Using Spring Web Flow
 </method-arguments>
 </bean-action>
 </transition>
 <transition on-exception=
 "com.springinaction.pizza.PaymentException"
 to="takePayment" />
</view-state>

Once again, we’ve defined a less-than-simple <view-state>. What makes this
<view-state> interesting is that in addition to displaying a form, it processes the
form submission upon a submit event. What makes it really interesting is how we
process the form data.

 In some previously defined <view-state>s, we used Spring Web Flow’s Form-
Action to bind form data to an object, but we never really performed any process-
ing on those objects. This time, we’re doing more than just collecting data—we
need to approve the credit card transaction by passing the form data to a payment
processor.

 The payment processor, as referenced by the bean attribute of <bean-action>,
is just a bean in the Spring application context. It may’ve been configured in
Spring like this:

<bean id="paymentProcessor" class=
 "com.springinaction.pizza.service.PaymentProcessor" />

The specifics of the PaymentProcessor class and its implementation aren’t perti-
nent to this discussion other than to say that PaymentProcessor must expose an
approveCreditCard() method whose signature looks like this:

public void approveCreditCard(String creditCardNumber,
 String expMonth, String expYear,
 float amount) throws PaymentException {
…
}

The reason why this approveCreditCard() method is needed is because the
method attribute of <bean-action> points to an approveCreditCard() method
that takes four arguments, as enumerated in the <argument> elements contained
within <method-arguments>. The arguments are:

■ The first argument is the credit card number. The value passed in to
approveCreditCard() comes directly from the request parameters, as indi-
cated by the expression ${requestParameters.creditCardNumber}. This
assumes that the paymentForm view contains a form with a field named
creditCardNumber.

Laying the flow groundwork 607
■ Likewise, the next two arguments are the credit card’s expiration month
and year and are also pulled from the request parameters. Again, it is
assumed that the paymentForm view contains fields named expiration-
Month and expirationYear.

■ Finally, we must know the amount of the transaction for which we’re
approving payment. This information is readily available from the flow-
scoped Order object’s total property and is specified using the ${flow-
Scope.order.total} expression.

When the form in the paymentForm view is submitted, the credit card number and
expiration date fields, along with the order total, will be passed along in a call to
PaymentProcessor’s approveCreditCard() method before transitioning to the
submitOrder state.

 In the event that the payment can’t be approved, approveCreditCard() will
throw a PaymentException. For this occasion, we’ve also included an on-excep-
tion transition that will take the user back to the paymentForm to remedy the prob-
lem (perhaps by trying a different credit card number).

 It should be noted that we could have also used an <action> definition here
instead of a <bean-action>. The downside of using <action>, however, is that the
action class must be an implementation of Spring Web Flow’s Action interface. It
doesn’t allow for pure POJO action implementations. <bean-action>, on the
other hand, provides a nonintrusive alternative, enabling us to invoke any method
on any class configured in the Spring application context, without implementing
a Spring Web Flow–specific interface.

Submitting the order
Finally, we’re ready to submit the order. The user doesn’t need to be involved for
this part of the flow, so an <action-state> is a suitable choice. The following
<action-state> saves the order and finishes the flow:

<action-state id="submitOrder">
 <bean-action bean="orderService" method="saveOrder">
 <method-arguments>
 <argument expression="${flowScope.order}" />
 </method-arguments>
 </bean-action>

 <transition on="success" to="finish" />
</action-state>

Notice that we’re using a <bean-action> to define the logic behind the <action-
state>. Here, the saveOrder() method will be called on the bean whose name is

608 CHAPTER 15

Using Spring Web Flow
orderService. The flow-scoped Order object will be passed in as a parameter.
This means that the class behind the orderService bean must expose a save-
Order() method whose signature looks like this:

public void saveOrder(Order order) {
…
}

As before, the actual implementation of this method isn’t relevant to the discus-
sion of Spring Web Flow, so we’ve purposefully omitted it to avoid confusion.

 The flow now appears to be complete. We have all of the states in place and we
should be able to start taking pizza orders. But we’re missing one small transition
that is used throughout the entire flow.

15.2.6 A few finishing touches

On more than one occasion, we’ve seen links that fire cancel events within the
flow, but we’ve never told you how those cancel events are handled. Up to now,
we’ve been avoiding the issue, but now it’s time to meet it head on.

 At any view state within the flow, the customer may choose to cancel the order
and start over. When that happens, we need the flow to transition to the finish
state to close down the flow execution. A naive way of handling cancel events is to
place appropriate <transition>s all throughout the flow. For example, consider
the cancel transition that could have been added to the showOrder state:

<view-state id="showOrder" view="orderDetails">
 <transition on="addPizza" to="addPizza" />
 <transition on="continue" to="takePayment" />
 <transition on="cancel" to="finish" />
</view-state>

The problem with doing it this way is that we must copy the exact same <transi-
tion> element to all of our flow’s <view-state>s. Our flow is simple enough that
duplicating the <transition> wouldn’t be too painful. Nonetheless, it still results
in an undesired duplication of code and should be avoided.

 Instead of defining the same <transition> multiple times throughout an
entire flow, Spring Web Flow offers the ability to define global transitions. Global
transitions are transition definitions that are applicable from any flow state. To
add global transitions to a flow, simply add a <global-transitions> element as a
child of the <flow> element and place <transition> elements within it. For
example:

<global-transitions>
 <transition on="cancel" to="finish" />
</global-transitions>

Laying the flow groundwork 609
Here we’ve defined a global transition to the finish state whenever a cancel
event is fired. This makes it possible to handle the cancel event from any state
within the flow.

 Our pizza order flow is almost complete. We have flow states to gather cus-
tomer information, to add pizzas to and order, to take payment, and to save the
order. The final flow is illustrated in figure 15.8.

 After putting all of the pieces together, we get the complete pizza order flow
definition file, PizzaOrder-flow.xml, as shown in listing 15.6.

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns=
 "http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.springframework.org/schema/webflow
 http://www.springframework.org/schema/webflow/
 ➥ spring-webflow-1.0.xsd">

 <var name="order"
 class="com.springinaction.pizza.domain.Order"
 scope="flow"/>

 <start-state idref="askForPhoneNumber" />

 <view-state id="askForPhoneNumber"
 view="phoneNumberForm">

Listing 15.6 The complete pizza order flow definition

Pizza Order Flow

start

end

Ask for
Phone

Number

Look Up
Customer

Add New
Customer

Show
Order

Add Pizza

Take
Payment

Submit
Order

Figure 15.8 The pizza order flow is now complete… or is it?

610 CHAPTER 15

Using Spring Web Flow
 <transition on="submit" to="lookupCustomer" />
 </view-state>

 <action-state id="lookupCustomer">
 <action bean="lookupCustomerAction" />

 <transition on="success"
 to="checkDeliveryArea" />

 <transition on-exception=
 "com.springinaction.pizza.service.CustomerNotFoundException"
 to="addNewCustomer" />
 </action-state>

 <view-state id="addNewCustomer" view="newCustomerForm">
 <render-actions>
 <action bean="customerFormAction"
 method="setupForm"/>
 </render-actions>
 <transition on="submit" to="checkDeliveryArea">
 <action bean="customerFormAction" method="bind" />
 <evaluate-action expression=
 "flowScope.order.setCustomer(requestScope.customer)" />
 </transition>
 </view-state>

 <decision-state id="checkDeliveryArea">
 <if test="${flowScope.order.customer.inDeliveryArea}"
 then="showOrder"
 else="warnNoDeliveryAvailable"/>
 </decision-state>

 <view-state id="warnNoDeliveryAvailable"
 view="deliveryWarning">
 <transition on="continue" to="showOrder" />
 </view-state>

 <view-state id="showOrder" view="orderDetails">
 <transition on="addPizza" to="addPizza" />
 <transition on="continue" to="takePayment" />
 </view-state>

 <view-state id="addPizza" view="newPizzaForm">
 <render-actions>
 <action bean="pizzaFormAction" method="setupForm"/>
 </render-actions>
 <transition on="submit" to="showOrder">
 <action bean="pizzaFormAction" method="bind" />
 <evaluate-action expression=
 "flowScope.order.addPizza(requestScope.pizza)" />
 </transition>
 </view-state>

Advanced web flow techniques 611
 <view-state id="takePayment" view="paymentForm">
 <transition on="submit" to="submitOrder">
 <bean-action bean="paymentProcessor"
 method="approveCreditCard">
 <method-arguments>
 <argument expression=
 "${requestParameters.creditCardNumber}"/>
 <argument expression=
 "${requestParameters.expirationMonth}"/>
 <argument expression=
 "${requestParameters.expirationYear}"/>
 <argument expression=
 "${flowScope.order.total}" />
 </method-arguments>
 </bean-action>
 </transition>

 <transition
 on-exception="com.springinaction.pizza.PaymentException"
 to="takePayment" />
 </view-state>

 <action-state id="submitOrder">
 <bean-action bean="orderService" method="saveOrder">
 <method-arguments>
 <argument expression="${flowScope.order}" />
 </method-arguments>
 </bean-action>

 <transition on="success" to="finish" />
 </action-state>

 <end-state id="finish"
 view="flowRedirect:PizzaOrder-flow" />

 <global-transitions>
 <transition on="cancel" to="finish" />
 </global-transitions>
</flow>

We could stop here and move on to another topic. But never content to leave well
enough alone, let’s look at a few ways that we can improve on the pizza order flow
by using some advanced Spring Web Flow techniques.

15.3 Advanced web flow techniques

Although the pizza order flow is now complete and ready to take orders for the
delicious Italian pies, there is still some room for improvement. Specifically, we
have two improvements in mind:

612 CHAPTER 15

Using Spring Web Flow
■ Once we have a customer’s information on hand, we should determine
whether or not they live within our delivery area.

■ The customer information portion of the flow may come in handy for other
flows. So, it would be nice to extract that portion of the flow into a subflow
that can be reused in another flow (perhaps for a flower delivery service).

Coincidentally, these improvements involve the two flow states from table 15.1
that we haven’t talked about yet: decision states and subflow states. That makes
this an opportune time to give those two flow states a try. Let’s start by looking at
how to fork the direction of a flow using decision states.

15.3.1 Using decision states

After the lookupCustomer and addNewCustomer states and just before the show-
Order state, we have a decision to make: can we deliver the pizza to the customer’s
given address?

 More accurately, our flow has a decision to make. If the customer lives within
the delivery area then there’s no problem. The flow should proceed normally. But
if the customer lives outside of the delivery area, we should transition to a warning
page to indicate that we can’t deliver pizza to the customer’s address but that they
are welcome to place the order for carryout and pick it up themselves.

 When flow-diverging decisions must be made, a decision state is in order. A
decision state is the Spring Web Flow equivalent of an if/else statement in Java.
It evaluates some Boolean expression and based on the results will send the flow
in one of two directions.

 Decision states are defined with the <decision-state> element. The follow-
ing <decision-state> is what we’ll use to decide whether or not to warn the user
that they are out of the delivery area:

<decision-state id="checkDeliveryArea">
 <if test="${flowScope.order.customer.inDeliveryArea}"
 then="showOrder"
 else="warnNoDeliveryAvailable"/>
</decision-state>

At the heart of <decision-state> is the <if> element. The test attribute speci-
fies some expression to be evaluated. If the expression evaluates to true, the flow
will transition to the state specified by the then attribute. Otherwise, the flow will
transition to the state given in the else attribute.

 Here the inDeliveryArea property of the Customer object is evaluated. If it’s
true then the flow will continue at the showOrder state. Otherwise, we’ll warn the

Advanced web flow techniques 613
user that delivery is not available for them and that they’ll have to pick up their
pizza.

 As for the delivery warning, it’s a simple view state, as defined here:

<view-state id="warnNoDeliveryAvailable"
 view="deliveryWarning">
 <transition on="continue" to="showOrder" />
</view-state>

The user is presented with the view whose name is deliveryWarning and is
prompted to continue or cancel. If they choose to continue, they will transition to
the showOrder state. If they decide to cancel the order, they will be transitioned to
the finish state (per the global cancel transition).

 Aside from adding these two new states, the only other thing we’ll need to do is
to rewire the lookupCustomer and addNewCustomer states to transition to check-
DeliveryArea instead of showOrder:

<action-state id="lookupCustomer">
 <action bean="lookupCustomerAction" />

 <transition on="success"
 to="checkDeliveryArea" />

 <transition on-exception=
 "com.springinaction.pizza.service.CustomerNotFoundException"
 to="addNewCustomer" />
</action-state>

<view-state id="addNewCustomer" view="newCustomerForm">
 <render-actions>
 <action bean="customerFormAction"
 method="setupForm"/>
 </render-actions>
 <transition on="submit" to="checkDeliveryArea">
 <action bean="customerFormAction" method="bind" />
 <evaluate-action expression=
 "flowScope.order.setCustomer(requestScope.customer)" />
 </transition>
</view-state>

Adding the delivery area <decision-state> not only changes the structure of the
flow, it also changes how the flow is presented to the user. Before, anyone could
place an order for pizza delivery, regardless of where they lived. Now, however, the
flow is changed to indicate that delivery isn’t available for those outside of the
delivery area. This is reflected in the updated flow diagram in figure 15.9.

614 CHAPTER 15

Using Spring Web Flow
The next flow improvement we’ll make will alter the structure of the flow, but
shouldn’t have any impact on how the flow is presented to the user. Let’s see how
to extract a portion of the pizza order flow into a subflow.

15.3.2 Extracting subflows and using substates

You’ve probably noticed by now that the flow definition file is getting a bit lengthy.
Counting the two flow states that we added in the previous section and the start
and end states, our pizza order flow’s state count is up to 11. Although this is far
from being the most complex flow ever defined, it is starting to get unwieldy.

 In Java, when a method gets too big, it is often beneficial to pull out related
lines of code and place them into their own method. In his Refactoring: Improving
the Design of Existing Code (Addison-Wesley, 1999), Martin Fowler refers to this tech-
nique as an “extract method.” By performing an extract method refactoring,
lengthy methods become shorter and easier to follow.

 Fowler’s book doesn’t cover flow definitions per se. Nevertheless, the idea
behind extract methods applies equally well to flow definitions. Flow defini-
tions can get quite lengthy and difficult to follow. It may be advantageous to
extract a related set of states into their own flow and to reference that flow
from the main flow. As with methods, the reward is smaller and easier-to-under-
stand flow definitions.

Pizza Order Flow

start

end

Ask For
Phone

Number

Look Up
Customer

Add New
Customer

Show
Order

Add Pizza

Take
Payment

Submit
Order

Check
Delivery

Area

Warn No
Delivery
Available

Figure 15.9 The new flow diagram after adding the delivery area check.

Advanced web flow techniques 615
 Examining the pizza order flow, we find that 5 of the 11 states pertain to gath-
ering customer information. Since these states make up almost half of the whole
flow, they make a good candidate to be extracted into their own flow.

Creating a customer data flow
The first step in performing an “extract subflow” refactoring is to copy the five
customer-centric flow states out of PizzaOrder-flow.xml into their own flow defini-
tion file. Listing 15.7 shows CustomerInfo-flow.xml, the new flow that will contain
the customer information states.

<?xml version="1.0" encoding="UTF-8"?>
<flow xmlns="http://www.springframework.org/schema/webflow"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://www.springframework.org/schema/webflow
 http://www.springframework.org/schema/webflow/
 ➥ spring-webflow-1.0.xsd">

 <var name="customer"
 class="com.springinaction.pizza.domain.Customer"
 scope="flow"/>

 <start-state idref="askForPhoneNumber" />

 <view-state id="askForPhoneNumber"
 view="phoneNumberForm">
 <transition on="submit" to="lookupCustomer" />
 </view-state>

 <action-state id="lookupCustomer">
 <action bean="lookupCustomerAction2" />

 <transition on="success"
 to="checkDeliveryArea" />

 <transition on-exception=
 "com.springinaction.pizza.service.
 ➥ CustomerNotFoundException"
 to="addNewCustomer" />
 </action-state>

 <view-state id="addNewCustomer" view="newCustomerForm">
 <render-actions>
 <action bean="customerFormAction"
 method="setupForm"/>
 </render-actions>
 <transition on="submit" to="checkDeliveryArea">
 <action bean="customerFormAction" method="bind" />
 </transition>

Listing 15.7 CustomerInfo-flow.xml—the customer information states extracted into
their own flow

Declares flow-
scoped Customer

616 CHAPTER 15

Using Spring Web Flow
 </view-state>

 <decision-state id="checkDeliveryArea">
 <if test="${flowScope.customer.inDeliveryArea}"
 then="finish"
 else="warnNoDeliveryAvailable"/>
 </decision-state>

 <view-state id="warnNoDeliveryAvailable"
 view="deliveryWarning">
 <transition on="continue" to="finish" />
 </view-state>

 <end-state id="finish">
 <output-mapper>
 <mapping source="flowScope.customer"
 target="customer"/>
 </output-mapper>
 </end-state>

 <global-transitions>
 <transition on="cancel" to="finish" />
 </global-transitions>
</flow>

Most of listing 15.7 should look familiar. That’s because it was extracted from the
original order flow. However, upon closer inspection, you’ll find that it’s not a
direct copy from the original flow. We had to make a few minor changes to accom-
modate the new flow structure.

 Because this new flow knows nothing about the pizza order, we no longer have
a place to put the customer data. Therefore, the first change we made was to
declare a flow-scoped Customer object using the <var> element. We’ll use this
Customer object throughout the flow.

 For example, the <decision-state> element has changed to test the flow-
scoped Customer object instead of the customer property of a flow-scoped Order
object.

 In the original pizza order flow, the checkDeliveryArea and warnNoDelivery-
Available states transitioned to the showOrder state once finished. But the show-
Order state isn’t in this flow, so we’ve changed those transitions to go to the
finish state. As we’ll see in a moment, the pizza order flow will transition to the
showOrder state once the customer info flow completes.

 Speaking of the finish state, it looks a bit different in the customer info flow
than in the pizza order flow. Since this flow will end by transitioning to a state in
the order flow, there’s no need to specify a view attribute.

Tests in DeliveryArea
on flow-scoped
Customer

Transitions
to finish

Maps customer
to output

Advanced web flow techniques 617
 Also (and even more interesting), notice the <output-mapper> element. This
element maps the flow-scoped Customer to an output variable named customer,
effectively returning the Customer object to the calling flow.

Using a subflow
Back in PizzaOrder-flow.xml, we’ll need to completely remove all of the customer
info states that we extracted into CustomerInfo-flow.xml. They’ll be replaced with
a <subflow-state> that references the new flow:

<subflow-state id="getCustomerInfo" flow="CustomerInfo-flow" >
 <attribute-mapper>
 <output-mapper>
 <mapping source="customer" target="flowScope.order.customer"/>
 </output-mapper>
 </attribute-mapper>
 <transition on="finish" to="showOrder" />
</subflow-state>

According to the flow attribute, the getCustomerInfo state is a subflow state that
references the flow named CustomerInfo-flow. A subflow state is a state that ref-
erences another flow. When a flow enters a subflow state, the current flow is sus-
pended and the referenced flow is executed. This makes subflow states analogous
to method calls in Java and the subflows themselves analogous to methods. In the
case of the getCustomerInfo state, we are calling the CustomerInfo-flow flow.

 As you’ll recall, the last thing that happens in CustomerInfo-flow is that the
flow-scoped Customer object is mapped to an output variable named customer. In
the <subflow-state>, we now map that output variable to the customer property
of the order flow’s flow-scoped Order object. This makes sure that the Order is
properly populated with the result of the customer info flow.

 There’s still one more minor change that will need to be made in the order
flow. Previously, the <start-state> referred to the askForPhoneNumber state.
Now, however, the askForPhoneNumber state is in a separate flow. Therefore, we’ll
need to change the <start-state> to reference the getCustomerInfo state:

<start-state idref="getCustomerInfo" />

And that’s it! Our “extract subflow” refactor is now complete. The new flow (or
flows, as the case is now) are depicted in figure 15.10.

 Before we move on, we should point out that there’s another benefit of the
extract subflow refactoring. A close examination of the customer info flow reveals
that the customer info flow is focused on one thing and one thing only: gathering
customer information. There’s no hint of a pizza order to be found. This means

618 CHAPTER 15

Using Spring Web Flow
that the customer info flow could be reused in any flow where we may need to col-
lect customer data. If, for example, we were to open up a flower delivery service,
the customer info flow would fit in nicely.

 By now you should see the value of building flow-based applications using
Spring Web Flow. But what if you want to plug a flow into an existing JSF or Struts
application? No problem! Let’s look at how Spring Web Flow integrates into other
web frameworks.

Customer Info Flow

Pizza Order Flow

start

end

Ask For
Phone

Number

Lookup
Customer

Add New
Customer

Show
Order

Add Pizza

Take
Payment

Submit
Order

Check
Delivery

Area

Warn No
Delivery
Available

end

start

Get
Customer

Info

Figure 15.10 The flows after performing an extract subflow on the customer
information states.

Integrating Spring Web Flow with other frameworks 619
15.4 Integrating Spring Web Flow with other frameworks

In this chapter, we’ve focused on building Spring Web Flow applications within
Spring MVC. Nevertheless, we thought you might find it interesting to know that
Spring Web Flow doesn’t have to be used with Spring MVC. In fact, Spring Web
Flow comes with out of the box support for use in

■ Jakarta Struts

■ JavaServer Faces

■ Spring Portlet MVC

There’s also an open issue in the Spring Web Flow issue list describing how to
integrate Spring Web Flow into WebWork 2 (which will presumably work in Struts
2 as well). You can read about the WebWork integration and follow the status of
the issue at http://opensource.atlassian.com/projects/spring/browse/SWF-76.

 Regardless of which web framework you choose to build flows within, you’ll find
that your flow definitions are portable across all supported frameworks. The only
difference between each framework is at the integration points (e.g., FlowCon-
troller for a Spring MVC application versus FlowAction in a Struts application).

 Before we end our discussion on Spring Web Flow, let’s see how to use Spring
Web Flow’s out-of-the-box support for integration with Jakarta Struts and JSF.

15.4.1 Jakarta Struts

Up to now, the main entry point into a Spring Web Flow application has been
through a Spring controller (FlowController for Spring). Struts, however,
doesn’t support Spring controllers. Therefore, we’ll need a Struts-specific
approach for using Spring Web Flow within a Struts application.

 Instead of controllers, Struts is based on Actions. Consequently, Spring Web
Flow integrates into Struts through FlowAction, a Struts Action implementation
that performs the same job as FlowController does for Spring MVC. That is,
FlowAction is a Struts-specific front controller for Spring Web Flow.

 To use FlowAction, declare it in the <action-mappings> section of struts-
config.xml. The following <action> configures Spring Web Flow to respond to
requests whose URL ends with /flow.do:

<action path="/flow"
 name="actionForm"
 scope="request"
 type="org.springframework.webflow.executor.
 ➥ struts.FlowAction"/>

620 CHAPTER 15

Using Spring Web Flow
As with the Spring MVC version of Spring Web Flow, the Struts FlowAction uses a
handful of parameters to guide the flow (the same as those described in
table 15.1). In Struts, these parameters must be bound to an ActionForm imple-
mentation. More specifically, Spring Web Flow parameters must be bound to
SpringBindingActionForm. Therefore, we’ll also need to configure a Struts
<form-bean> entry to tell Struts about SpringBindingActionForm:

<form-bean name="actionForm" type=
 "org.springframework.web.struts.
 ➥ SpringBindingActionForm"/>

Notice that the name of the <form-bean> is the same as the name of the
<action>. This is how Struts knows that SpringBindingActionForm is to be used
to bind parameters for FlowAction.

 That’s all you must do to use Spring Web Flow with Struts. Flows for Struts are
defined exactly the same way as flows running under Spring MVC. The only slight
difference is that in a Struts-based flow a <view-state>’s view refers to a Struts
<forward>.

 If Struts isn’t your cup of tea, Spring Web Flow integrates with one more web
framework. Let’s see how to use Spring Web Flow with JavaServer Faces (JSF).

15.4.2 JavaServer Faces

To use Spring Web Flow with a JSF application, we’ll need to configure several cus-
tom Spring Web Flow elements in the application’s faces-config.xml file. The fol-
lowing excerpt from faces-config.xml shows the relevant customizations:

<application>
 <navigation-handler>
 org.springframework.webflow.executor.jsf.FlowNavigationHandler
 </navigation-handler>
 <property-resolver>
 org.springframework.webflow.executor.jsf.FlowPropertyResolver
 </property-resolver>
 <variable-resolver>
 org.springframework.webflow.executor.jsf.FlowVariableResolver
 </variable-resolver>
 <variable-resolver>
 org.springframework.web.jsf.DelegatingVariableResolver
 </variable-resolver>
 <variable-resolver>
 org.springframework.web.jsf.WebApplicationContextVariableResolver
 </variable-resolver>
</application>

Integrating Spring Web Flow with other frameworks 621
In JSF, navigation is usually handled by consulting <navigation-rule> entries in
faces-config.xml. In Spring Web Flow, however, navigation is determined by the
flow’s <transition> definitions. Therefore, for Spring Web Flow to work with JSF,
we need to configure FlowNavigationHandler, a customer navigation handler
that uses a flow definition to guide navigation when running within a flow (falling
back to the default NavigationHandler when not in a flow).

 We’re also going to need a way for JSF to resolve variables and their proper-
ties from flow scope. Unfortunately, JSF’s default variable and property resolu-
tion knows nothing about flow-scoped variables. Spring Web Flow’s
FlowVariableResolver and FlowPropertyResolver enable JSF to find flow-
scoped data when binding expressions that are prefixed with flowScope (e.g.,
flowScope.order.total).

 We also must configure two other variable resolvers: DelegatingVariable-
Resolver and WebApplicationContextVariableResolver. These variable resolv-
ers are useful in resolving JSF variables as beans from the Spring application
context. We’ll talk more about these two variable resolvers in sections 16.4.2 and
16.4.4 when we discuss the integration of JSF and Spring.

 Finally, one more tweak must be made to faces-config.xml for Spring Web Flow
to work with JSF. A flow’s execution must be saved between requests and restored
at the beginning of each request. Spring Web Flow’s FlowPhaseListener is a JSF
PhaseListener implementation that manages the flow execution on behalf of JSF.
It is configured in faces-config.xml as follows:

<lifecycle>
 <phase-listener>
 org.springframework.webflow.executor.jsf.FlowPhaseListener
 </phase-listener>
</lifecycle>

FlowPhaseListener has three specific responsibilities, each associated with a
phase in the JSF lifecycle:

■ At BEFORE_RESTORE_VIEW, FlowPhaseListener restores a flow execution,
based on the flow execution identifier in the request arguments (if any).

■ At BEFORE_RENDER_RESPONSE, FlowPhaseListener generates a new identi-
fier for the updated flow execution to be stored as.

■ At AFTER_RENDER_RESPONSE, FlowPhaseListener saves the updated flow
execution, using the identifier generated in BEFORE_RENDER_RESPONSE.

622 CHAPTER 15

Using Spring Web Flow
Once all of the necessary entries have been placed in faces-config.xml, we’re
ready to launch a flow. The following snippet of JSF creates a link to kick off the
flow named Order-flow:

<h:commandLink
 value="Order Pizza"
 action="flowId:Order-flow"/>

15.5 Summary

Not all web applications are freely navigable. Sometimes, a user must be guided
along, asked appropriate questions and led to specific pages based on their
responses. In these situations, an application feels less like a menu of options and
more like a conversation between the application and the user.

 In this chapter, we’ve explored Spring Web Flow, a web framework that enables
development of conversational applications. Along the way, we built a flow-based
application to take pizza orders. We started by defining the overall path that the
application should take, starting with gathering customer information and con-
cluding with the order being saved in the system.

 A flow is made up of several states and transitions that define how the conver-
sation will traverse from state to state. As for the states themselves, they come in
one of several varieties: action states that perform some business logic, view states
that involve the user in the flow, decision states that dynamically direct the flow,
and start and end states that signify the beginning and end of a flow. In addition,
there are subflow states that are, themselves, defined by a flow.

 Although much of our discussion of Spring Web Flow assumed that our flow
would run as part of a Spring MVC application, we also learned that Spring Web
Flow can be used with Jakarta Struts and JavaServer Faces. In fact, the flow defini-
tions themselves are completely transferable from one web framework to another.

 Speaking of integration, Spring Web Flow isn’t the only part of Spring that
plays well with other web frameworks. Coming up in the next chapter, we’ll see
how to use the rest of Spring with several popular web frameworks, including Tap-
estry, WebWork, Struts, and JavaServer Faces. We’ll also have a look at how to
build Ajax functionality into an application by exposing Spring beans as Ajax-
remoted objects.

Integrating with
other web frameworks
This chapter covers
■ Using Spring with Jakarta Struts
■ Integrating with WebWork 2 and Struts 2
■ Working with Tapestry
■ Using JavaServer Faces with Spring
■ Ajax-enabling with DWR
623

624 CHAPTER 16

Integrating with other web frameworks
Do you always order the same thing when you go out to eat? If you’re like a lot of
people, you have your favorite dish that you enjoy and rarely, if ever, try anything
new. You’ve heard good things about the pasta frijole, but you know that the lasa-
gna’s good. So, instead of trying something different, you stick with what you’re
comfortable with.

 Likewise, perhaps you’re already quite comfortable with a specific web frame-
work. You have heard good things about Spring MVC, but you’re not quite ready
to take the leap. You may have legitimate reasons for choosing a different web
framework to front your application. Perhaps you’re already heavily invested in
another MVC framework such as Struts or WebWork and aren’t prepared to aban-
don it for Spring. Nevertheless, you would still like to take advantage of Spring’s
support for dependency injection, declarative transactions, AOP, and so forth.

 No problem. As we’ve seen throughout this book, the key to the Spring Frame-
work is the freedom to choose what works best for your application. As you’ll
learn in this chapter, Spring offers you choices when building web applications,
too. Although Spring offers its own very capable web framework, you are free to
choose another if you’d like and still be able to take advantage of Spring in the
other layers of your application.

 If you’re not quite ready to make the jump to Spring MVC, you certainly have a
huge selection of other web frameworks to choose from. In fact, there are hun-
dreds of web frameworks for Java. I have neither the space nor the inclination to
show you how to integrate Spring with all of them. But we’ll show you how Spring
can be used with a few of the more popular MVC frameworks, including Struts,
WebWork, Tapestry, and JavaServer Faces (JSF). We’ll also see how to use Spring
with a popular Ajax toolkit known as DWR (Direct Web Remoting).

 Struts has long been the workhorse framework of many Java-based web applica-
tions. As it’s the most well known among all of the web frameworks that Spring
integrates with, let’s start this chapter by seeing how to use Spring and Struts
together.

16.1 Using Spring with Struts

Despite the seemingly endless barrage of Java-based MVC frameworks, Struts is still
the king of them all. It began life in May 2000 when Craig McClanahan launched
the project to create a standard MVC framework for the Java community. In July
2001, Struts 1.0 was released and set the stage for Java web development for thou-
sands and thousands of projects.

Using Spring with Struts 625
 In this section, we’re going to look at how to use Struts in the web layer of a
Spring-enabled application. While we will cover just enough Struts basics to
accommodate integration with Spring, we won’t be going into any great detail on
how to develop applications using Struts. If you want more information on Struts,
I recommend you check out Struts in Action (Manning, 2002) and Struts Recipes
(Manning, 2004).

 Let’s turn back the clock and pretend that we had developed the RoadRantz
application using Struts instead of Spring MVC. Had that been the case, we
would’ve had written RantsForVehicleAction (listing 16.1) instead of RantsFor-
VehicleController (see listing 13.3).

package com.roadrantz.struts;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import com.roadrantz.domain.Vehicle;
import com.roadrantz.service.RantService;

public class RantsForVehicleAction extends Action {
 public ActionForward execute(
 ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {

 VehicleForm vehicleForm = (VehicleForm) form;
 Vehicle vehicle = vehicleForm.getVehicle();

 request.setAttribute("rants",
 rantService.getRantsForVehicle(vehicle));

 return mapping.findForward("rantList");
 }
}

This Struts action performs the same functionality as the RantsForVehicle-
Controller that we wrote in chapter 13. Just like that Spring MVC controller,
RantsForVehicleAction uses a RantService to retrieve a list of rants for a partic-
ular vehicle. It then places the list into the request so that the view layer can ren-
der the list in the browser.

Listing 16.1 A Struts-flavored look at the RoadRantz application

Delegates to
rant service

626 CHAPTER 16

Integrating with other web frameworks
 But listing 16.1 isn’t complete. What’s missing is the part that tells where the
RantService comes from.

 In the Spring MVC version, RantsForVehicleController is configured in the
Spring application context just like any other Spring-managed bean. As a Spring-
managed bean, RantsForVehicleController could be given a RantService
through dependency injection.

 RantsForVehicleAction, on the other hand, is a Struts-managed action class.
This means that Spring won’t normally have any idea that it exists, much less that
it needs to be injected with a RantService.

 It would seem that we have a problem. If RantsForVehicleAction isn’t a
Spring-managed bean then how can we give it a RantService that is managed by
Spring?

 Fortunately, Spring offers a solution for Struts-integration. Actually, Spring
offers two solutions to choose from:

■ Write Struts actions to extend a Spring-aware base class.

■ Delegate requests to Struts actions configured in the Spring application
context.

We’ll explore each of these strategies for Struts-Spring integration in the sections
that follow. But first, regardless of which approach you take, there’s one bit of
common configuration that you’ll need to take care of: telling Struts about your
Spring application context.

16.1.1 Registering the Spring plug-in with Struts

In order for Struts to have access to Spring-managed beans, you’ll need to register
a Struts plug-in that is aware of the Spring application context. Add the following
code to your struts-config.xml to register the plug-in:

<plug-in className=
 "org.springframework.web.struts.ContextLoaderPlugIn">
 <set-property property="contextConfigLocation"
 value="/WEB-INF/classes/roadrantz-servlet.xml,
 /WEB-INF/classes/roadrantz-services.xml,
 /WEB-INF/classes/roadrantz-data.xml,
 /WEB-INF/classes/roadrantz-data-hibernate.xml,
 /WEB-INF/classes/roadrantz-cache.xml"/>
</plug-in>

ContextLoaderPlugIn loads a Spring application context (a WebApplicationCon-
text, to be specific), using the context configuration files listed (comma-
separated) in its contextConfigLocation property.

Using Spring with Struts 627
 Now that the plug-in is in place, you’re ready to choose an integration strategy.
Let’s first look at how to create Struts actions that are aware of the Spring applica-
tion context.

16.1.2 Writing Spring-aware Struts actions

One way to integrate Struts and Spring is to write all of your Struts action classes
to be aware of the Spring application context. Spring’s WebApplicationContex-
tUtils class provides some convenient static methods that can be used to retrieve
the application context. With the context in hand, you can then use Spring as a
factory to retrieve the beans your Struts actions needs. For example, here’s how
the execute() method of RantsForVehicleAction could be written:

public ActionForward execute(ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {

 VehicleForm vehicleForm = (VehicleForm) form;
 Vehicle vehicle = vehicleForm.getVehicle();

 ApplicationContext ctx =
 WebApplicationContextUtils.getRequiredWebApplicationContext(
 getServlet().getServletContext());
 RantService rantService =
 (RantService) ctx.getBean("rantService");

 request.setAttribute("rants",
 rantService.getRantsForVehicle(vehicle));

 return mapping.findForward("rantList");
}

The code in bold uses the getRequiredWebApplicationContext() method of
WebApplicationContextUtils to retrieve the Spring application context and ulti-
mately to retrieve the rantService bean.

 Since a typical Struts application will involve more than one action class, you
could end up repeating that same context lookup code in all of them. To avoid
duplicating code, it’s better to put the Spring context code in a common base
class to avoid code duplication. Then each of your application’s action classes
would subclass the base action class instead of Struts’s Action.

 The good news is that you won’t have to write the Spring-aware base action
class. That’s because Spring comes with ActionSupport, an extension of
Struts’s Action that overrides the setServlet() method to retrieve the Spring
application context from the ContextLoaderPlugIn. Any class that extends
ActionSupport has access to the Spring application context by calling getWeb-

628 CHAPTER 16

Integrating with other web frameworks
ApplicationContext(). From there, the action class can retrieve beans directly
from Spring by calling the getBean() method, as shown in figure 16.1.

 For example, consider RantsForVehicleAction in listing 16.2, which extends
ActionSupport for access to the Spring application context.

package com.roadrantz.struts;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import org.springframework.web.struts.ActionSupport;
import com.roadrantz.domain.Vehicle;
import com.roadrantz.service.RantService;

public class RantsForVehicleAction
 extends ActionSupport {
 public ActionForward execute(
 ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {

 VehicleForm vehicleForm = (VehicleForm) form;
 Vehicle vehicle = vehicleForm.getVehicle();

 RantService rantService = (RantService)
 getWebApplicationContext().getBean("rantService");

 request.setAttribute("rants",

Listing 16.2 A Spring-aware implementation of RantsForVehicleAction

Spring Application Context

Rant
Service

RantsForVehicleAction
getBean("rantService")

ActionSupport

Figure 16.1 Spring’s ActionSupport is a convenient base class for Action
implementations that makes the Spring application context directly available to
the action class. From there the action can retrieve its dependencies from the
Spring application context.

Extends
ActionSupport

Looks up
rantService
bean

Using Spring with Struts 629
 rantService.getRantsForVehicle(vehicle));
 request.setAttribute("vehicle", vehicle);

 return mapping.findForward("rantList");
 }
}

When RantsForDayAction needs a RantService, it starts by calling getWebAppli-
cationContext() to retrieve the Spring application context. From there it simply
calls getBean() to retrieve the rantService bean.

 The good thing about using this approach to Struts-Spring integration is that
it’s very intuitive. Aside from extending ActionSupport and retrieving beans from
the application context, you are able to write and configure your Struts actions in
much the same way as you would in a non-Spring Struts application.

 But this approach also has its negative side. Most notably, your action classes
will directly use Spring-specific classes. This tightly couples your Struts action code
with Spring, which may not be desirable. Also, the action class is responsible for
looking up references to Spring-managed beans. This is in direct opposition to
the notion of dependency injection (DI).

 For those reasons, Spring offers another way to integrate Struts and Spring.
The other approach lets you write Struts action classes that are completely
unaware they are integrated with Spring. And you can use Spring’s dependency
injection to inject service beans into your actions so that they don’t have to look
them up for themselves.

16.1.3 Delegating to Spring-configured actions

As you may recall from chapter 8, Acegi security employs several servlet filters to
secure web applications. But so that Spring can inject dependencies into those fil-
ters, Acegi provides FilterToBeanProxy, a servlet filter that doesn’t perform any
real functionality itself but instead delegates to a Spring-configured filter bean.

 As it turns out, the delegation approach used in Acegi can be applied equally
well when integrating Struts and Spring. To accommodate Struts action delega-
tion, Spring comes with DelegatingRequestProcessor, a replacement for Struts’s
default RequestProcessor that looks up Struts actions from the Spring applica-
tion context.

 The first step in Struts-to-Spring delegation is to tell Struts that we want to use
DelegatingRequestProcessor instead of its normal request processor. To do this,
we add the following XML to the struts-config.xml:

Delegates to
rantService bean

630 CHAPTER 16

Integrating with other web frameworks
<controller processorClass=
 "org.springframework.web.struts.DelegatingRequestProcessor"/>

Optionally, if you are using Tiles in your Struts applications, you’ll want to use
DelegatingTilesRequestProcessor instead:

<controller processorClass=
 "org.springframework.web.struts.
 ➥ DelegatingTilesRequestProcessor"/>

DelegatingRequestProcessor (or its Tiles-savvy cohort, DelegatingTilesRe-
questProcessor) tells Struts to automatically send action request to Struts actions
that are configured in the Spring application context, as shown in figure 16.2.
The way it finds the Spring-configured action depends on how you configure the
action in struts-config.xml.

In its simplest form, you can configure an <action> element in struts-config.xml
like this:

<action path="/rantsForVehicle" />

When a request comes in for /rantsForVehicle.do, DelegatingRequestProces-
sor will automatically refer to the Spring application context, looking for a bean
named /rantsForVehicle—the same as the action’s path. That means we’ll need
to wire the action as a bean in Spring. Let’s do that now.

Wiring actions in Spring
Here’s where the real benefit of using DelegatingRequestProcessor comes in.
Rather than configure the RantsForVehicleAction in struts-config.xml (where it
is outside of Spring’s jurisdiction and can’t be injected), we will configure it in the
Spring application context (roadrantz-struts.xml) as follows:

<bean name="/rantsForVehicle"
 class="com.roadrantz.struts.RantsForVehicleAction">

Delegating
Request

Processor

Action
Servlet

Spring Application Context

Struts
Action

Request Request Request

Figure 16.2 DelegatingRequestProcessor sends requests from Struts’s
ActionServlet to a Struts Action class configured in the Spring application context.

Using Spring with Struts 631
 <property name="rantService" ref="rantService" />
</bean>

As you can see, RantsForVehicleAction is configured in Spring just like any
other bean. And, since it needs a RantService to do its job, we’ve obliged by wir-
ing it with a reference to the rantService bean.

 Take note of how the bean is named. Because DelegatingRequestProcessor
will look for a bean with the same name as the action’s path and because the path
contains a slash character, we had to use the name attribute to name the bean.
According to XML rules, the slash character is not allowed in an XML element’s id
attribute.

 If it seems odd to have the Spring bean named with the same name as the
Struts action’s path (or if that slash vexes you) then you may want to configure the
<action> element in struts-config.xml like this:

<action path="/rantsForVehicle"
 type="com.roadrantz.struts.RantsForVehicleAction" />

This <action> declaration looks more like conventional Struts in that the
action’s type is declared in the Struts configuration. The big difference is that
instead of Struts taking responsibility for instantiating and managing RantsFor-
VehicleAction, DelegatingRequestProcessor will rely on Spring to manage
the action as a bean. When a request comes in for /rantsForVehicle,
DelegatingRequestProcessor will ask the Spring application context for a bean
whose type is com.roadrantz.struts.RantsForVehicleAction and send the
request to that bean.

 Now we’ve wired the action in Spring and configured it in struts-config.xml.
The only thing left to do is to tweak the RantsForVehicleAction class so that it
may receive the injected RantService bean, instead of having to look it up itself.

Implementing the Spring-configured Struts action
The dependency-injected version of RantsForVehicleAction isn’t much different
from what we showed you in listing 16.1. In listing 16.2 RantsForVehicleAction
had to directly use the application context to retrieve the RantService bean. But
as you can see in listing 16.3, that’s no longer necessary.

package com.roadrantz.struts;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.apache.struts.action.Action;
import org.apache.struts.action.ActionForm;

Listing 16.3 A Spring-injected RantsForVehicleAction

632 CHAPTER 16

Integrating with other web frameworks
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
import com.roadrantz.domain.Vehicle;
import com.roadrantz.service.RantService;

public class RantsForVehicleAction extends Action {
 public ActionForward execute(
 ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
 throws Exception {

 VehicleForm vehicleForm = (VehicleForm) form;
 Vehicle vehicle = vehicleForm.getVehicle();

 request.setAttribute("rants",
 rantService.getRantsForVehicle(vehicle));

 return mapping.findForward("rantList");
 }

 private RantService rantService;
 public void setRantService(RantService rantService) {
 this.rantService = rantService;
 }
}

Because RantsForVehicleAction is configured in Spring, it is given a RantSer-
vice through the setRantService() method.

16.1.4 What about Struts 2?

Struts is dead. Long live Struts 2!
 If you’re a fan of Struts, you’re probably aware that there’s a change coming to

the Struts framework. Struts 2 (or Struts Action Framework, as it’s sometimes
referred to) is a completely different approach to building MVC applications from
the Struts 1.x programming model. As I’m writing this, Struts 2 has recently
released its first general availability release, marking it as a production-ready web
framework.

 What’s interesting about Struts 2 is that it’s mostly a rebranding of another
popular web framework. According to the Struts 2 website (http://struts.
apache.org/2.x/): “Apache Struts 2 was originally known as WebWork 2. After
working independently for several years, the WebWork and Struts communities
joined forces to create Struts 2. This new version of Struts is simpler to use and
much closer to how Struts was always meant to be.”

 Identity crises notwithstanding, how can we integrate Spring with Struts 2?
Well, since Struts 2 is effectively the same as WebWork 2, we couldn’t ask for a

Injects
RantService

Working Spring into WebWork 2/Struts 2 633
better segue into the next section. Coming up next, we’ll look at how to integrate
Spring with WebWork 2 (and Struts 2).

16.2 Working Spring into WebWork 2/Struts 2

WebWork is an open source web framework from Open Symphony that has been
popular for quite some time. Despite its name, WebWork is actually a service invo-
cation framework that is not specific to just web applications. In its simplest form,
WebWork is based around general-purpose actions. These actions process requests
and then return a String that indicates the next step in the request chain. This
could be another action or a view. However, nothing about this is web specific.

 Nevertheless, for our purposes we will be discussing WebWork in the context of
web applications. We’re going to assume that you are already familiar with Web-
Work and that you’re reading this section to see how you can use Spring with your
WebWork applications. Therefore, we’ll only cover just enough WebWork to
accommodate the integration with Spring. For a more detailed coverage of Web-
Work, I highly recommend WebWork in Action (Manning, 2005).

 Let’s pretend that we had written the web layer of the RoadRantz application
using WebWork instead of Spring MVC. In the Spring MVC version of RoadRantz,
we wrote RantsForDayController (listing 13.8), which produced a list of rants
that were posted on a particular month, day, and year. In the WebWork version,
we would instead write RantsForDayAction, as shown in listing 16.4.

package com.roadrantz.webwork;
import java.util.Date;
import java.util.List;
import com.opensymphony.xwork.Action;
import com.roadrantz.domain.Rant;
import com.roadrantz.service.RantService;

public class RantsForDayAction implements Action {
 private int month;
 private int day;
 private int year;
 private List<Rant> rants;

 public String execute() throws Exception {
 Date date = new Date(month, day, year);

 rants = rantService.getRantsForDay(date);

 return SUCCESS;
 }

Listing 16.4 A WebWork implementation of a RoadRantz feature

Delegates to
RantService

634 CHAPTER 16

Integrating with other web frameworks
 public List<Rant> getRants() {
 return rants;
 }

 public void setDay(int day) {
 this.day = day;

 }

 public void setMonth(int month) {
 this.month = month;
 }

 public void setYear(int year) {
 this.year = year;
 }

 private RantService rantService;
 public void setRantService(RantService rantService) {
 this.rantService = rantService;
 }
}

For the most part, RantsForDayAction represents a typical WebWork action
implementation. Instead of being given request parameters through a command
object as with Spring’s command controllers or through an ActionForm as in
Struts, WebWork actions are given request parameters through properties. In
RantsForDayAction, the month, day, and year properties are expected to have
been populated from request parameters by the time that the execute() method
is invoked.

 The execute() method is where all of the action takes place. Here, the month,
day, and year properties are pulled together to construct a Date, which is then
used to retrieve a list of rants from the rantService property.

 The setRantService() method is the clue as to how rantService is set. The
presence of this method indicates that RantsForDayAction expects the rantSer-
vice property to be injected with some implementation of RantService. The big
question is how we can get Spring to inject into a WebWork action.

 Although there are a number of ways to integrate Spring with WebWork,
depending on which version of WebWork you’re using, we will be focusing our
attention on the latest version of WebWork—version 2.2.3.

 Originally, the WebWork project maintained its own dependency injection
container. But as of WebWork 2.2, the WebWork team has deprecated their own
DI container in favor of Spring. Because of the WebWork team’s commitment to
Spring, integrating Spring with WebWork involves only three very simple steps:

Injects
RantService

Working Spring into WebWork 2/Struts 2 635
1 Add the Spring JARs to the application’s classpath.

2 Configure a Spring ContextLoaderListener in web.xml.

3 Configure WebWork to use Spring as an object factory.

The first step is almost self-explanatory. Just make sure that spring.jar and any
other JARs that your Spring beans require are available in the /WEB-INF/lib direc-
tory of the deployed web application so that WebWork can use them.

 We talked about how to configure a ContextLoaderListener in chapter 13.
For a refresher, turn back to section 13.1.2 to see how ContextLoaderListener
loads a Spring application context.

 The last step is a simple matter of adding the following line to the web-
work.properties file:

webwork.objectFactory=spring

For Struts 2 projects, the configuration is very similar, with only a slight change.
The configuration file is struts.properties and the line should read as follows:

struts.objectFactory=spring

This line of configuration tells WebWork/Struts 2 to try to retrieve objects from
the Spring container before creating them itself. This means that whenever Web-
Work needs an instance of an action class, it will first look in the Spring applica-
tion context for the action, as shown in figure 16.3. If it’s found then it will use the
Spring-managed action. Otherwise, WebWork will instantiate the action itself.
In the case of RantsForDayAction, we’ll configure it in the Spring application
context like this:

<bean id="rantsForDayAction"
 class="com.roadrantz.webwork.RantsForDayAction"
 scope="prototype">
 <property name="rantService" ref="rantService" />
</bean>

Notice that the scope attribute has been set to prototype. That’s because Web-
Work expects a fresh instance of the action to handle each request. That makes

Spring Application Context

RantsForDay
Action

Filter
Dispatcher

getBean("rantsForDayAction")

Figure 16.3
By using the spring object
factory, WebWork/Struts 2
will retrieve its action classes
from the Spring application
context instead of trying to
create them itself.

636 CHAPTER 16

Integrating with other web frameworks
WebWork actions function very much like Spring MVC’s throwaway controllers. In
fact, if you compare the code from listing 16.4 with the throwaway controller
implementation in listing 13.8, you’ll find that they’re not very different.

 On the WebWork, side, we’ll need to declare an <action> element in
xwork.xml:

<action name="rantsForDay" class="rantsForDayAction">
 <result>dayRants.jsp</result>
</action>

Unlike a typical WebWork <action> configuration, however, the class attribute
doesn’t contain a class name at all. Instead, it is configured with the name of the
Spring-managed bean that holds the action implementation. When WebWork has
to handle the rantsForDay action, it will ask Spring for an instance of the bean
declared with the name rantsForDayAction.

 Although Struts and WebWork are significant web frameworks, a new breed of
component-based web frameworks is capturing the interest of Java web develop-
ers. One of the most intriguing of these is Tapestry, which uses plain HTML
instead of JSP as its template language. Let’s see how to use Spring in a Tapestry
application.

16.3 Integrating Spring with Tapestry

Tapestry is another MVC framework for the Java platform that is quite popular.
One of the most appealing features of Tapestry is that instead of relying on JSP,
Velocity, or some other templating solution, Tapestry uses plain HTML as its tem-
plate language.

 While it may seem peculiar that Tapestry uses a static markup language to drive
dynamically created content, it’s actually a practical choice. Tapestry components
are placed within an HTML page using any HTML tag you want to use (is
often the tag of choice for Tapestry components). The HTML tag is given a jwcid
attribute, which references a Tapestry component definition. For example, con-
sider the following simple Tapestry page:

<html>
 <head><title>Simple page</title></head>
 <body>
 <h2>Simple header</h2>
 </body>
</html>

Integrating Spring with Tapestry 637
When Tapestry sees the jwcid attribute, it will replace the tag (and its con-
tent) with the HTML produced by the simpleHeader component. The nice thing
about this approach is that page designers and Tapestry developers alike can eas-
ily understand this HTML template. Even without being processed by the Tapestry
engine, Tapestry templates load cleanly into any HTML design tool or browser.

 In this section, we’re going to look into how to use Spring and Tapestry
together so that Tapestry pages and components can use Spring-managed beans.
We’re going to assume that you are already familiar with Tapestry. If you need to
learn more about Tapestry, I recommend Tapestry in Action (Manning, 2004).

 There are actually two different ways of integrating Spring with Tapestry,
depending on whether you are using Tapestry 3 or Tapestry 4. Because there are
still a lot of projects being developed on Tapestry 3, we’ll start by briefly covering
the integration of Spring with Tapestry 3 before looking into the latest integration
with Tapestry 4.

16.3.1 Integrating Spring with Tapestry 3

Tapestry’s engine maintains an object (known as global) that is a simple con-
tainer for any objects you want shared among all Tapestry sessions. It is a
java.util.HashMap by default.

 The key strategy behind Tapestry-Spring integration is loading a Spring appli-
cation context into Tapestry’s global object. Once it’s in global, all pages can
have access to Spring-managed beans by retrieving the context from global and
calling getBean().

 To load a Spring application context into Tapestry’s global object, you’ll need
to replace Tapestry’s default engine (org.apache.tapestry.engine.Base-
Engine) with a custom engine. Unfortunately, Spring does not come with such a
replacement Tapestry engine. This leaves it up to us to write it for ourselves (even
though it’s virtually the same for any Spring/Tapestry hybrid application).

 SpringTapestryEngine (listing 16.5) extends BaseEngine to load a Spring
application context into the Tapestry global property.

package com.springinaction.tapestry;
import javax.servlet.ServletContext;
import org.apache.tapestry.engine.BaseEngine;
import org.apache.tapestry.request.RequestContext;
import org.springframework.context.ApplicationContext;
import org.springframework.web.context.support.
 ➥ WebApplicationContextUtils;

Listing 16.5 A replacement Tapestry engine that loads a Spring context into global

638 CHAPTER 16

Integrating with other web frameworks
public class SpringTapestryEngine extends BaseEngine {
 private static final String SPRING_CONTEXT_KEY = "springContext";

 protected void setupForRequest(RequestContext context) {
 super.setupForRequest(context);

 Map global = (Map) getGlobal();

 ApplicationContext appContext =
 (ApplicationContext)
 global.get(SPRING_CONTEXT_KEY);

 if (appContext == null) {
 ServletContext servletContext =
 context.getServlet().getServletContext();
 appContext = WebApplicationContextUtils.
 getWebApplicationContext(servletContext);

 global.put(SPRING_CONTEXT_KEY, appContext);
 }
 }
}

SpringTapestryEngine (see figure 16.4) first checks global to see if the Spring
context has already been loaded. If so then there is nothing to do. But if global
doesn’t already have a reference to the Spring application context, it will use
WebApplicationContextUtils to retrieve a web application context. It then
places the application context into global, under the name springContext, for
later use.

 Because SpringTapestryEngine uses WebApplicationContextUtils to look
up the application context, you’ll need to be sure to load the context into your
web application’s servlet context using ContextLoaderListener. Refer to
section 13.1.2 in chapter 13 for details on using ContextLoaderListener.

 Note that there is one limitation of SpringTapestryEngine as it is written. It
assumes that the global object is a java.util.Map object. This is usually not a

Loads
context

Stores context
in Tapestry’s
Global

Tapestry's
global

Variable
SpringTapestryEngine

Spring
Application

Context

Figure 16.4 SpringTapestryEngine, which replaces Tapestry’s default
engine, places the Spring application context into global, thereby making
the entire Spring context available to all Tapestry pages and components.

Integrating Spring with Tapestry 639
problem as Tapestry defaults global to be a java.util.HashMap. But if your
application has changed this by setting the org.apache.tapestry.global-class
property, SpringTapestryEngine will need to change accordingly.

 The last thing to do is to replace the default Tapestry engine with SpringTap-
estryEngine. This is accomplished by configuring the engine-class attribute of
your Tapestry application:

<application name="RoadRantz"
 engine-class="com.springinaction.tapestry.SpringTapestryEngine">
…
</application>

At this point, the Spring application context is available in Tapestry’s global
object, ready to be used to dispense Spring-managed service beans. Let’s have a
look at how to wire those service beans into a Tapestry page specification.

Loading Spring beans into Tapestry pages
Suppose that we had implemented the web layer of the RoadRantz application
using Tapestry instead of Spring MVC. In a Tapestry application, all pages have a
page class that defines the functionality of the page. In a Tapestry implementation
of RoadRantz, the homepage may be backed by the HomePage class in listing 16.6.

package com.roadrantz.tapestry;
import java.util.List;
import org.apache.tapestry.html.BasePage;
import com.roadrantz.domain.Rant;
import com.roadrantz.service.RantService;

public abstract class HomePage extends BasePage {
 public abstract RantService getRantService();

 public abstract Rant getRant();
 public abstract void setRant(Rant rant);

 public List getRants() {
 return getRantService().getRecentRants();
 }
}

The key thing to note in listing 16.6 is that HomePage uses a RantService to
retrieve the list of recent rant entries. But where does this RantService come
from? To understand how HomePage gets a RantService, you first must under-
stand how Tapestry populates page properties.

Listing 16.6 A Tapestry 3 version of the RoadRantz homepage

Getter-injects
getRantService()

Delegates to
RantService

640 CHAPTER 16

Integrating with other web frameworks
 You’ve no doubt noticed that the getRantService() method is abstract, which
implies HomePage must be subclassed for getRantService() to be given a con-
crete implementation. But don’t worry—you won’t have to subclass HomePage.
Tapestry will handle that for you.

 When populating page properties, Tapestry uses a form of getter injection.
Much like Spring’s getter injection capabilities that we discussed in chapter 3,
when Tapestry loads HomePage, it will create a subclass of it with a concrete imple-
mentation of getRantService() that will return a specific value.

 The value that will be returned by getRantService() will be decided by Home-
Page’s page specification—home.page:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE page-specification
 PUBLIC "-//Apache Software Foundation//
 ➥ Tapestry Specification 3.0//EN"
 "http://jakarta.apache.org/tapestry/dtd/Tapestry_3_0.dtd">

<page-specification
 class="com.roadrantz.tapestry.HomePage">
 <property-specification name="rantService"
 type="com.roadrantz.service.RantService">
 global.springContext.getBean("rantService")
 </property-specification>

 <property-specification name="rant"
 type="com.roadrantz.domain.Rant"/>
</page-specification>

The <property-specification> entry in home.page tells Tapestry to retrieve the
value of the rantService property by calling getBean() on the Spring context
that was placed in global. Effectively, Tapestry will implement the getRantSer-
vice() method of HomePage to return the value in the <property-specifica-
tion> element.

 Now that Tapestry knows how to implement the getRantService() method, it
can be used in the getRants() method to retrieve a list of recently posted rants.
Consequently, the list of rants can be displayed by placing the following in
home.html:

 <span jwcid="@Foreach" source="ognl:rants"
 value="ognl:rant">

 --

Integrating Spring with Tapestry 641
A nice thing about how the Tapestry-Spring integration works is that neither the
Tapestry page class nor the HTML template is aware that Spring is involved. The
only place where Spring is mentioned is in the page specification file.

 Now that you’ve seen how to integrate Spring into a Tapestry 3 application,
let’s move forward a bit and see how Spring can work with the latest version of
Tapestry, Tapestry 4.

16.3.2 Integrating Spring with Tapestry 4

Tapestry 3 is a fantastic framework for building web applications. But if you’ve
worked with it much, you know that it demands that you write quite a bit of XML
in the form of page and component specifications. Among other improvements,
Tapestry 4 takes exploits Java 5 annotations to greatly reduce the amount of XML
required in a Tapestry-based application.

 Moreover, integrating Spring into a Tapestry 4 application has been greatly
simplified, thanks largely to a project called Diaphragma. According to its homep-
age, Diaphragma’s aim is to “provide many excellent components and extensions
for [the] Tapestry framework.” At the time I’m writing this, however, the only
extension offered by Diaphragma is one that simplifies integration with Spring. As
fortune would have it, that’s exactly what we need!

 The first step to using Spring in your Tapestry 4 applications is to download
the tapestry-spring.jar file from the Diaphragma page on SourceForge: http://
sourceforge.net/projects/diaphragma. Once you have the JAR file, make sure
that it’s in your application’s classpath by placing it in the /WEB-INF/lib directory
of the deployed application.

 Next you’ll need to make sure that you have the Spring application context
loaded. Just as with integrating Spring and Tapestry 3, this involves placing a Con-
textLoaderListener in the application’s web.xml file. Refer to section 13.1.2 in
chapter 13 for details on how to configure ContextLoaderListener.

 Now you’re ready to start injecting Spring-configured beans into your Tapestry
pages and components. The HomePage class in listing 16.7 illustrates the easiest
way to do this.

package com.roadrantz.tapestry;
import java.util.List;
import org.apache.tapestry.annotations.InjectObject;
import org.apache.tapestry.html.BasePage;
import com.roadrantz.domain.Rant;
import com.roadrantz.service.RantService;

Listing 16.7 Using annotations to inject Spring beans into a Tapestry page

642 CHAPTER 16

Integrating with other web frameworks
public abstract class HomePage extends BasePage {
 @InjectObject("spring:rantService")
 public abstract RantService getRantService();

 public abstract Rant getRant();
 public abstract void setRant(Rant rant);
 public List<Rant> getRants() {
 return getRantService().getRecentRants();
 }
}

You’ll notice that there’s virtually no difference between listing 16.7 and the Tap-
estry 3 version in listing 16.6. In fact, Tapestry 3 isn’t much different from Tapes-
try 4 with regard to developing page-backing classes.

 However, notice that there’s one small addition to listing 16.7. The getRant-
Service() method has been annotated with @InjectObject. This annotation tells
Tapestry that the getRantService() should be injected with some object. The
value given to the annotation specifies the name of the object to be injected. In
this case, the object name is prefixed with the spring namespace, indicating that
Tapestry should retrieve the rantService bean from the Spring application con-
text and use it as the return value of getRantService().

 Just because Tapestry 4 encourages the use of Java 5 annotations, that doesn’t
mean you’re out of luck if you’ve not made the move to Java 5 yet. Instead of
using the @InjectObject annotation in the page-backing class, you can optionally
configure the injection of getRantService() in the page specification XML file:

<page-specification
 class="org.apache.tapestry.html.BasePage">
…
 <inject property="rantService"
 object="spring:rantService" />
…
</page-specification>

The <inject> element performs the same job as the @InjectObject annotation.
That is, it injects a property with some value. In this case, the rantService prop-
erty (represented by the abstract getRantService() method) will be injected with
the rantService bean from the Spring application context.

 Tapestry is just one of several component-based web application frameworks.
JavaServer Faces (JSF) is another such framework that carries the distinction of
being defined as a Java standard. Coming up in the next section, we’re going to
see how to use Spring with JSF.

Retrieves RantService
from Spring

Putting a face on Spring with JSF 643
16.4 Putting a face on Spring with JSF

Relatively speaking, JavaServer Faces (JSF) is a newcomer in the space of Java web
frameworks. But it has a long history. First announced at JavaOne in 2001, the
JSF specification made grand promises of extending the component-driven
nature of Swing and AWT user interfaces to web frameworks. The JSF team pro-
duced virtually no results for a very long time, leaving some (including me) to
believe it was vaporware. Then in 2002, Craig McClanahan (the original creator
of Jakarta Struts) joined the JSF team as the specification lead and everything
turned around.

 After a long wait, the JSF 1.0 specification was released in February 2004 and
was quickly followed by maintenance 1.1 specification in May 2004 and another
specification update in August 2005. Now JSF is being promoted as the standard
Java web development platform and has been adopted by a large number of devel-
opers. With so much attention being given to JSF, it would seem appropriate for
integration solutions to exist for JSF and Spring.

 If you’re already familiar with JSF, you know that JSF has built-in support for
dependency injection. You may be wondering why you should bother integrating
Spring into JSF. It’s true that JSF’s support for setter injection is not all that differ-
ent from that of Spring. But remember that Spring offers more than just simple
dependency injection. Spring can bring a lot of value-add to JSF. Spring’s other
features (such as declarative transactions, security, remoting, etc.) could come in
handy in a JSF application.

 Furthermore, even though JSF is intended as a presentation layer framework,
service- and data access–layer components are frequently declared in a JSF config-
uration file. This seems somewhat inappropriate. Wouldn’t it be better to separate
the layers, making JSF responsible for presentation stuff and Spring responsible
for the rest of the application?

 In this section, I’ll show you how to expose Spring-managed beans to JSF. I’m
assuming that you are already familiar with JSF. If you are new to JSF or just need a
refresher, I recommend that you have a look at JavaServer Faces in Action (Man-
ning, 2004).

 Before I can show you how Spring integrates with JSF, it’s important to under-
stand how JSF resolves variables on its pages without Spring. Therefore, let’s have
a quick look at how JSF works without Spring and then we’ll see how Spring can be
used to provide beans for use in JSF pages.

644 CHAPTER 16

Integrating with other web frameworks
16.4.1 Resolving JSF-managed properties

Imagine that before you had ever heard of Spring, you had already developed the
RoadRantz application using JSF in the web layer. As part of the application, you
have created a form that is used to register new motorists. The following excerpt
from the JSF-enabled registerMotorist.jsp file shows how JSF binds the variables of
a Motorist object to the fields in the form:

<h:form>
 <h2>Register Motorist</h2>
 <h:panelGrid columns="2">
 <f:verbatim>E-mail:</f:verbatim>
 <h:inputText value="#{motorist.email}" required="true"/>
 <f:verbatim>Password:</f:verbatim>
 <h:inputText value="#{motorist.password}" required="true"/>

 <f:verbatim>First Name:</f:verbatim>
 <h:inputText value="#{motorist.firstName}" required="true"/>

 <f:verbatim>Last Name:</f:verbatim>
 <h:inputText value="#{motorist.lastName}" required="true"/>
….
 </h:panelGrid>
 <h:commandButton id="submit" action="#{motorist.register}"
 value="Register Motorist"/>
</h:form>

Notice that the action parameter of the <h:commandButton> is set to #{motor-
ist.register}. Unlike many other MVC frameworks (including Spring’s MVC), JSF
doesn’t use a separate controller object to process form submissions. Instead, JSF
passes control to a method in the model bean. In this case, the model bean is a
Motorist. When the form is submitted, JSF will call the register() method of the
motorist bean to process the form. The register() method is defined as follows:

public String register() {
 try {
 rantService.addMotorist(this);
 } catch (Exception e) {
 return "error";
 }

 return "success";
}

To keep the Motorist bean as simple as possible, the register() method simply
delegates responsibility to the addMotorist() method of a RantService imple-
mentation. But where does the rantService property get set?

Putting a face on Spring with JSF 645
 That’s a very good question. Internally, JSF uses a variable resolver to locate
beans that are managed within the JSF application. The default JSF variable
resolver looks up variables declared within the JSF configuration file (faces-con-
fig.xml). More specifically, consider the following declaration of the motorist
bean in faces-config.xml for the answer to where the rantService property
comes from:

<managed-bean>
 <managed-bean-name>motorist</managed-bean-name>
 <managed-bean-class>
 com.roadrantz.domain.Motorist
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>rantService</property-name>
 <value>#{rantService}</value>
 </managed-property>
</managed-bean>

Here the motorist bean is declared as a request-scoped JSF-managed bean. But
take note of the <managed-property> element. JSF supports a simple implementa-
tion of setter injection. #{rantService} indicates that the rantService property
is being wired with a reference to a bean named rantService.

 In a conventional JSF application (e.g., one where Spring is not involved), the
rantService bean would be declared in faces-config.xml as a JSF-managed bean:

<managed-bean>
 <managed-bean-name>rantService</managed-bean-name>
 <managed-bean-class>
 com.roadrantz.service.RantServiceImpl
 </managed-bean-class>
 <managed-bean-scope>session</managed-bean-scope>
 <managed-property>
 <property-name>rantDao</property-name>
 <value>#{rantDao}</value>
 </managed-property>
</managed-bean>

Once again, dependency injection is employed in the rantService bean—the
rantDao property is wired with a reference to a bean named rantDao. And if we
were to continue this exploration of faces-config.xml, we’d find that the rant-
Dao bean is injected with a javax.sql.DataSource, which itself is also a JSF-man-
aged bean.

 Now that you know how JSF resolves variables on its pages without Spring, let’s
add Spring to the mix so that non-presentation-layer beans can be managed in
Spring and take advantage of the full gamut of Spring features.

646 CHAPTER 16

Integrating with other web frameworks
16.4.2 Resolving Spring beans

For integration with Spring, we would like JSF to resolve its variables from the
Spring application context. To do that, we’ll need to replace the default JSF vari-
able resolver with a Spring-aware variable resolver.

 Spring’s DelegatingVariableResolver is just such a variable resolver. Rather
than resolve variables only from among JSF’s managed beans, DelegatingVari-
ableResolver also looks in the Spring application context. It is configured in
faces-config.xml like this:

<application>
 <variable-resolver>
 org.springframework.web.jsf.DelegatingVariableResolver
 </variable-resolver>
</application>

When JSF needs to resolve a variable, DelegatingVariableResolver will first look
to the original variable resolver. If a JSF-managed bean can be found that fits the
bill then it will be used. If not, however, DelegatingVariableResolver will then
turn to the Spring application context to see if it can find a bean whose name
matches the JSF variable name.

 For DelegatingVariableResolver to be able to resolve variables as Spring-
managed beans, we’ll need to make sure that the Spring application context is
loaded. To do that we’ll need to configure a ContextLoaderListener in the appli-
cation’s web.xml file. For more information on how to configure ContextLoader-
Listener, please turn to section 13.1.2 in chapter 13.

 With DelegatingVariableResolver in place and the application context
loaded, you are now ready to wire your service and data access layer beans in
Spring and access them from JSF.

16.4.3 Using Spring beans in JSF pages

DelegatingVariableResolver makes the resolving of Spring-managed beans
transparent in JSF. To illustrate, recall that the JSF-managed motorist bean is
injected with a reference to the rantService bean using the following <managed-
property> declaration in faces-config.xml:

<managed-property>
 <property-name>rantService</property-name>
 <value>#{rantService}</value>
</managed-property>

Even though the rantService bean is now going to reside in the Spring context,
nothing needs to change about the existing declaration of the motorist bean.

Putting a face on Spring with JSF 647
When it comes time to inject the rantService property of the motorist bean, it
asks DelegatingVariableResolver for the reference to the rantService bean.
DelegatingVariableResolver will first look in the JSF configuration for the
bean. When it can’t find it, it will then look in the Spring application context, as
shown in figure 16.5.

 But it will only find the rantService bean in the Spring context if you declare
it there. So, instead of registering the rantService bean as a <managed-bean> in
faces-config.xml, place it in the Spring context definition file as follows:

<bean id="rantService"
 class="com.roadrantz.service.RantServiceImpl">
 <property name="rantDao" ref="rantDao" />
</bean>

Notice that this declaration of rantService is no different from how it would be
declared in an application that uses Spring MVC. In fact, from the service layer to
the data access layer, you will declare all of your application beans in the Spring
application context exactly the same as you would if your application were fronted
by Spring MVC. DelegatingVariableResolver will find them as though they are
part of the JSF configuration.

 Resolving Spring beans as JSF variables is the key part of the JSF-Spring integra-
tion. But maybe you don’t want to pick and choose Spring beans to expose as JSF-
managed beans. Instead, it may be more convenient for JSF to have wholesale

Spring Application Context

RantService
Delegating

Variable
Resolver

JSF Configuration
<managed-property>
 <property-name>
 rantService
 </property-name>
 <value>#{rantService}</value>
</managed-property>

resolve "rantService"

getBean("rantService")

Figure 16.5 After plugging Spring’s DelegatingVariableResolver into JSF,
JSF variables are resolved from Spring beans if they can’t be found in the JSF
configuration.

648 CHAPTER 16

Integrating with other web frameworks
access to the Spring application context. For that, let’s look at another JSF variable
resolver that lets JSF access the Spring application context itself.

16.4.4 Exposing the application context in JSF

It’s worth mentioning that Spring offers another option for integration with JSF.
Whereas DelegatingVariableResolver transparently resolves JSF variables from
among all of the beans in a Spring application context, WebApplicationContext-
VariableResolver only resolves one variable.

 What good can WebApplicationContextVariableResolver possibly be if it
only resolves a single variable? Well, it can be very handy if that one variable is the
Spring application context itself!

 You can configure JSF to use WebApplicationContextVariableResolver by
placing the following <variable-resolver> entry in faces-config.xml:

<variable-resolver>
 org.springframework.web.jsf.WebApplicationContextVariableResolver
</variable-resolver>

With WebApplicationContextVariableResolver in place, your JSF pages have
direct access to the Spring application context through a variable named webAp-
plicationContext.

 We’ve seen how Spring integrates into four of the most popular web frame-
works. This opens up our set of options for web development with Spring, making
it possible to choose the most appropriate web framework for the project. Now
we’ll turn our attention to the very exciting topic of Ajax, and how to expose
Spring objects.

16.5 Ajax-enabling applications in Spring with DWR

Traditionally, web applications have involved a back-and-forth conversation
between the user and the server. The user sends a request to the server by either
clicking a link or submitting a form. The server responds in kind by returning a
page that represents the state of the application after the request is processed.

 Contrasted with rich desktop applications, browser-based applications have
been much less dynamic. Where a desktop application can update individual com-
ponents as needed to communicate the state of the application with the user, web
applications have only been able to respond a page at a time. This is a throwback
to the browser’s original purpose: to display documents.

 The web browser has come a long way since the days of the National Center for
Supercomputing Applications (NCSA) Mosaic. In addition to displaying simple

Ajax-enabling applications in Spring with DWR 649
documents, modern web browsers are capable of dynamic behavior. For several
years, Dynamic HTML (DHTML), the marriage of JavaScript, HTML, and Cascad-
ing Style Sheets, has enabled flashier looking web applications that mimic desktop
application behavior.

 Nevertheless, even though these DHTML applications present themselves as
more dynamic than traditional web applications, until recently they were still
page based and required a round-trip to the server to set and retrieve application
state. While DHTML could dynamically alter the appearance of a web page, the
missing piece was still a way to communicate with the server without reloading
the web page.

 In recent years, however, there has been a near revolution in how browser-
based applications are developed. In the 5.0 version of Internet Explorer,
Microsoft included an ActiveX component called XMLHttpRequest. XMLHttp-
Request can be used with JavaScript to communicate with the server in XML mes-
sages. This technique for browser-to-server communication has been named Ajax,
or Asynchronous JavaScript and XML.

 When Ajax is mixed with DHTML, very dynamic web applications can be built
that blur the lines between desktop applications and web applications. A browser-
based application can communicate with the server using Ajax and then use
DHTML to alter the page’s appearance to reflect the current application state.
Google’s Gmail, Calendar, and Docs applications are prime examples of how Ajax
can be used to build extremely dynamic web applications.

 Even though XMLHttpRequest got its start in Internet Explorer 5.0, it’s now a
common implement in all modern web browsers, including Internet Explorer,
Mozilla Firefox, and Safari. This means that Ajax-capable web applications can be
developed to target virtually every browser on every desktop.

 Because they’re often used in tandem, many developers have lumped DHTML
and Ajax together under the umbrella name of Ajax. But at its core, Ajax is a
mechanism for communication between a web page and the server. In this section
we’re going to focus our attention on the communication aspect of Ajax, looking
at how to use an Ajax toolkit known as DWR to expose Spring beans as Ajax-
remoted objects.

 If you’d like to read more about Ajax, then there’s no shortage of books on the
topic. I recommend that you have a look at Ajax in Action (Manning, 2006), Proto-
type and Scriptaculous in Action (Manning, 2007), Ajax in Practice (Manning, 2007),
or Pragmatic Ajax (Pragmatic Bookshelf, 2006).

650 CHAPTER 16

Integrating with other web frameworks
16.5.1 Direct web remoting

Almost as quickly as Ajax became the buzziest of buzzwords in software develop-
ment, several frameworks emerged to simplify Ajax development. Many of them
focus on providing DHTML widgets for dressing up web applications. But one
framework, known as DWR, has stayed true to the central purpose of Ajax: com-
munication between a web page and the server.

 DWR, which is short for Direct Web Remoting, is a Java-based Ajax framework
that lets you access virtually any server-side Java object through JavaScript. DWR
abstracts XMLHttpRequest away so that invoking methods on a server-side Java
object is as simple as invoking methods on a client-side JavaScript object.

 In a sense, DWR is more of a remoting technology, akin to the remoting
options presented in chapter 8, than it is a web technology. What separates DWR
from those other remoting technologies is where its client resides. Whereas the
clients of RMI, HTTP invoker, Hessian, and Burlap are other applications, the cli-
ent of a DWR-exported object is JavaScript within a web page.

 You can learn more about DWR from its homepage at https://dwr.dev.java.net.
From there you can download the latest version of DWR. For the examples in this
chapter, I’m using DWR 2.0.1

 We’ll look at several ways of using DWR to export Spring beans to be invoked
from JavaScript. But before we look at the DWR-Spring connection, let’s start with
the basics. To set the stage for DWR and Spring integration, let’s begin by config-
uring DWR sans Spring.

Basic DWR configuration
In its most basic configuration, DWR exports remote Java objects to JavaScript
through a servlet—DwrServlet to be precise. Therefore, the first thing we’ll need
to do is add DwrServlet to web.xml using the following <servlet> and <serv-
let-mapping> entries:

<servlet>
 <servlet-name>dwr</servlet-name>
 <servlet-class>
 org.directwebremoting.servlet.DwrServlet
 </servlet-class>
 <init-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>

1 As I write this, DWR 2.0 isn’t final, but I’m hopeful that it will be by the time you read this. I’m actually
using DWR 2.0 milestone 4d.

Ajax-enabling applications in Spring with DWR 651
 </init-param>
</servlet>

<servlet-mapping>
 <servlet-name>dwr</servlet-name>
 <url-pattern>/dwr/*</url-pattern>
</servlet-mapping>

As configured here, the DwrServlet will respond to requests whose URL, relative
to the application’s context path, is /dwr/*. This is important to remember,
because it is through this URL that we’ll load JavaScript code generated by DWR.

 Also, notice that DwrServlet is configured with an <init-param> named
debug set to true. This setting turns on a helpful debugging feature that we’ll use
a little later. For production applications, however, you’ll want to remove this
parameter or set it to false.

Defining the remote objects
Now that DwrServlet is set up, we’re ready to export some objects to JavaScript.
But what objects should we export?

 To demonstrate DWR’s capabilities, let’s add a traffic report feature to the
RoadRantz application. After all, cranky motorists might be a bit less cranky if
they could only check traffic conditions before they hit the road!

 The user interface for the traffic report feature should prompt the user for a
zip code and produce a list of traffic incidents in or near the zip code. To further
constrain the results, the user should also be able to specify a zoom factor (how
large of an area relative to the zip code to include in the search) and a minimum
incident severity.

 At the heart of the traffic report feature is TrafficServiceImpl (listing 16.8),
a service class whose getTrafficInfo() method accepts a zip code, a zoom factor,
and a severity and produces a list of traffic incidents.

package com.roadrantz.traffic;
import java.io.InputStreamReader;
import java.net.URL;
import java.util.Iterator;
import com.sun.syndication.feed.synd.SyndEntryImpl;
import com.sun.syndication.feed.synd.SyndFeed;
import com.sun.syndication.io.SyndFeedInput;

public class TrafficServiceImpl
 implements TrafficService {

Listing 16.8 A traffic service implementation that looks up traffic data from an RSS
feed

652 CHAPTER 16

Integrating with other web frameworks
 private static final String ROOT_TRAFFIC_URL =
 "http://local.yahooapis.com/MapsService/rss/" +
 "trafficData.xml?";

 public TrafficServiceImpl() {}

 public TrafficInfo[] getTrafficInfo(
 String zipCode, int zoom, int severity) {
 try {
 URL feedUrl = new URL(ROOT_TRAFFIC_URL +
 "appid=" + appId +
 "&zip=" + zipCode +
 "&zoom=" + zoom +
 "&severity=" + severity +
 "&include_map=0");

 SyndFeedInput input = new SyndFeedInput();
 SyndFeed feed = input.build(
 new InputStreamReader(feedUrl.openStream()));

 TrafficInfo[] trafficInfo =
 new TrafficInfo[feed.getEntries().size()];

 int i=0;
 for (Iterator iter = feed.getEntries().iterator();
 iter.hasNext(); i++) {
 SyndEntryImpl entry = (SyndEntryImpl) iter.next();
 trafficInfo[i] = new TrafficInfo();
 trafficInfo[i].setSummary(entry.getTitle());
 trafficInfo[i].setDetails(
 entry.getDescription().getValue());
 }

 return trafficInfo;
 } catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace(System.out);
 return new TrafficInfo[] {};
 }
 }

 private String appId = "springinaction";
 public void setAppId(String appId) {
 this.appId = appId;
 }
}

As you can see, the real magic behind the getTrafficInfo() method is that it
refers to an RSS feed produced by Yahoo! to get its traffic data. We’re using the
Rome RSS reader (http://rome.dev.java.net) to read and parse the feed. Yahoo!’s
traffic data RSS feed is a free service, but it does require that you provide a valid

Uses Yahoo!’s
traffic RSS feed

Sets up URL

Opens feed

Gets feed info

Processes
entries

Ajax-enabling applications in Spring with DWR 653
application ID, configured in TrafficServiceImpl through the appId property.
By default, TrafficServiceImpl will use springinaction as its application ID
(which is a valid ID).

 What’s most remarkable about TrafficServiceImpl is that it has no idea that
we’re about to use it as a remote object that will be accessed from JavaScript. It’s
just a POJO. But as you’ll soon see, its destiny involves Ajax and will be influenced
by DWR.

The parameters to getTrafficInfo() are simple types. The return value, on the
other hand, is a bit more complex. It is an array of TrafficInfo objects. The
TrafficInfo class is a simple two-property bean, as shown in listing 16.9.

package com.roadrantz.traffic;

public class TrafficInfo {
 private String summary;
 private String details;

 public TrafficInfo() {}

 public String getDetails() { return details; }
 public void setDetails(String details) {
 this.details = details;
 }

 public String getSummary() { return summary; }
 public void setSummary(String summary) {
 this.summary = summary;
 }
}

In a traditional web application, built with Spring MVC, the user would enter this
information into a form and submit it to a Spring MVC controller. The controller,
which would be wired with a reference to TrafficServiceImpl, would call the

Listing 16.9 A TrafficInfo object contains summary and detail information about a
traffic incident

Get your own ID, please
In my examples, I’m letting you use my Yahoo! application ID (springinaction).
You’re welcome to use it while trying out these examples. But if you intend to use
Yahoo!’s services beyond the scope of this book, you should register for your
own ID at http://api.search.yahoo.com/webservices/register_application.

654 CHAPTER 16

Integrating with other web frameworks
getTrafficInfo() method to get an array of TrafficInfo items. Then it would
package the array in a ModelAndView object and send it to a JSP to render a new
page in the browser showing a list of traffic incidents.

 But this isn’t a traditional web example. We’re talking about Ajax and we’d
prefer to not load a completely new page in the browser. Instead, we’d like for the
list of traffic incidents to appear on the same page where the search criteria are
entered. To accomplish that, we’ll need DWR to export the TrafficServiceImpl
class as a JavaScript object.

Exporting the remote objects to JavaScript
The principal means of configuring DWR is by adding a file named dwr.xml in the
WEB-INF directory of the web application. Within dwr.xml we, among other
things, tell DWR about the Java classes that we want exported to JavaScript.

 Listing 16.10 shows the dwr.xml file that we’ll use to export the TrafficServi-
ceImpl class to JavaScript.

<!DOCTYPE dwr PUBLIC
 "-//GetAhead Limited//DTD Direct Web Remoting 1.0//EN"
 "http://www.getahead.ltd.uk/dwr/dwr10.dtd">

<dwr>
 <allow>
 <convert converter="bean"
 match="com.roadrantz.traffic.TrafficInfo"/>

 <create creator="new" javascript="Traffic">
 <param name="class" value=
 "com.roadrantz.traffic.TrafficServiceImpl" />
 <exclude method="setAppId"/>
 </create>
 </allow>
</dwr>

The first thing to notice in listing 16.10 is a <convert> element. DWR is able to
translate simple Java types (such as String and int) into equivalent types in Java-
Script, but complex types such as TrafficInfo are a bit more difficult. Therefore,
we’ve configured a “bean” converter to tell DWR to treat TrafficInfo as a basic
JavaBean when translating it into a JavaScript type. This simply means that the Jav-
aScript version of TrafficInfo will have the same properties as the Java version.

Listing 16.10 Exporting TrafficServiceImpl to JavaScript using a new creator in
dwr.xml

Converts TrafficInfo
from a bean

Exports
TrafficServiceImpl

Ajax-enabling applications in Spring with DWR 655
 The main item of interest in listing 16.10 is the <create> element. <create>
is used to tell DWR to expose a Java class as a remote object in JavaScript. Here
we’re using a basic new creator, which essentially means that the remote service
will be created by instantiating the class specified by the class parameter.
Because we want to be able to access TrafficServiceImpl in JavaScript, we’ve set
the value of the class parameter to the fully qualified class name. On the Java-
Script side, the remote object will be known as Traffic, as configured through
the javascript attribute.

 The only other important item is the <exclude> element within <create>.
While we want the JavaScript client to be able to invoke the getTrafficInfo()
method on TrafficServiceImpl, we do not want the client to be able to set the
application ID. Therefore, we’ve used <exclude> to exclude the setAppId()
method from being exposed to JavaScript.

 As configured, the DwrServlet will make the TrafficServiceImpl available as
a remote Ajax object, with the getTrafficInfo() method available to JavaScript
clients, as shown in figure 16.6.

 Speaking of the JavaScript client, we’ll need to add a few <script> elements to
the HTML so that DWR and the exported objects are available to JavaScript. First,
we’ll need to load the JavaScript that contains the DWR engine:

<script type='text/javascript'
 src='dwr/engine.js'></script>

Next, we’ll need to load our TrafficServiceImpl class, exported in JavaScript as
Traffic:

<script type='text/javascript'
 src='dwr/interface/Traffic.js'></script>

DwrServlet

TrafficServiceImpl

Web
JavaScript

Client

getTrafficInfo()

HTTP requestHTTP request

Figure 16.6 DwrServlet makes POJOs available as remote Ajax objects
that can be invoked from JavaScript clients running in a web browser.

656 CHAPTER 16

Integrating with other web frameworks
Hold on… We haven’t written a JavaScript version of TrafficServiceImpl.
Where is all of this JavaScript coming from? I’m glad you asked.

 Notice that both engine.js and Traffic.js are loaded with paths that start with
dwr/. This dwr/ is the very same dwr/ that the DwrServlet is mapped to in
web.xml. That means that DwrServlet is serving those JavaScript files to the client.

 In fact, Traffic.js is dynamically generated from the <create> element that we
configured in dwr.xml. It contains code to create a JavaScript object called Traf-
fic, which is nothing more than a client stub for the server-side TrafficService-
Impl object. In a moment, we’ll use the Traffic object to retrieve traffic
information.

 But first, there’s one more bit of JavaScript that we’ll choose to include:

<script type='text/javascript'
 src='dwr/util.js'></script>

DWR’s util.js is optional, but contains some very handy functions for performing
DHTML tasks. For the RoadRantz traffic report feature, we’ll use a function from
util.js to dynamically populate an HTML <table> with rows of traffic incident data.

Calling remote methods from JavaScript
On the client side, we’re going to ask the user to enter a zip code and to option-
ally choose a zoom factor and a minimum severity. These criteria are entered
using an <input> and two <select>s. The following fragment of HTML shows the
relevant portion of the user interface:

<input type="text" name="zip" maxlength="5"
 onkeyup="criteriaChanged();"/>
…
<select name="zoom" onchange="criteriaChanged();">
 …
</select>
…
<select name="severity" onchange="criteriaChanged();">
 …
</select>

Rather than have the user click a submit button to trigger a traffic incident query,
we want the UI to respond immediately to changes in the criteria fields. There-
fore, the <input> field’s onkeyup event and both of the <select>s’ onchange
event have been set to call a criteriaChanged() JavaScript function. Within
criteriaChanged(), we’ll invoke the remote getTrafficInfo() method:

function criteriaChanged() {
 var zipCode = document.trafficForm.zip.value;
 var zoom = document.trafficForm.zoom.value;

Ajax-enabling applications in Spring with DWR 657
 var severity = document.trafficForm.severity.value;

 if(zipCode.length == 5) {
 Traffic.getTrafficInfo(zipCode, zoom, severity,
 updateTable);
 } else {
 DWRUtil.removeAllRows("trafficTable");
 }
}

Here’s where the proverbial rubber meets the road… or more precisely, where
JavaScript meets DWR. If the length of the value in the zip code field is 5 charac-
ters (a fully specified zip code) then we use the Traffic object created in Traf-
fic.js to call the getTrafficInfo() method. Under the covers, getTrafficInfo()
uses the DWR engine to construct an XMLHttpRequest to call the getTraf-
ficInfo() on the server-side TrafficServiceImpl object.

 When we call getTrafficInfo(), we pass it the zip code, the zoom factor, the
severity, and… wait a minute. There’s an extra parameter in there. What’s
updateTable and how did it get into our call to getTrafficInfo?

 Remember that DWR is an Ajax framework, and that the “A” in Ajax means
“asynchronous.” In other words, when a call is made to a remote method, the
browser doesn’t stop everything and wait for a response. This is important,
because the remote object could take a moment or two to respond and we don’t
want the user experience to be ruined because their web browser froze up.

 Even though the browser doesn’t stop and wait for a response, we still need a
way to get the response from the remote call. For that, we need a callback func-
tion. In our case, updateTable is the name of the callback function. When the
server finally responds with a list of TrafficInfo objects, the updateTable()
function will be called to process the results.

Displaying the results
As you may have guessed from its name, the updateTable() function is used to
populate a table with rows of traffic information. Before we see how updateTa-
ble() works, however, let’s see the table that it will be updating. The following
HTML fragment shows the table that we’ll use to display traffic incident data:

<table width="100%" border="1" style="font-size:8pt;">
 <thead>
 <tr><td width="100">Summary</td><td>Details</td></tr>
 </thead>
 <tbody id="trafficTable"></tbody>
</table>

658 CHAPTER 16

Integrating with other web frameworks
The key thing to pay attention to in the table definition is the id of the <tbody>
element. We’ll refer to this id when populating the table.

 Now here’s the updateTable() function, the dynamic part of this application:

function updateTable(results) {
 DWRUtil.removeAllRows("trafficTable");
 DWRUtil.addRows("trafficTable", results, cellFuncs);
}

updateTable() uses the DWRUtil object (created in util.js) to remove and add
rows to the table of traffic incidents. The first thing it does is call removeAll-
Rows() to clear out the table and prepare it for a fresh set of data. Then it popu-
lates the table by calling addRows(), passing in the results object that was passed
to updateTable() by the DWR engine. results is the data that was returned from
the call to getTrafficInfo()—specifically an array of JavaScript-ified Traf-
ficInfo objects.

 The final parameter to addRows() is a bit peculiar and demands some explana-
tion. addRows() will add one row to the table for each TrafficInfo it finds in the
results array. But how will it know how to populate each column in the table?
That’s where the cellFuncs array comes in:

var cellFuncs = [
 function(data) { return data.summary; },
 function(data) { return data.details; }
];

cellFuncs is an array of functions, one for each column in the table. As DWRUtil’s
addRows() populates the traffic incident table, it will pass in the current Traf-
ficInfo object to each of the functions in cellFuncs to determine what value
goes into each column. In this example, the first function in cellFuncs will be
used to populate the summary column and the second function will be used to
populate the details column.

 That’s it! We now have a complete, albeit simple, DWR application. To recap,
when the user enters data into the zip code, zoom factor, or severity fields, Java-
Script will invoke the getTrafficInfo() function on the Traffic object. The
Traffic object, being nothing more than a client stub for the remote Traffic-
ServiceImpl object, uses DWR to produce an XMLHttpRequest to make a call to
the server-side getTrafficInfo() method. When a response comes back, the
updateTable() callback function will be called to populate the table with the traf-
fic incident data.

 This is fine, but where does Spring fit into the picture? Let’s find out.

Ajax-enabling applications in Spring with DWR 659
16.5.2 Accessing Spring-managed beans DWR

So far, we’ve only used DWR’s plain-vanilla new creator to export the server-side
TrafficServiceImpl class to the JavaScript client. The new creator is fine for sim-
ple applications where the exported class doesn’t have any dependencies on other
objects. But because DWR is responsible for creating the remote object, it rules
out any chance for them to be configured using Spring dependency injection or
to be advised by Spring AOP. Wouldn’t it be better if DWR could export beans that
are managed in the Spring application context?

 Fortunately, there are a couple of options available for integration between
Spring and DWR. These options include

■ You can use spring creators in DWR—as an alternative to the new creator we
discussed before, DWR also comes with a spring creator that looks up beans
that are to be remoted from the Spring application context.

■ If you’re using Spring 2.0, you can use DWR’s Spring 2.0 configuration
namespace to declare beans as DWR-remoted.

We’re now going to revisit the RoadRantz traffic application, looking at each of
these Spring integration options. Don’t worry, though… most of the work we’ve
put into the traffic report application is still valid. The client side code will remain
unchanged, as will the TrafficServiceImpl and TrafficInfo classes. We’ll only
need to tweak the DWR configuration a bit to use Spring.

 With that said, let’s start by looking at using DWR’s spring creator to export
Spring-managed beans as remote objects in JavaScript.

Using Spring creators
Unlike the new creator, DWR’s spring creator doesn’t actually create objects to
export as Ajax objects. Instead, the spring creator retrieves objects from the
Spring application context. This way, the object can enjoy all of Spring’s depen-
dency injection and AOP goodness. Figure 16.7 illustrates how this works.

 Using the spring creator isn’t much different from using the new creator. In
fact, we only need to make a few minor tweaks to the dwr.xml file to make the
switch from new to spring:

■ The creator attribute needs to be changed from new to spring.

■ The class parameter is no longer appropriate. Therefore, we’ll need to
change the <param> element’s name attribute from class to beanName. The
beanName parameter is used to identify the Spring-managed bean to be
exported.

660 CHAPTER 16

Integrating with other web frameworks
■ Since we’re identifying a bean by its name, the fully qualified class name in
<param>’s value attribute should be replaced with the name of a bean in
the Spring application context.

After applying these changes, the <create> element in dwr.xml looks like this:

<create creator="spring" javascript="Traffic">
 <param name="beanName" value="traffic" />
 <exclude method="setAppId" />
</create>

Here we’re specifying that DWR should export a bean named traffic. The bean
itself is declared in the Spring application context like this:

<bean id="traffic"
 class="com.roadrantz.traffic.TrafficServiceImpl">
 <property name="appId" value="springinaction" />
</bean>

Notice that the <bean> element’s id attribute corresponds to the beanName
parameter’s value in dwr.xml.

 Now that TrafficServiceImpl is declared as a Spring bean, we are able to
configure and wire it using Spring-style dependency injection. In this case, we’re
merely injecting the appId property with our Yahoo! application ID. Nevertheless,
by configuring TrafficServiceImpl in Spring, it could be subjected to any of
Spring’s capabilities, including AOP, declarative transactions, security through
Acegi, and so forth.

 One other benefit of configuring DWR-exposed objects in Spring is that it frees
DWR from the knowledge of how the object is implemented. DWR only knows that

Spring Application Context

DwrServlet

TrafficServiceImpl

Web
JavaScript

Client

getTrafficInfo()

HTTP requestHTTP request

Figure 16.7 Rather than create the remote services itself, DWR’s spring creator
remotes objects loaded from the Spring application object.

Ajax-enabling applications in Spring with DWR 661
it is to expose a bean named traffic as an Ajax service. It has no idea what class
implements that bean. Although it is declared here as the concrete TrafficSer-
viceImpl class, traffic could be a reference to a web service, an RMI service, an
EJB, or any number of other possibilities.

 The question that remains is how the Spring application context gets loaded.
By default, the spring creator assumes that a Spring application context has been
loaded using ContextLoaderListener. For example, the following snippet from
the application’s web.xml loads the Spring context from a file called traffic.xml at
the root of the application’s classpath:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>
 classpath:traffic.xml
 </param-value>
</context-param>
<listener>
 <listener-class>
 org.springframework.web.context.ContextLoaderListener
 </listener-class>
</listener>

Optionally, we can explicitly tell the spring creator the name of a Spring applica-
tion context file by setting the location parameter:

<create creator="spring" javascript="Traffic">
 <param name="beanName" value="traffic" />
 <param name="location" value="traffic.xml" />
 <exclude method="setAppId" />
</create>

When location is set, DWR will load the Spring application context from the file
specified in the <param> element’s value attribute, relative to the application’s
classpath.

 Although the location parameter is convenient, it’d be unusual to use DWR’s
spring creator within an application that hasn’t already used ContextLoaderLis-
tener to load a Spring application context for other purposes. Therefore, in most
cases it’s best to forego the use of the location parameter and rely on Context-
LoaderListener to load the application context.

 DWR’s spring creator is great, but it has one small shortcoming: you must con-
figure it in dwr.xml. This means that there’s one more configuration file for your
application. Well, kiss that dwr.xml file goodbye, because we’re about to see how
we can configure DWR completely within Spring.

662 CHAPTER 16

Integrating with other web frameworks
Using DWR’s Spring configuration namespace
One of the most significant new features in Spring 2 is the ability to define custom
configuration namespaces. Throughout this book, we’ve seen several ways that
custom namespaces have been used to dramatically cut down on the amount of
XML required to configure Spring.

 Spring 2’s custom namespaces presented an opportunity to the DWR team.
Rather than configure DWR in dwr.xml, completely separate from Spring’s config-
uration, why not provide a custom DWR namespace so that DWR can be config-
ured completely within a Spring configuration file? That’s precisely what is
provided in the latest version of DWR.

 To use DWR’s configuration in Spring, the first thing we’ll need to do is swap
out DwrServlet for DwrSpringServlet:

<servlet>
 <servlet-name>dwr</servlet-name>
 <servlet-class>
 org.directwebremoting.spring.DwrSpringServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

Where DwrServlet used dwr.xml for determining what objects should be
exported as Ajax objects, DwrSpringServlet looks directly at the Spring applica-
tion context. Specifically, it looks for the elements defined in spring-dwr-2.0.xsd.

 So that DWR’s configuration elements will be available in the Spring applica-
tion file, we’ll need to add the dwr namespace to the <beans> element:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dwr=
 "http://www.directwebremoting.org/schema/spring-dwr"
 xsi:schemaLocation=
 "http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/
 ➥ spring-beans-2.0.xsd
 http://www.directwebremoting.org/schema/spring-dwr
 http://www.directwebremoting.org/schema/spring-dwr-2.0.xsd">
…
</beans>

Now we can use <dwr:*> elements to declare certain beans to be exported as Ajax
objects. The easiest way to declare a Spring bean as a DWR-exported Ajax object is
to include the <dwr:remote> element within the <bean> declaration. For exam-
ple, here’s the TrafficServiceImpl bean, declared to be DWR-remoted:

Ajax-enabling applications in Spring with DWR 663
<bean id="traffic"
 class="com.roadrantz.traffic.TrafficServiceImpl">
 <dwr:remote javascript="Traffic">
 <dwr:exclude method="setAppId"/>
 </dwr:remote>
 <property name="appId" value="springinaction" />
</bean>

 Voilà! Just by adding the <dwr:remote> element as a child of the <bean> element,
we’ve told DWR to export the bean as a remote Ajax object. The javascript
attribute specifies a name that the object will be known as in JavaScript.

 We still want to hide the setAppId() method from the client, so we’ve also
added a <dwr:exclude> element as a child of <dwr:remote>. By default, all public
methods will be exposed, but we can exclude certain methods by listing their
names (comma-separated) in <dwr:exclude>’s method attribute. Here we’ve spec-
ified that the setAppId() method should be excluded.

 Optionally, we could’ve used <dwr:include> to explicitly declare the methods
that are to be exported:

<bean id="traffic"
 class="com.roadrantz.traffic.TrafficServiceImpl">
 <dwr:remote javascript="Traffic">
 <dwr:include method="getTrafficInfo"/>
 </dwr:remote>
 <property name="appId" value="springinaction" />
</bean>

When <dwr:include> is used, only the methods listed in the method attribute
(comma-separated) are exported in the remote Ajax object. In this case, we’re
only interested in including the getTrafficInfo() method.

 We need to tie up one more loose end. We still have to tell DWR how to trans-
late the TrafficInfo type into its JavaScript equivalent. We did this with the
<convert> element in dwr.xml. Since we don’t have a dwr.xml file anymore, we’ll
use the <dwr:convert> element in the Spring configuration:

<dwr:configuration>
 <dwr:convert type="bean"
 class="com.roadrantz.traffic.TrafficInfo" />
</dwr:configuration>

Just like before, we’re specifying that the TrafficInfo object be translated to Jav-
aScript using a bean converter. Notice that the <dwr:convert> element must be
placed within a <dwr:configuration> element.

664 CHAPTER 16

Integrating with other web frameworks
16.6 Summary

Even though Spring provides its own very capable web framework, you may find
another framework more to your liking. Fortunately, choosing to use Spring in
your service and data access layers doesn’t preclude the use of an MVC framework
other than Spring MVC.

 As you’ve seen in this chapter, Spring integrates into several prevalent MVC
frameworks, including Struts, WebWork, Tapestry, and JavaServer Faces. As each
of these frameworks is unique with respect to the others, the integration strategy
is also different for each.

 With Struts, you have two integration options. First, you can have your Struts
actions become Spring aware, which provides a straightforward solution but cou-
ples your actions to Spring. Alternatively, you can have Struts delegate the han-
dling of actions to Spring-managed beans, giving you a more loosely coupled
solution, at the cost of a slightly more complex Struts configuration.

 Integrating Spring into WebWork 2 couldn’t be any easier. WebWork 2
embraces Spring as its dependency injection container, so wiring WebWork
actions with Spring beans involves little more than configuring a ContextLoader-
Listener to make the Spring context available to WebWork. And because Struts 2
is really the same as WebWork 2, it’s just as easy to integrate Spring with Struts 2.

 Tapestry is a great component-based web framework that uses simple HTML
templates. Integrating Spring into Tapestry 3 involves replacing Tapestry’s base
engine with a Spring-aware Tapestry engine. Integration with Tapestry 4, on the
other hand, is much simpler—all you must do is add a JAR file from the Dia-
phragma project to your application’s classpath and then refer to Spring beans
with a special spring: prefix.

 Accessing Spring-configured beans in a JSF application involves registering a
DelegatingVariableResolver, a special JSF variable resolver that is Spring aware.
Optionally, you may also expose the entire Spring application context as a JSF vari-
able by using WebApplicationContextVariableResolver.

 The web development world is all abuzz about Ajax, a means of creating highly
dynamic web applications where web pages can dynamically interact with the
server without performing a full page refresh. To wrap up this chapter, we looked
at Direct Web Remoting (DWR), an Ajax toolkit that makes it possible to transpar-
ently invoke methods on Spring-managed beans through JavaScript.

Summary 665
 So now you know how to develop web applications using Spring with a variety of
web frameworks. You have the option of using Spring’s MVC framework, or you can
choose from one of several third-party frameworks. And you’ve also seen how to
make your applications more dynamic with JavaScript remoting to Spring beans.

appendix A:
Setting up Spring
667

668 APPENDIX A

Setting up Spring
The Spring Framework and container is packaged in several JAR files. Spring is a
library of classes that will be packaged with and used by your Spring-enabled
applications. Installing Spring involves adding one or more JAR files to your appli-
cation’s classpath. It does not have an executable runtime. Therefore, Spring is
more akin to a library like Jakarta Commons than an application server like JBoss.

 How you make Spring available to your application’s classpath will vary
depending on how you build and run your application. You may choose to add
the Spring JAR files to your system’s classpath or to a project classpath in your
favorite IDE. If you’re building your application using Ant or Maven, be certain to
include Spring in your build’s dependencies so that it will be included in the
project’s target deployment.

 Even though you happen to be holding one of the best books ever published
about Spring (I’m not biased, though), there’s plenty of additional materials in
Spring’s full distribution, including Spring’s API documentation, examples, and
the full source code for the Spring Framework. Therefore, the first thing you’ll
want to do is to download the full Spring distribution. Let’s see where you can
find Spring and what you’ll get when you download it.

A.1 Downloading Spring

You can download the Spring distribution from Spring’s website: http://
www.springframework.org. Choose the downloads link from the left-hand menu
and look for the Spring 2.0 download. As I’m writing this, I’m building the exam-
ples against version 2.0.6.

 When downloading Spring, you have two choices: you can download a Spring
distribution that comes with its own dependencies or you can download a distri-
bution that contains only the Spring JAR files. Even though it’s a much larger
download, I favor the one that comes with dependencies so that I won’t have to
hunt down the other JAR files that my application needs.

A.1.1 Exploring the Spring distribution

Once you’ve downloaded the distribution, unzip it to a directory on your local
machine. The Spring distribution is organized within the directory structure
described in table A.1.

 Several of these directories contain the Spring source code. The aspectj/,
mock/, src/, and tiger/ directories contain the source code that makes up the
Spring Framework itself. Meanwhile, the test/ directory contains the unit tests
used to test Spring. Although it’s not essential to using Spring, you may want to
venture around in these directories to see how Spring does its stuff. The Spring

APPENDIX A

Setting up Spring 669
developers are extremely talented coders and you’ll probably learn a little some-
thing by reviewing their code.

 The docs/ directory contains two important pieces of documentation. The ref-
erence document is an overview of the entire Spring Framework and is a good
complement to this book. Also, the JavaDocs for the entire Spring Framework can
be found under docs/—you’ll probably want to add this as a bookmark in your
web browser, because you’ll refer to it often.

 The samples/ directory contains a handful of sample Spring applications. Of
particular note are the petclinic and jpetstore examples. Both of these applica-
tions highlight many important elements of the Spring framework.

A.1.2 Building your classpath

The most important directory in the Spring distribution is probably the dist/
directory. That’s because this is the directory containing the JAR files that you’ll
use to build Spring-based applications. Using Spring in your application involves
choosing one or more JAR files from this directory and making them available in

Table A.1 Spring’s full distribution contains a wealth of materials, including API documentation, source
code, and examples.

Distribution path What it contains

/aspectj Source files for Spring-specific aspects implemented in AspectJ. If you’re curious
about how the Spring Framework makes use of AspectJ, you’ll want to look in here.

/dist The Spring distribution JAR files. Here you’ll find several JAR files, each of which
represents a part of the Spring Framework, as described in table A.2 in the next
section.

/docs Spring’s API and reference documentation.

/lib Open source JAR files that Spring depends on, including Log4j, AspectJ, Jakarta
Commons, Hibernate, and others. Fear not: Spring doesn’t depend on all of these
JAR files. Many of them only come into play when you exercise a specific set of
Spring functionality.

/mock The source code for Spring’s mock object and unit-testing module.

/samples Several example Spring applications.

/src Source code for most of the Spring Framework.

/test Source code for the unit tests that are used to test Spring itself.

/tiger Source code for the portion of Spring that is specific to Java 5. This code is kept
separate from the core of Spring to ensure that the rest of the framework is com-
patible with older versions of Java.

670 APPENDIX A

Setting up Spring
your application’s classpath. The JAR files and their purposes are described in
table A.2.

Table A.2 The JAR files that make up the Spring Framework. The framework is broken into several
modules, enabling you to pick and choose the parts of Spring that you need for your application.

JAR file Directory Purpose

spring.jar dist/ Contains most of the modules of the Spring Framework in
one convenient JAR file.

spring-aspects.jar dist/ Spring’s AspectJ-specific classes.

spring-mock.jar dist/ Spring’s mock objects and testing classes.

spring-aop.jar dist/modules/ The Spring AOP module.

spring-beans.jar dist/modules/ The Spring bean factory module.

spring-context.jar dist/modules/ The Spring application context module. Includes JNDI, valida-
tion, scripting, Velocity, and FreeMarker libraries.

spring-core.jar dist/modules/ Classes that are core to the Spring Framework.

spring-dao.jar dist/modules/ The basis for Spring’s DAO support.

spring-hibernate2.jar dist/modules/ Spring’s Hibernate 2 support.

spring-hibernate3.jar dist/modules/ Spring’s Hibernate 3 support.

spring-ibatis.jar dist/modules/ Spring’s iBatis support.

spring-jca.jar dist/modules/ Spring’s JCA support.

spring-jdbc.jar dist/modules/ Spring’s JDBC module.

spring-jdo.jar dist/modules/ Spring’s support for Java Data Objects (JDO).

spring-jms.jar dist/modules/ Spring’s support for JMS.

spring-jmx.jar dist/modules/ Spring’s JMX support.

spring-jpa.jar dist/modules/ Spring’s support for the Java Persistence API (JPA).

spring-portlet.jar dist/modules/ Spring’s portlet MVC framework.

spring-remoting.jar dist/modules/ Spring’s remoting module.

spring-struts.jar dist/modules/ Spring’s support for Struts and Tiles.

spring-support.jar dist/modules/ Support and utility classes.

spring-toplink.jar dist/modules/ Spring’s support for Oracle TopLink.

spring-web.jar dist/modules/ Spring’s web application context and utilities.

spring-webmvc.jar dist/modules/ Spring MVC.

APPENDIX A

Setting up Spring 671
Although the list of 24 JAR files may seem a bit daunting, sorting them out isn’t all
that difficult. The JAR files in the dist/modules/ directory allow you to choose
which parts of Spring are needed for your application. To make things simple,
however, you may want to take the lazy way out and simply add spring.jar (from
the dist/ directory) to your application’s classpath. The spring.jar file is a conve-
nient, single-JAR equivalent to all of the JARs in the dist/modules/ directory.

 You should know that not all Spring-related JAR files are available in the main
Spring distribution. Acegi Security and Spring-WS, for example, are subprojects
of Spring and have their own distributions available from their own websites.
When it comes time to add these modules to your classpath, I’ll be sure to tell you
where to find them.

 If dist/ is the most important directory then lib/ comes in a close second. You
will likely need to add other JAR files to your classpath to enable certain Spring
features. For example, if you intend to use Spring’s support for AspectJ in your
application, you’ll need to add aspectjrt.jar and aspectjweaver.jar to the classpath.
Likewise, Spring’s Hibernate modules depend on an appropriate version of
Hibernate being available in the classpath. If you downloaded the “with depen-
dencies” distribution of Spring, you’ll be able to find most dependencies you
need in the lib/ directory.

 Although many of the JAR files under the lib/ directory are optional, one is
required. Spring relies on Jakarta Commons Logging to log informational and
error messages. Therefore, commons-logging.jar (from lib/jakarta-commons)
must always be in the classpath of any Spring-enabled application.

 Once you’ve decided which JAR files your application needs, the next step is to
add them to your classpath. The naive way of handling this would be to add them
to your CLASSPATH system variable:

set CLASSPATH=%CLASSPATH%;{SPRING_HOME}/dist/spring.jar
set CLASSPATH=%CLASSPATH%;{SPRING_HOME}/lib/
 ➥ jakarta-commons/commons-logging.jar

This may work for quick-and-dirty experimentation. But you’re probably going to
use Spring to develop full-blown applications more often than one-off trials.
You’re likely going to let a build system like Maven or Ant construct your applica-
tion distribution. In the following sections, we’ll show you how to add Spring to
your Maven and Ant builds.

672 APPENDIX A

Setting up Spring
A.2 Adding Spring as a Maven 2 dependency

If you’re using Maven 2 to build and package your Spring-based application, you
can let Maven download the Spring JAR files for you. With Maven 2, adding
Spring to your build is a simple matter of adding dependency entries to your
project’s pom.xml file.

 Spring and its modules are available in the Maven repository under the group
ID org.springframework. Within this group are the modules listed in table A.3.

Table A.3 The Spring modules available in the Maven 2 repository. To include these in your
application’s build, you’ll need to add a <dependency> entry to your pom.xml file.

Maven artifact ID What it provides

spring Almost all of the Spring Framework

spring-aop The Spring AOP framework

spring-aspects AspectJ aspect library, including the Spring-configured and AspectJ transac-
tional aspects

spring-beans The Spring bean factory and related classes

spring-context The Spring application context and related classes

spring-core The core Spring Framework

spring-dao Spring’s DAO abstraction framework

spring-hibernate2 Spring’s support for Hibernate 2

spring-hibernate3 Spring’s support for Hibernate 3

spring-ibatis Spring’s support for iBATIS

spring-jca Spring’s support for the Java Connector API

spring-jdbc Spring’s JDBC abstraction framework

spring-jdo Spring’s support for Java Data Objects

spring-jms Spring’s support for the Java Messaging API

spring-jmx Spring’s support for Java management extensions

spring-jpa Spring’s support for the Java Persistence API

spring-mock Spring’s unit-testing and mock-object extensions.

spring-ojb Spring’s support for Apache’s Object Relational Bridge

spring-portlet Spring’s Portlet MVC framework

APPENDIX A

Setting up Spring 673
You may choose to add each module as a dependency as it’s needed. For example,
if your application depends only on the Spring AOP module, you might add the
following <dependency> to your pom.xml file:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-aop</artifactId>
 <version>2.0.3</version>
</dependency>

This dependency declaration will make Spring AOP available for building your
application. In addition, the Spring Beans module will be made available thanks
to Maven 2’s support for transitive dependency resolution.

 Although your application may start small and have only a small dependency
on Spring, most applications grow to depend on the bulk of the Spring Frame-
work. Therefore, it is often easier to declare a dependency on the entirety of
Spring:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring</artifactId>
 <version>2.0.3</version>
</dependency>

This dependency will make the bulk of the Spring Framework available to your
application. Even if you’re not using it all right away, there’s little harm (and
plenty of convenience) in using this dependency.

 If your application will be using a third-party ORM solution or you will be build-
ing a portlet MVC application, you may need to add additional dependencies to

spring-remoting Spring’s remoting support

spring-struts Spring-Struts integration

spring-support Support and utility classes

spring-toplink Spring’s support for Oracle TopLink

spring-web Spring’s web container and related utility classes

spring-webmvc Spring’s web MVC framework

Table A.3 The Spring modules available in the Maven 2 repository. To include these in your
application’s build, you’ll need to add a <dependency> entry to your pom.xml file. (continued)

Maven artifact ID What it provides

674 APPENDIX A

Setting up Spring
pom.xml. For example, if your application is using Hibernate 3 for persistence,
you’ll want to add the Spring Hibernate 3 module as follows:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-hibernate3</artifactId>
 <version>2.0.3</version>
</dependency>

 Likewise, you may want to take advantage of Spring’s mock objects and testing
support classes. If that’s the case, add the following dependency to pom.xml:

<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-mock</artifactId>
 <version>2.0.3</version>
 <scope>test</scope>
</dependency>

Notice that the <scope> of this dependency is test. This ensures that the Spring
Mock module will only be available during testing and not packaged for distribu-
tion with your application.

 If your application is using Spring MVC, you’ll need to add Servlet API JAR file
as a dependency:

<dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>servlet-api</artifactId>
 <version>2.4</version>
 <scope>provided</scope>
</dependency>

In this case, the <scope> has been set to provided. This tells Maven to make the
Servlet API available at compile time, but not to include it in a WAR packaging.
The Servlet API is usually made available by the application server and should not
be included in an application deployment.

 Maven 2 has gained a lot of attention in the last year or so. But if you haven’t
made the switch to Maven 2, odds are that you’re an Ant fan. Although I favor
Maven 2 for my builds, I won’t leave the Ant fanatics hanging. Let’s see how to
build a Spring-based application using Ant.

APPENDIX A

Setting up Spring 675
A.3 Spring and Ant

Although I prefer to use Maven 2 for my builds, many developers will want to use
Apache Ant. If you’re using Ant to build your Spring project, you’ll need to down-
load the Spring Framework for yourself (as described in section A.1) and add the
Spring JAR files and their dependencies to the appropriate paths in your project’s
build.xml file.

 I recommend declaring an Ant <path> element that will contain all of your
application’s dependencies, including the Spring JAR files. Listing A.1 shows a
small section of an Ant build file that manages Spring dependencies in this way.

<project name="MyProject" default="war">
 <property name="spring.home"
 location="/opt/spring-framework-2.0"/>
 <property name="target.dir" location="target"/>
 <property name="classes.dir" location="${target.dir}/classes"/>
 <property name="src.dir" location="src"/>
 <property name="java.src.dir" location="${src.dir}/java"/>
 <property name="webapp.dir" location="${src.dir}/webapp"/>
 <property name="app.lib.dir" location="lib"/>
 <property name="spring.lib.dir"
 location="${spring.home}/dist"/>
 <property name="spring.depends.dir"
 location="${spring.home}/lib"/>

 <path id="dependency.path">

Listing A.1 Building a Spring application with Ant

What about Maven 1?
Perhaps you’re building your application with the original Maven. For the most part,
dependency declaration isn’t much different between Maven 1 and Maven 2. How
Maven resolves those dependencies is slightly different, however. Maven 2 sup-
ports transitive dependency resolution, which means that if your application de-
pends on Spring, Maven 2 is smart enough to know that it also depends on Jakarta
Commons Logging without having to be told. With Maven 1, you may have to ex-
plicitly add Commons Logging as a dependency.

I believe that Maven 2 is far superior to Maven 1 in many ways, including transi-
tive dependency resolution. I therefore recommend that you make the jump to
Maven 2. If you need some help getting started with Maven 2, have a look at Bet-
ter Builds with Maven 2 (Mergere, 2006).

Defines Spring
distribution location

676 APPENDIX A

Setting up Spring
 <fileset dir="${spring.lib.dir}" includes="*.jar"/>
 <fileset dir="${spring.depends.dir}" includes="**/*.jar"/>
 <fileset dir="${app.lib.dir}" includes="*.jar"/>
 </path>

 <target name="compile">
 <mkdir dir="${classes.dir}"/>
 <javac destdir="${classes.dir}"
 classpathref="dependency.path">
 <src path="${java.src.dir}"/>
 </javac>
 </target>

 <target name="war" depends="compile">
 <war destfile="${target.dir}/${ant.project.name}.war"
 webxml="${webapp.dir}/web.xml">
 <lib dir="${spring.lib.dir}"/>
 <lib dir="${app.lib.dir}"/>
 <classes dir="${classes.dir}"/>
 </war>
 </target>
...
</project>

Regardless of whether you choose Maven 2 or Ant (or some other build mecha-
nism), you’ll probably want to configure Log4j to properly handle Spring logging.
Let’s see how to set up Spring with Log4j.

A.4 Spring and Log4j

With the build file now in place, there is one final thing you will want to do. When
you first start using Spring, one feature you’ll almost certainly find useful is log-
ging. First, be sure that the Log4j JAR file is in the application’s classpath. If
you’re using Ant to do your build, the build.xml file in listing A.1 already includes
Log4j (through the ${spring.lib.dir} path). If you’re using Maven 2, simply
add the following <dependency> to your pom.xml file:

<dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.13</version>
 <scope>compile</scope>
</dependency>

With Log4j in the application’s classpath, the next thing to do is include a simple
Log4j configuration file. Assuming the project structure defined in the build.xml

Includes Spring
dependencies

Sets classpath
for javac

Includes Spring
dependencies

APPENDIX A

Setting up Spring 677
file in listing A.1, you will need to create a file called log4j.properties in /src/
webapp/WEB-INF/classes. The following snippet of log4j.properties configures
Log4j to log all of Spring’s logging messages to the console:

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p %c - %m%n
log4j.rootLogger=INFO, stdout
log4j.logger.org.springframework=DEBUG

appendix B:
Testing with

(and without)
Spring
678

APPENDIX B

Testing with (and without) Spring 679
Software is precise in its execution. It does exactly what it is written to do—noth-
ing more and nothing less. The software we write would function flawlessly if it
weren’t for one minor problem: we write it. Even though software perfectly exe-
cutes the instructions it is given, flawed humans are the ones who write the
instructions. Human flaws tend to leak into software instructions, resulting in
quirks, snafus, and errors.

 When you consider the serious consequences of software bugs, it becomes
imperative that we test software as much as possible. Even though it’s still possible
for bugs to exist in tested code, the odds of a serious bug sneaking into produc-
tion are greatly diminished by writing comprehensive test suites to exercise every
nook and cranny of an application.

 In this appendix, we’re going to have a look at where Spring fits within the test-
ing picture. You’ll see how Spring indirectly supports testing by promoting loose
coupling. We’ll also explore a handful of Spring classes that you can use to test
Spring MVC applications and transactional code.

B.1 Introduction to testing

On the surface, software testing seems to be about ensuring the correctness and
quality of software. But as we’ve already implied, it’s ensuring that we as develop-
ers are giving the correct instructions to the software. If we’re to blame for the
mistakes that creep into software, isn’t it also our responsibility to write tests that
mitigate the chances that someone will see those mistakes?

 Not so long ago (for some of you this may sound like an average workday), test-
ing was an activity that was magically crammed into the last few days prior to push-
ing software into production. And testing was usually done by people who were
labeled as “Quality Assurance.” A huge problem with this approach is that people
who had no direct control over the instructions given to the software were allowed
virtually no time to verify that it was correct. To say that QA is able to assure quality
is hoping against hope.

 Although developers have long been encouraged to test their own code,
many developers dismissed testing as not being their job. Others performed
only minimal smoke tests—if the compiler didn’t complain about errors, there
must not be any!

 Agile methodologies such as extreme programming and Scrum have brought
developer-written tests to the forefront. And frameworks such as JUnit have put the
power to write repeatable and automated tests into the hands of developers. Test-
infected developers are now writing better and more correct code than ever before.

680 APPENDIX B

Testing with (and without) Spring
 That’s not to say that QA is obsolete. On the contrary, QA people are trained to
think of clever ways to break software, whereas the developer mind-set is focused
on clever ways to make software work. I’m only saying that developers should step
up to the plate and accept the duty of ensuring the correctness of their code—
and for making the lives of QA staff a little easier.

 With that said, let’s look at different ways that developers can test their code
and see how Spring fits into developer-written tests.

B.1.1 Understanding different types of testing

Testing comes in various forms. In fact, depending on which testing expert you
ask, you may find that there are several dozens of types of tests. Table B.1 lists just
a few of the most common types of tests.

There are many more types of tests in addition to those listed in table B.1. But for
the purposes of discussing how Spring fits into the testing landscape, we’re going
to focus on the first two types of tests listed: unit and integration tests.

 Both of these types of testing can be automated using JUnit (http://
www.junit.org), a popular open source testing framework. Before we go into
Spring’s role in testing, let’s set the stage by going through a quick introduction to
JUnit.

B.1.2 Using JUnit

JUnit is a testing framework created by Kent Beck (of extreme programming
fame) and Erich Gamma (coauthor of the “Gang of Four” Design Patterns: Elements

Table B.1 Software testing comes in several flavors.

Test type Purpose

Unit Tests a logical unit of work (class, method, etc.) in isolation

Integration Tests two or more units of an application together

Functional Tests a specific function of an application, end-to-end, involving two or more
units of an application

System Tests an application’s functionality through the same interfaces used by the end
users of the application

System-Integration Tests the interactions between two or more collaborating applications

Performance Tests the performance of an application or system in terms of throughput, load,
memory footprint, etc.

APPENDIX B

Testing with (and without) Spring 681
of Reusable Object-Oriented Software book [Addison-Wesley Professional, 1995]). It is
probably the best-known testing framework of all time. Although JUnit was devel-
oped with unit testing in mind, several extensions to JUnit have emerged to
enable other types of testing.

 Creating tests in JUnit is simply a matter of extending the junit.frame-
work.TestCase class and implementing one or more test methods. A test method
is any method whose name starts with test. Within each test method, one or
more assertions are made. If any of the assertions fail, the test fails.

 The following is a simple example of a JUnit test case that tests certain mathe-
matic functions:

import junit.framework.TestCase;

public class MathTest extends TestCase {
 public MathTest() {}

 public void testAddition() {
 assertEquals(4, 2+2);
 assertEquals(99, 33+66);
 }

 public void testMultiplication() {
 assertEquals(0, 5*0);
 assertEquals(-6, 2 * -3);
 assertEquals(625, 25 * 25);
 }
}

Although extremely mindless, this is a valid JUnit test case. When run within a
JUnit runner, this test can prove (or disprove) the correctness of the mathematic
operators. For example, figure B.1 is a screenshot showing the results of running
MathTest within the JUnit view in Eclipse.

 It may be hard to see when printed in grayscale, but there’s a green bar in the
user interface. That green bar indicates that all tests have passed. The mantra of
JUnit testers is, “If the bar’s green, the code’s clean.”

 On the other hand, if the bar’s red then a test failed. To illustrate, here’s a test
method that is guaranteed to fail:

public void testThatFails() {
 assertEquals("One", new Integer(1));
}

This test fails because the String value of "One" is not equal to the Integer
value of 1. Figure B.2 shows the results when this test method is run in Eclipse’s
JUnit view.

682 APPENDIX B

Testing with (and without) Spring
Again, it may not be apparent from the grayscale image in figure B.2, but a failed
test results in a red bar. The red bar tells you that something is wrong in the code
and that you have a problem to fix. The failure’s stack trace hints as to what may
have gone wrong.

Setting up tests
It’s often important that some test data and collaborators be prepared in advance
of the actual test. While it’s quite possible to perform such setup at the beginning
of each test method, you may find yourself repeating the setup code across multi-
ple test methods in the same test case.

 To consolidate test setup into one location, you should override TestCase’s
setUp() method:

public void setUp() throws Exception {
 // perform setup code
}

Figure B.1 A green bar indicates that all tests have run successfully in JUnit. The code’s clean!

APPENDIX B

Testing with (and without) Spring 683
It’s vital to understand that setUp() is called just before each test method is
invoked. If your test case has 10 test methods then setUp() will be called 10 times
in the course of the test case. Depending on what your test setup involves, this
could have an impact on how long it takes to run your test case.

Tearing down tests
An important tenet of testing is that each test be run independently of the others.
Each test must leave its environment in a consistent state after the test is run. This
means that if a test method were to alter some data (a file, database, etc.) that is
shared among multiple tests, that data should be returned to its initial state upon
completion of a test.

 Again, it’s possible to have teardown code at the end of each test method. But,
as with setup code, doing so will often result in duplication of the teardown code

Figure B.2 Oops! A red bar indicates that one or more test methods have failed. In this
case "One" is apparently not equal to 1.

684 APPENDIX B

Testing with (and without) Spring
across multiple test methods. Just as TestCase offers setUp() for performing test
setup, TestCase also provides tearDown() for performing test cleanup.

 To implement test teardown in your test case, override the tearDown()
method:

public void tearDown() throws Exception {
 // perform teardown code
}

where setUp() is called just before each test method and tearDown() is invoked
just after each test method completes. This guarantees that any cleanup work is
done between test methods so that each test method starts in a clean, untainted
state.

 Now you’ve been given a crash course in the basics of writing JUnit test cases
and should be ready to start unit-testing your Spring applications. Before we move
on, I’d like to mention that there’s much more to JUnit than has been presented
in this section. For more information on JUnit, I highly recommend Manning’s
JUnit in Action (2003) and JUnit Recipes (2004).

B.1.3 Spring’s role in testing

I’m often asked how Spring is used when testing. The easy answer is that Spring
usually isn’t directly involved in testing. Applications that are developed to take
advantage of Spring’s dependency injection are made up of loosely coupled
objects, which are, by nature, easier to test. But Spring generally isn’t used within
tests.

 But I did say that was the easy answer. The truth is that there are a few places
where Spring can participate directly in tests:

■ Unit-testing Spring MVC—Spring comes with an extension to JUnit’s
TestCase that exposes a handful of convenient assertion methods for verify-
ing the values returned in a ModelAndView object. In addition, Spring pro-
vides several out-of-the-box mock implementations such as MockHttp-
ServletRequest and MockHttpServletResponse that are useful for testing
controllers.

■ Integration-testing Spring applications—Spring also comes with a TestCase
extension that automatically loads a Spring application context for inte-
gration tests. It ensures that the application context is loaded once and
only once for all test methods.

■ Transactional testing—Another TestCase extension starts a transaction
before each test method and rolls it back after the test is complete. This is

APPENDIX B

Testing with (and without) Spring 685
useful when you’re testing code that is writing to a database because it
ensures that the database is left in a consistent state between test methods.

The rest of this appendix examines the ways that Spring can help out with testing.
Let’s start by writing some unit tests for the RoadRantz controllers.

B.2 Unit-testing Spring MVC controllers

The web layer of an application is often considered one of the most difficult
pieces of an application to test. It’s true that determining what goes into a request
and what is rendered in a browser presents some interesting challenges in unit
testing. JUnit extensions such as Cactus and HttpUnit make this challenge a little
less daunting. Nevertheless, the web layer is often left as one of the most untested
parts of many applications.

 But it doesn’t have to be that way. Take a moment to think about what a Spring
MVC controller class does. Forget that controllers have anything to do with the
Web. In simple terms, a controller takes input (in the form of an HttpServletRe-
quest) and produces output (in the form of a ModelAndView). It doesn’t render
an HTML page—that’s the job of the view layer. In this light, controllers are no dif-
ferent than any other Java class—and thus shouldn’t be any more difficult to test.

 To illustrate, let’s write a basic unit test for RantsForVehicleController. The
functionality desired from this controller is that it should receive a vehicle’s state
and plate number in the request and return a ModelAndView populated with a list
of rants. Also, if the request URI ends with .htm then the view name returned
should be rantsForDay.

 RantsForVehicleControllerTest (listing B.1) shows a JUnit test case that
might be used to test RantsForVehicleController.

package com.roadrantz.mvc;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import javax.servlet.http.HttpServletResponse;
import junit.framework.TestCase;
import org.springframework.mock.web.MockHttpServletRequest;
import org.springframework.mock.web.MockHttpServletResponse;
import org.springframework.web.servlet.ModelAndView;
import com.roadrantz.domain.Rant;
import com.roadrantz.domain.Vehicle;

public class RantsForVehicleControllerTest extends TestCase {

Listing B.1 Testing RantsForVehicleController

686 APPENDIX B

Testing with (and without) Spring
 private static final String TEST_STATE = "TX";
 private static final String TEST_PLATE_NUMBER = "ABC123";

 private RantsForVehicleController controller;

 public RantsForVehicleControllerTest() {}

 protected void setUp() throws Exception {
 controller = new RantsForVehicleController();
 controller.setCommandClass(Vehicle.class);
 }

 protected void tearDown() throws Exception {
 super.tearDown();
 }

 public void testSimpleCase() throws Exception {
 HttpServletRequest request = ...;
 HttpServletResponse response = ...;

 ModelAndView modelAndView =
 controller.handleRequest(request, response);

 assertNotNull("ModelAndView should not be null", modelAndView);
 assertEquals("View name should be 'vehicleRants'",
 "vehicleRants", modelAndView.getViewName());

 Map model = modelAndView.getModel();
 assertTrue("Model should contain 'rants' key",
 model.containsKey("rants"));

 List rants = (List) model.get("rants");
 assertNotNull("Model element 'rants' should not be null", rants);

 assertEquals("Model element 'rants' should contain 2 items",
 2, rants.size());

 for (Iterator iter = rants.iterator(); iter.hasNext();) {
 Rant rant = (Rant) iter.next();
 assertEquals("Rant's Vehicle state is incorrect",
 TEST_STATE, rant.getVehicle().getState());
 assertEquals("Rant's Vehicle plateNumber is incorrect",
 TEST_PLATE_NUMBER, rant.getVehicle().getPlateNumber());
 }
 }
}

In short, the test case in listing B.1 passes in an HttpServletRequest and an
HttpServletResponse to the controller and expects to receive a ModelAndView
containing certain data. Even though RantsForVehicleController is a command
controller, we test via the Controller interface’s handleRequest() method so

Sets up controller
to be tested

Tests handleRequest()

Views
assertions

Models assertions

APPENDIX B

Testing with (and without) Spring 687
that we’re testing at the basic level of functionality—the same level at which Dis-
patcherServlet will invoke the controller.

 But the test case in listing B.1 isn’t complete. Some unanswered questions
remain about the origin of HttpServletRequest and HttpServletResponse that
are passed to handleRequest() (as well as what information is contained in the
request). Also, doesn’t RantsForVehicleController depend on a RantService
to retrieve the rants? Where is that dependency set?

 The answer to all of these questions: mock objects.

B.2.1 Mocking objects

When DispatcherServlet invokes the handleRequest() method of RantsForVe-
hicleController, it passes in an instance of HttpServletRequest that is popu-
lated with everything that handleRequest() needs to perform its work (or at least
as much information as was given it by the servlet container). But when you’re
unit-testing a controller, the request doesn’t come from DispatcherServlet
because ultimately the request doesn’t originate in a web browser. The request
must originate from the test case itself. You need a way to create a request to pass
on the call to handleRequest().

 We could take the time to write our own implementation of the HttpServle-
tRequest interface. But HttpServletRequest requires so many methods to be
implemented, many of which play no purpose in our test. It would be a lot of work
to create a suitable HttpServletRequest for our test case.

 Fortunately, Spring provides a mock implementation of HttpServletRequest
for us to use: org.springframework.mock.web.MockHttpServletRequest. Let’s
revisit RantsForVehicleController and replace the declaration of the HttpServ-
letRequest object in testSimpleCase() with the following code:

MockHttpServletRequest request = new MockHttpServletRequest();
request.setMethod("POST");
request.addParameter("state", TEST_STATE);
request.addParameter("plateNumber", TEST_PLATE_NUMBER);
request.setRequestURI(
 "http://localhost:8080/roadrantz/rantsForVehicle.htm");

Now we have an HttpServletRequest instance to pass to handleRequest().
What’s more, we are able to use some of the convenience methods of MockHttp-
ServletRequest to populate the request with the information needed by Rants-
ForVehicleController.

 That addresses the request parameter. But what about the response parame-
ter? No worries—Spring also gives us MockHttpServletResponse to accommodate

688 APPENDIX B

Testing with (and without) Spring
the other parameter of handleRequest(). Replace the HttpServletResponse
declaration with the following line:

HttpServletResponse response = new MockHttpServletResponse();

Our test requires no special setup of the response object, so this one line is suffi-
cient to set up the call to handleRequest().

Mocking interfaces with EasyMock
At this point we’re able to call handleRequest() in our test method. But when we
do, a NullPointerException will be thrown from handleRequest() because
internally a RantService is used to retrieve the list of rants. When the application
is running in the Spring container, Spring will inject the rantService property of
RantsForVehicleController with a RantService instance. But our unit test
doesn’t run in the Spring container. How can we ensure that a RantService has
been injected into the rantService property?

 What we need is a mock implementation of the RantService interface. Unlike
the case of HttpServletRequest and HttpServletResponse, where Spring pro-
vided mock implementations for us, Spring didn’t anticipate our need for a Mock-
RantService class. So, we must build a mock implementation ourselves.

 To make mocking easier, we’ll use EasyMock (http://www.easymock.org).1

EasyMock is a tool that is able to generate mock implementations of interfaces on
the fly in a unit test. Here’s how it works:

1 You make EasyMock available by using Java 5’s static import to import
org.easymock.EasyMock.* (i.e., all of the static methods of EasyMock).

2 You ask for a mock object. It obliges by returning an object that implements
the desired interface (RantService in our case).

3 You write code to “train” the mock object. This involves making calls to the
mock object (as if it were the real object) and telling EasyMock what values
to return and what (if any) exceptions to throw.

4 You then tell the EasyMock that you’re ready to replay the calls and begin
your test.

In our test case, we know that RantsForVehicleController will call the
getRantsForVehicle() method on the RantService to retrieve a list of rants

1 Note that we’re using EasyMock 2.0, which takes advantage of Java 5’s support for static imports. If
you’re using an older version of Java, you’ll need to use an older version of EasyMock that doesn’t use
static imports.

APPENDIX B

Testing with (and without) Spring 689
belonging to that vehicle. Thus, the mock implementation of RantService needs
to be able to return a list of rants with the expected values. The setUp() method
in listing B.2 creates and trains the mock object to do just that.

protected void setUp() throws Exception {
 controller = new RantsForVehicleController();
 controller.setCommandClass(Vehicle.class);

 RantService rantService =
 createMock(RantService.class);

 testVehicle = new Vehicle();
 testVehicle.setState(TEST_STATE);
 testVehicle.setPlateNumber(TEST_PLATE_NUMBER);
 List<Rant> expectedRants = new ArrayList<Rant>();
 Rant rant = new Rant();
 rant.setVehicle(testVehicle);
 rant.setRantText("Rant 1");
 expectedRants.add(rant);
 rant = new Rant();
 rant.setVehicle(testVehicle);
 rant.setRantText("Rant 2");
 expectedRants.add(rant);

 expect(rantService.getRantsForVehicle(testVehicle)).
 andReturn(expectedRants);

 replay(rantService);

 controller.setRantService(rantService);
}

After creating the mock RantService, the setUp() method assembles a list of
rants that we expect to be returned when getRantsForVehicle() is called on the
mock object.

 Next, the getRantsForVehicle() method of the RantService is invoked, pass-
ing in the test vehicle. Since this is just a training exercise, the value returned
from getRantsForVehicle() is unimportant. In fact, the mock object doesn’t
even know what to return until we tell it by calling the andReturn() method.

 Once the mock object has been trained, we’re ready to start our test. A call to
the replay() method tells EasyMock to start expecting calls on the mock object
and to respond as it was trained.

 The last line of setUp() injects the mock RantService into the rantService
property of the controller. RantsForVehicleController is now ready to test.

Listing B.2 Training a mock RantService

Creates mock
object

Sets up
test data

Trains mock
object

Injects mock object
into controller

690 APPENDIX B

Testing with (and without) Spring
B.2.2 Asserting the contents of ModelAndView

The testSimpleCase() method is a good start on testing RantsForVehicleCon-
troller. But it is quite complex with all of the assertions that it makes. It’d be
nice if there were a way to streamline those assertions to only a handful that are
truly meaningful.

 Although the Spring container generally shouldn’t be involved in unit testing,
Spring does provide some help for unit-testing controllers in its API. The
org.springframework.test.web.AbstractModelAndViewTests class is an exten-
sion of JUnit’s TestCase class that exposes some convenient assertion methods
(table B.2) for dealing with the contents of a ModelAndView object.

 For illustration, let’s adapt RantsForVehicleControllerTest to take advan-
tage of AbstractModelAndViewTests’s assertion methods. First, our test case
should be changed to extend AbstractModelAndViewTests:

Table B.2 The assertion methods available in AbstractModelAndViewTests.

Assertion method Purpose

assertAndReturnModelAttributeOfType(
 ModelAndView mav, Object key,
 Class type)

Asserts that a model attribute exists at the
given key and that it is of a certain type

assertCompareListModelAttribute(
 ModelAndView mav, Object key,
 List assertionList)

Asserts that a List model attribute exists at
the given key and that it contains the same
values (and order) as a given assertion list

assertModelAttributeAvailable(
 ModelAndView mav, Object key)

Asserts that a model attribute exists at a
given key

assertModelAttributeValue(
 ModelAndView mav, Object key,
 Object value)

Asserts that the model attribute at a given
key is equal to a certain value

assertModelAttributeValues(
 ModelAndView mav, Map
 assertionModel)

Asserts that all model attributes match val-
ues with a given assertion model Map

assertSortAndCompareListModelAttribute(
 ModelAndView mav, Object key,
 List assertionList, Comparator comp)

Same as
assertCompareListModelAttribute()
except that both lists are sorted before com-
paring the lists.

assertViewName(ModelAndView mav,
 name)

Asserts that the given ModelAndView con-
tains a specific view name.

APPENDIX B

Testing with (and without) Spring 691
public class RantsForVehicleControllerTest
 extends AbstractModelAndViewTests {
…
}

Now we’re ready to rewrite testSimpleCase() to use a few of the assertion meth-
ods to test the contents of ModelAndView:

public void testSimpleCase() throws Exception {
 MockHttpServletRequest request = new MockHttpServletRequest();
 request.setMethod("POST");
 request.addParameter("state", TEST_STATE);
 request.addParameter("plateNumber", TEST_PLATE_NUMBER);
 request.setRequestURI(
 "http://localhost:8080/roadrantz/rantsForVehicle.htm");

 HttpServletResponse response = new MockHttpServletResponse();

 ModelAndView modelAndView =
 controller.handleRequest(request, response);

 List<Rant> expectedRants = new ArrayList<Rant>();
 Rant rant = new Rant();
 rant.setId(1);
 Vehicle vehicle = new Vehicle();
 vehicle.setState("TX");
 vehicle.setPlateNumber("ABC123");
 rant.setVehicle(vehicle);
 rant.setRantText("This is a test rant");

 assertNotNull("ModelAndView should not be null", modelAndView);
 assertViewName(modelAndView, "vehicleRants");
 assertModelAttributeAvailable(modelAndView, "rants");
 assertCompareListModelAttribute(modelAndView,
 "rants", expectedRants);
}

This new version of testSimpleCase() is greatly simplified from the original.
Where there were originally seven assertions (two of which occurred in a loop),
there are now only four assertions (and no loop). Despite the fact that there are
only half as many assertions, the same things are still being tested:

■ We still know that the returned ModelAndView is not null.

■ We still know that the view name is vehicleRants.
■ We still know that the rants attribute is in the model.
■ We still know that the rants attribute contains a list of the expected rants.

692 APPENDIX B

Testing with (and without) Spring
When unit-testing your application objects in isolation, you’ll have little need to
wire up all of the objects in your application. Although Spring provides some
assistance in writing unit tests, the Spring container stays out of the way.

 But that’s unit testing. Test cases that test all of your application objects in con-
cert are still a valid form of testing. For those kinds of tests, the Spring container
should be involved to wire your application objects together. When you’re writing
those kinds of tests, Spring offers some additional help in the form of JUnit exten-
sions for loading the Spring context. So, let’s switch gears from unit testing and
look into the support that Spring provides for integration testing.

B.3 Integration testing with Spring

Unit-testing the individual pieces of an application is a good start toward verifying
the correctness of software. But it’s just the beginning. Throughout this book,
you’ve seen how to use dependency injection and Spring to tie objects together to
build applications. Once you know that each of these objects is working, it’s time
to test the aggregation of those objects to be sure that they work together. After
unit testing, the next phase of testing is integration testing—testing several units
of an application in combination.

 To find an opportunity for integration testing, look no further than the
RoadRantz application. RantsForVehicleController depends on a RantService
to do its work. In RantsForVehicleControllerTest, a mock RantService object
was injected into the controller in the test’s setUp() method. But when perform-
ing integration tests, it is desirable to wire up application objects just like they’ll
be wired up in production (or as close as is possible).

 It’s quite common to write integration test cases for a Spring application with a
setUp() method that resembles the following:

public void setUp throws Exception {
 applicationContext = new FileSystemXmlApplicationContext(
 "roadrantz-service.xml",
 "roadrantz-data.xml");
}

This loads up the Spring application context and sets it to an instance variable for
convenient access. Then, as part of the test methods, the applicationContext is
used to retrieve one or more beans needed to perform the test. For example,
testGetRantsForVehicle() uses applicationContext to retrieve the rantSer-
vice bean:

APPENDIX B

Testing with (and without) Spring 693
public void testGetRantsForVehicle() {
 RantService rantService =
 (RantService) applicationContext.getBean("rantService");

 Vehicle testVehicle = new Vehicle();
 testVehicle.setState(TEST_STATE);
 testVehicle.setPlateNumber(TEST_PLATE_NUMBER);

 List<Rant> rants =
 rantService.getRantsForVehicle(testVehicle);

 assertEquals(2, rants.size());

 for(Iterator iter = rants.iterator(); iter.hasNext();) {
 Vehicle vehicle = (Vehicle) iter.next()
 assertEquals(TEST_STATE, vehicle.getState());
 assertEquals(TEST_PLATE_NUMBER, vehicle.getPlateNumber());
 }
}

That’s fine, but it poses a small problem: the nature of setUp() and tearDown() is
that they're respectively called just before and just after each test method. This
means that the Spring application context is completely reloaded for every test
method in the test case. In a sizable application made up of several objects, this
setup could take some time. Over the course of several test methods, it adds up
and the test case is slow.

 Typically, the beans contained in a Spring application context are stateless.
This means that they can’t be tainted by running a test method and that they’re
reusable across multiple test methods. So, there’s usually no reason to reload the
Spring application context between test methods. In fact, the performance hit
usually makes it undesirable to reload the context between test methods.

 In support of Spring-based integration testing, Spring provides a handful of
test case base classes that handle loading of an application context, ensuring that
the context is loaded once and only once:

■ AbstractDependencyInjectionSpringContextTests

■ AbstractTransactionalSpringContextTests

■ AbstractTransactionalDataSourceSpringContextTests

All of these test case classes are found in the org.springframework.test package.
 Let’s get started with Spring-based integration testing by looking at the sim-

plest of these, AbstractDependencyInjectionSpringContextTests.

694 APPENDIX B

Testing with (and without) Spring
B.3.1 Testing wired objects

Making the job of loading a Spring application context within a test case easier,
Spring comes with AbstractDependencyInjectionSpringContextTests (see fig-
ure B.3). Aside from having one of the longest names of all of the Spring classes,2

this class is an extension of JUnit’s TestCase that manages the loading and
reloading of Spring application contexts for a test case. It makes the Spring appli-
cation context available to your test case classes so that it can retrieve beans that
are to be tested.

To load Spring application contexts in your unit test cases, your test cases should
extend AbstractDependencyInjectionSpringContextTests instead of Test-
Case. In addition, you should override the getConfigLocations() method to
define the location(s) of the Spring configuration XML file(s).

 For example, consider AddRantTest (listing B.3). This test case tests the
addRant() method of RantService. Instead of testing addRant() in isolation
using a mock DAO, this test allows the Spring application context to be loaded and
its beans wired in a way that resembles how the production beans will be wired. In
fact, as it is using the real roadrantz-data.xml, it will also use a real database.

package com.roadrantz.service;
import org.springframework.test.
 ➥ AbstractDependencyInjectionSpringContextTests;
import com.roadrantz.domain.Rant;

2 It’s not the longest, though. Before this appendix is finished, you’ll see an even longer class name.

Listing B.3 Testing RantService in the context of the entire RoadRantz application

Spring
Application

Context

RantService
Test

AbstractDependency
InjectionSpring
ContextTests

getBean("rantService")

Figure B.3 AbstractDependencyInjectionSpringContextTests
is a convenient base class for test cases that loads a Spring application
context and makes it available to the test case for accessing beans.

APPENDIX B

Testing with (and without) Spring 695
import com.roadrantz.domain.Vehicle;
import com.roadrantz.service.RantService;

public class RantServiceTest
 extends AbstractDependencyInjectionSpringContextTests {
 public RantServiceTest() {}

 protected String[] getConfigLocations() {
 return new String[] {
 "file:src/main/webapp/WEB-INF/roadrantz-services.xml",
 "file:src/main/webapp/WEB-INF/roadrantz-data.xml"
 };
 }

 public void testAddRant() throws Exception {

 RantService rantService =
 (RantService) applicationContext.getBean("rantService");

 Rant newRant = new Rant();
 newRant.setRantText("TEST RANT TEXT");
 Vehicle vehicle = new Vehicle();
 vehicle.setPlateNumber("ABC123");
 vehicle.setState("TX");
 newRant.setVehicle(vehicle);
 rantService.addRant(newRant);

 List<Rant> rants = rantService.getRantsForVehicle(vehicle);
 assertTrue(rants.contains(newRant));
 }
}

AbstractDependencyInjectionSpringContextTests supports this test case in
two ways. First, it automatically loads up the Spring application context and
exposes the context through the applicationContext instance variable.
testAddRant() uses the applicationContext variable to retrieve the rantSer-
vice bean from the context.

 Perhaps more importantly, the application context is loaded once and only
once, regardless of how many test methods there are. As shown, RantServiceTest
only has a single test method. But even if it had 100 test methods, the Spring
application context would only be loaded once, improving the overall perfor-
mance of the test case.

Forcing a context reload
Although it’s unusual, you may encounter a situation where your test taints the
Spring application context. Since it’s a best practice to leave the test in a
consistent state between test methods, you’ll need a way to force a reload of the
Spring context.

Defines
Spring
context

Gets rantService
from Spring

Adds test rant

Asserts test rant
was added

696 APPENDIX B

Testing with (and without) Spring
 Normally, AbstractDependencyInjectionSpringContextTests loads the
Spring context only once. But you can force it to reload by calling setDirty()
within your test method. When the test method completes, AbstractDependency-
InjectionSpringContextTests will see that the Spring context is dirty and will
reload a clean context for the next test method to use.

Setting up and tearing down dependency injected tests
You may have noticed that the setUp() method is now gone from RantService-
Test. That’s because there’s no longer a need for it, as AbstractDependencyIn-
jectionSpringContextTests handles the loading of the Spring context for us.
But in the event that you need a setUp() or a tearDown() method in your test,
you should be aware that those methods have been made private so that you will
not be able to override them.

 The reason why they’ve been made private is because AbstractDependencyIn-
jectionSpringContextTests uses those methods to load and unload the Spring
context. If you were to override them, you might accidentally forget to call
super.setUp() and super.tearDown() and the application context would not get
loaded.

 For your own setup and teardown needs, you must override onSetUp() and
onTearDown() instead:

public void onSetUp() throws Exception {
 // perform setup work
}
public void onTearDown() throws Exception {
 // perform teardown work
}

Aside from the name change, these methods effectively serve the same purpose as
TestCase’s setUp() and tearDown() methods.

 AbstractDependencyInjectionSpringContextTests is great for performing
integration tests against objects wired together in a Spring application context.
But it only covers simple nontransactional cases. When integration tests involve
transactional objects, you’ll want to look at Spring’s other unit-test case classes
such as AbstractTransactionalSpringContextTests, which we’ll look at next.

B.3.2 Integration-testing transactional objects

As it appears in listing B.3, RantServiceTest does a fine job of testing that Rant-
Service’s addRant() actually adds a rant to the database. But it also has one
undesirable side effect: it actually adds a rant to the database!

APPENDIX B

Testing with (and without) Spring 697
 But isn’t that what we want addRant() to do? Yes, but when testing we don’t
want that rant to be permanently added to the database. When the test is over, we
need the database to return to a known state, ready for the next test. We need the
test to roll back the database insert when it’s over.

 In addition to AbstractDependencyInjectionSpringContextTests, Spring
also comes with AbstractTransactionalSpringContextTests to address the
problem of rolling back transactions at the end of a test. If your test cases extend
AbstractTransactionalSpringContextTests, a transaction will automatically be
started at the beginning of every test method and automatically rolled back at the
end. That leaves your test methods free to do whatever they want to the database,
knowing that the work will be undone when the test method completes.3

 To take advantage of AbstractTransactionalSpringContextTests, let’s
change RantServiceTest to subclass AbstractTransactionalSpringContext-
Tests. Listing B.4 shows the new RantServiceTest.

package com.roadrantz.service;
import java.util.List;
import org.springframework.test.
 ➥ AbstractTransactionalSpringContextTests;
import org.springframework.transaction.PlatformTransactionManager;
import com.roadrantz.domain.Rant;
import com.roadrantz.domain.Vehicle;
import com.roadrantz.service.RantService;

public class RantServiceTest
 extends AbstractTransactionalSpringContextTests {
 public RantServiceTest() {}

 protected String[] getConfigLocations() {
 return new String[] {
 "file:src/main/webapp/WEB-INF/roadrantz-services.xml",
 "file:src/main/webapp/WEB-INF/roadrantz-data.xml"
 };
 }

public void testAddRant() throws Exception {
 RantService rantService =
 (RantService) applicationContext.getBean("rantService");

 Rant newRant = new Rant();

3 All of this assumes that the underlying database supports transactions. If you’re using MySQL MyISAM
tables, for example, your database tables do not support transactions and thus
AbstractTransactionalSpringContextTests won’t be able to apply transactions to the tests.

Listing B.4 Testing addRant() in a transaction

Performs
transactional
test

698 APPENDIX B

Testing with (and without) Spring
 newRant.setRantText("TEST RANT TEXT");
 Vehicle vehicle = new Vehicle();
 vehicle.setPlateNumber("FOOBAR");
 vehicle.setState("TX");
 newRant.setVehicle(vehicle);

 rantService.addRant(newRant);

 List<Rant> rants = rantService.getRantsForVehicle(vehicle);
 assertTrue(rants.contains(newRant));
 }
}

Not much has changed in this version of RantServiceTest. In fact, the only dif-
ference that you’ll find is that RantServiceTest now extends AbstractTransac-
tionalSpringContextTests. A lot changes, however, when you run the test. Now
no rows are permanently added to the database. Within the context of the test, a
row is added for the rant and another row is added for the vehicle (if the vehicle
didn’t already exist). But once the test is finished, the changes are rolled back and
there will be no trace of this test having been run.

 To accommodate the AbstractTransactionalSpringContextTests use of
transactions, the application context will need to have a transaction manager
bean configured (see chapter 6, section 6.2, for information on Spring’s transac-
tion managers). AbstractTransactionSpringContextTests will look for a trans-
action manager in the Spring context and use it to create and roll back
transactions. The RoadRantz application already has a transaction manager con-
figured in roadrantz-data.xml, so RantServiceTest is ready to go.

Committing the test’s changes
Although it’s unusual, you may want to commit the changes done in a test. If so
then you may simply call the setComplete() method within your test method.
When the test method completes, the transaction will be committed instead of
rolled back. Also, if you’d like to commit the changes before the test method com-
pletes, you may call endTransaction() after calling setComplete() to end the
transaction and commit the changes immediately.

 Be aware of the consequences of setComplete(). That is, any changes made
within the test method will be committed after the test completes (or after
endTransaction() is called). This means that you’ll need to perform some extra
work to clean up the data later or your database will be cluttered with remnants of
old tests. This leftover data may get in the way of future tests and make it difficult
for your tests to be repeatable.

APPENDIX B

Testing with (and without) Spring 699
Setting up and tearing down transactional tests
When working with transactional tests, the notions of setting up before a test and
tearing down after a test take on a slight twist. Do you want your setup to occur
before or after the transaction starts? Should teardown occur inside the transac-
tion or after the transaction has ended? A single pair of setup and teardown meth-
ods is no longer flexible enough.

 Therefore, AbstractTransactionalSpringContextTests provides two setup
methods and two teardown methods:

■ onSetUpBeforeTransaction()—Called before the transaction starts

■ onSetUpInTransaction()—Called after the transaction starts
■ onTearDownInTransaction()—Called just before the transaction is

rolled back (or committed)
■ onTearDownAfterTransaction()—Called after the transaction has

been rolled back (or committed)

Just like setUp() and tearDown() in JUnit’s TestCase class or onSetUp() and
onTearDown() in Spring’s AbstractDependencyInjectionSpringContextTests,
you can define the setup and teardown behavior of your test cases by overriding
one or more of these methods. A little later in this appendix, we’ll override the
onTearDownAfterTransaction() method to perform some database cleanup.

 RantServiceTest is almost done. But there are still a few loose ends to tie up.
Let’s see how to give RantServiceTest access to the database itself to assert that
the data is being persisted as we expect.

B.3.3 Testing against the database

There’s a small problem with RantServiceTest as it appears in listing B.4. When
testing that the rant has been added, we don’t know with any certainty that the
rant has been added to the database. The only thing that we can say for sure is
that RantService says that a rant has been added to the database.

 In a unit test, it’s okay to trust that RantService is telling us the truth because
when we’re unit-testing RantService, we’re only concerned that RantService is
doing what we expect—not that any database has been updated. But in an integra-
tion test, we want to be certain that the database is being updated with the values
we expect. Therefore, it’s not good enough to trust RantService. We must go to
the database to be certain.

 Querying a database with JDBC is not all that complex, but Spring’s Jdbc-
Template makes it even easier (as discussed in chapter 5). And Abstract-

700 APPENDIX B

Testing with (and without) Spring
TransactionalDataSourceSpringContextTests4 makes working with Jdbc-
Template even easier when in an integration test.

■ AbstractTransactionalDataSourceSpringContextTests is a transac-
tional test case class like AbstractTransactionalSpringContexTests. But
to support database queries, it also provides a jdbcTemplate instance vari-
able. Test methods can use this instance variable to query the database
directly.

For example, RantServiceTest has been changed again in listing B.5 to use
jdbcTemplate to ensure that the rant has been added to the database.

package com.roadrantz.service;
import java.sql.ResultSet;
import java.sql.SQLException;
import org.springframework.jdbc.core.RowMapper;
import org.springframework.test.
 ➥ AbstractTransactionalDataSourceSpringContextTests;
import com.roadrantz.domain.Rant;
import com.roadrantz.domain.Vehicle;
import com.roadrantz.service.RantService;

public class RantServiceTest
 extends AbstractTransactionalDataSourceSpringContextTests {
 public RantServiceTest() {}

 protected String[] getConfigLocations() {
 return new String[] {
 "file:src/main/webapp/WEB-INF/roadrantz-services.xml",
 "file:src/main/webapp/WEB-INF/roadrantz-data.xml"
 };
 }

 public void testAddRant() throws Exception {
 RantService rantService =
 (RantService) applicationContext.getBean("rantService");

 Rant newRant = new Rant();
 newRant.setRantText("TEST RANT TEXT");
 Vehicle vehicle = new Vehicle();
 vehicle.setPlateNumber("FOOBAR");

4 Believe it or not, AbstractTransactionalDataSouceSpringContextTests is still not the class with
the longest name in the Spring API. A quick scan of Spring’s JavaDoc reveals that Lazy-
SingletonMetadataAwareAspectInstanceFactoryDecorator takes top prize for having the longest
class name. What does that class do? Well… isn’t it obvious from the name?

Listing B.5 RantServiceTest modified to query the database to ensure that a rant
has been added

Performs
database-enabled

test

APPENDIX B

Testing with (and without) Spring 701
 vehicle.setState("TX");
 newRant.setVehicle(vehicle);

 int before = jdbcTemplate.queryForInt(
 "select count(*) from rant");

 rantService.addRant(newRant);

 int after = jdbcTemplate.queryForInt(
 "select count(*) from rant");

 assertEquals("There should be one more row in rant table.",
 after, before+1);

 String testRantText = (String) jdbcTemplate.queryForObject(
 "select rantText from rant where id=?",
 new Object[] { newRant.getId() }, String.class);

 assertEquals("newRant.getRantText()", testRantText);
 }
}

Rather than take the word of RantService, RantServiceTest now performs some
simple queries against the database. The first assertion made is that the number
of rows in the rant table has grown by exactly 1 after the addRant() method is
called. The actual rant text is also checked in another assertion.

 AbstractTransactionalDataSourceSpringContextTests expects that a
DataSource be declared in the Spring application context. That’s not a problem,
as we have already defined one in roadrantz-data.xml.

Cleaning up
Although AbstractTransactionalDataSourceSpringContextTests will roll back
any changes made in the test methods, it’s still possible for you to force a commit
by calling setComplete(). Even if you have good reasons for committing the data
in the course of your tests, you’ll probably still want to clean up the mess when
you’re done.

 To accommodate test data cleanup, AbstractTransactionalDataSource-
SpringContextTests provides a convenience method for deleting all data in one
or more tables. The deleteFromTables() method deletes all rows from the tables
specified in a String array.

 To illustrate, here’s an onTearDownAfterTransaction() method that calls
deleteFromTables() to delete everything in the rant and vehicle tables:

protected void onTearDownAfterTransaction() throws Exception {
 deleteFromTables(new String[] {"rant", "vehicle"});
}

Asserts exactly
one row was

added

Asserts
rant text is
correct

702 APPENDIX B

Testing with (and without) Spring
It’s important to understand the consequences of calling deleteFromTables().
All data will be deleted from the tables specified—not just the data that was added
by the test. Therefore, it’s important that you only use deleteFromTables() when
testing against a database where you can afford to wipe the tables clean. (In other
words, please don’t run these kinds of tests against your production database!)

B.3.4 Testing in JUnit 4 with Gienah Testing

All of the examples in this appendix so far have been based on JUnit 3.8.1, as
that’s the version of JUnit that Spring’s abstract test case classes are based on.
Even so, as I write this, JUnit 4.3.1 is the latest version of JUnit available, and JUnit
4.4 is expected to be released very soon. JUnit 4 takes advantage of Java 5 annota-
tions in defining test cases, resulting in slightly cleaner testing code.

 In case you’d like to move up to JUnit 4, I thought I should inform you of
gienah-testing (http://code.google.com/p/gienah-testing/), a new JUnit 4
extension that enables dependency injection of JUnit 4 test classes. It uses a cus-
tom JUnit 4 runner to load a Spring application context and inject values into
class-scoped variables in the test case class.

 To demonstrate gienah-testing, let’s rewrite the RantServiceTest test class,
basing it on JUnit 4 and using gienah-testing to inject the RantService directly
into the test class’s rantService variable. Listing B.6 shows the new version of
RantServiceTest.

package com.roadrantz.service;
import java.util.List;
import junit.framework.Assert;
import org.gienah.testing.junit.Configuration;
import org.gienah.testing.junit.Dependency;
import org.gienah.testing.junit.SpringRunner;
import org.gienah.testing.junit.Transactional;
import org.junit.Test;
import org.junit.runner.RunWith;
import com.roadrantz.domain.Rant;
import com.roadrantz.domain.Vehicle;

@RunWith(value = SpringRunner.class)
@Configuration(locations = {
 "src/main/webapp/WEB-INF/roadrantz-services.xml",
 "src/main/webapp/WEB-INF/roadrantz-data.xml"})
public class RantServiceTest {

 @Dependency
 private RantService rantService;

Listing B.6 The RantServiceTest, rewritten as a JUnit 4 test case, using gienah-testing

Uses gienah’s
SpringRunner

Specifies
context
definition files

Injects
rantService

APPENDIX B

Testing with (and without) Spring 703
 @Transactional
 @Test
 public void testAddRant() throws Exception {
 Rant newRant = new Rant();
 newRant.setRantText("TEST RANT TEXT");
 Vehicle vehicle = new Vehicle();
 vehicle.setPlateNumber("ABC123");
 vehicle.setState("TX");
 newRant.setVehicle(vehicle);
 rantService.addRant(newRant);

 List<Rant> rants = rantService.getRantsForVehicle(vehicle);

 Assert.assertTrue(rants.contains(newRant));
 }
}

The first thing to notice about this new JUnit 4/gienah-based test case is that the
class is annotated with @RunWith to use SpringRunner. JUnit 4 uses test runners
to know how to execute tests. JUnit 4’s default test runner knows nothing about
Spring, so here @RunWith specifies that gienah’s Spring-aware test runner be
used instead.

 Now that JUnit 4 knows to use the Spring-aware test runner, it will need to
know which Spring context definition files to load. For that, I’m using gienah’s
@Configuration annotation to load roadrantz-services.xml and roadrantz-
data.xml.

 In the previous versions of RantServiceTest, the RantService instance was
retrieved directly from the Spring application context. But with gienah, it can be
injected from the Spring context. The @Dependency annotation tells gienah to
inject the rantService variable with a bean from the Spring context whose
name is rantService (the same name as the variable). Figure B.4 illustrates how
this works.

 If for some reason the RantService was named something else (perhaps road-
RantService), I could specify a bean name using the bean attribute:

@Dependency(bean="roadRantService")
private RantService rantService;

Finally, the @Transactional annotation placed on the test method indicates that
any work done within the test method should occur within a transaction and be
rolled back after the test completes. This keeps the test method from leaving a
mess behind when it’s over.

Tests in a transaction

704 APPENDIX B

Testing with (and without) Spring
 gienah-testing brings much of Spring’s context-aware testing into the JUnit 4
world. But you should be aware that as I write this, gienah-testing is at version
E0.31, where “E” stands for “experimental,” and E0.4 is to be released at the same
time as JUnit 4.4. As it is experimental, you should expect some quirks. Here are a
couple that I’ve encountered:

■ The @Transactional annotation depends on a transaction manager being
configured in the Spring application context with a bean ID of transac-
tionManager. It will not work if the transaction manager is configured with
any other ID.

■ Oddly, the E0.31 JAR file is compiled using a Java 6 compiler. If you want to
use gienah-testing with Java 5, you’re out of luck. This is unfortunate as it
shuts out anyone who can’t use Java 6 yet (such as Mac users).

Both of these issues are expected to be fixed with E0.4. Even so, E0.4 is still an
experimental release—so proceed with caution.

 One other annoyance is that gienah-testing is not currently available in any of
the known Maven 2 repositories. Therefore, if you’re using Maven 2 for your
build (as I am), you’ll need to download gienah-testing and add it to your local
repository using the install:install-file goal:

% mvn install:install-file
 -DgroupId=gienah
 -DartifactId=gienah
 -Dversion=E0.31-patched
 -Dpackaging=jar
 -Dfile=gienah-testing-bin-E0.31-patched.jar

Despite its quirkiness, gienah-testing shows a lot of promise. Keep an eye on its
progress at its homepage: http://code.google.com/p/gienah-testing.

RantServiceImplRantServiceTest
Spring

Application
Context

SpringRunner

Figure B.4 gienah-testing’s SpringRunner automatically injects dependency
variables in a JUnit 4 test case with beans from the Spring application context.

APPENDIX B

Testing with (and without) Spring 705
B.4 Summary

Test-driven development is a practical way of ensuring the correctness of the code
you write. Testing frameworks like JUnit are indispensable in writing and running
automated test cases.

 Although Spring supports unit testing by encouraging decoupled code, Spring
isn’t often directly involved in the activity of testing. Nevertheless, there are some
circumstances where Spring can pitch in and make testing a bit easier.

 For unit testing, Spring’s AbstractModelAndViewTests supplies developers
with some handy assertion methods that make short work of verifying the data
returned from a Spring MVC controller in a ModelAndView object. And Spring
also comes with several mock implementations of common interfaces that are per-
fect for testing controller classes.

 When it comes to integration testing, AbstractDependencyInjectionSpring-
ContextTests can handle loading and unloading of the Spring application con-
text. AbstractTransactionalSpringContextTests, along with AbstractTran-
sactionalDataSourceSpringContextTests, can also ensure that any database
work is rolled back between tests.

index
Symbols

#springFormInput macro 563
#springFormTextarea macro 563
<@spring.formInput> macro 568
<@spring.formTextArea> macro 568
<[CDATA...]> construct 113
@AspectJ annotation 141, 144

@Around annotation 144
@Cacheable annotation 217
@CacheFlush annotation 217
@Configurable annotation 87
@Pointcut annotation 142
@Transactional annotation 244

A

AbstractCommandController 508–510
AbstractController 508–509
AbstractDependencyInjectionSpringContext

Tests 694, 696, 705
AbstractExcelView 570–571
AbstractFormController 508–509
abstracting base bean type 74, 76

common properties 76, 78
overriding inherited properties 76
ProxyFactoryBean 138–139

AbstractJDomPayloadEndpoint 355
invokeInternal() method 357

AbstractJmsMessageDrivenBean 431
AbstractMarshallingPayloadEndpoint 358

invokeInternal() 360
AbstractMessageDrivenBean 431
AbstractModelAndViewTests class 690, 705

assertion methods 690

AbstractPdfView 574–575
AbstractStatefulSessionBean 431
AbstractStatelessSessionBean 431–432
AbstractTransactionalDataSourceSpringContext-

Tests 700–701, 705
AbstractTransactionalSpringContextTests 697,

699
AbstractTransactionSpringContextTests 705
AbstractWizardFormController 508, 521, 524, 584

getTargetPage() 524–525
processCancel() 526
processFinish() 525–526

access decisions managers 251, 271–275
voter abstinence 275
voting 272–274

AccessDecisionManager 271–272
allowIfAllAbstain property 275
decide() 272
supports() 272

AccessDecisionVoter interface 272–273
 See also RoleVoter

AccessDeniedHandlerImpl 292
Acegi Secuity System 248–249

See also Spring Security
<action> 607
<action-state> 597, 607
ActionSupport 627, 629
ActiveMQ message broker

setting up 392–393
creating connection factories 392
declaring destinations 392–393

ActiveMQConnectionFactory 392–393
brokerURL property 392

Adobe’s Portable Document Format (PDF)
569–575
707

708 INDEX
advice 119–120, 127, 132
AfterReturningAdvice 129–130
MethodBeforeAdvice interface 129
MethodInterceptor interface 131–132
Spring AOP 127
ThrowsAdvice interface 130–131

advisors 132–136
combining pointcuts with 134

after-invocation managers 251–252
AfterReturningAdvice 129–130
Ajax 663–664

accessing Spring-managed beans DWR 659,
661–663

Direct Web Remoting (DWR) 648, 650–651,
654, 656–658

allowIfAllAbstain property 275
annotated domain objects 187–188
AnnotationAwareAspectJAutoProxyCreator 143
annotation-driven caching 217–218
annotation-driven transactions 243, 245
AnnotationJmxAttributeSource 474
annotations

declaring interceptors using Pitchfork 438–439
injecting resources by Pitchfork 437–438
supported by Pitchfork 435

AnnotationSessionFactoryBean 187–188
Ant 675–676
aop namespace 243
AOP. See aspect-oriented programming (AOP)
<aop:after-throwing> 147
<aop:aspect> 28
<aop:aspectj-autoproxy> 143
<aop:before> 29, 147
<aop:config> 28, 146
<aop:pointcut> 29, 148
<aop:spring-configured> 87
Apache Ant 675–676
application context

exposing in JSF 648
splitting up 493–494

application context module 8
application events 101–103
application lifecycle events 8
application objects, associations between 32
ApplicationContext interface 35, 40

lifecycle 37, 40
publishEvent() 102

ApplicationContextAware interface 104
setApplicationContext() 105

ApplicationContextAwareProcessor 95

ApplicationContexts 33
compared to BeanFactories 36
loading 36–37
retrieving beans from 37

application-managed Java Persistence API
(JPA) 198–199

approveCreditCard() 606
AspectJ 122
AspectJ 5 141
AspectJ aspects 88
AspectJ pointcuts 135–136
aspectj/ directory 668
AspectJExpressionPointcut 135
AspectJExpressionPointcutAdvisor 135
aspect-oriented programming (AOP) 8, 24, 30,

118, 125
autoproxying 139–144
compared to dependency injection (DI) 117
configuration elements 145
creating classic aspects 125–139
declaring pure-POJO aspects 145, 149
description 24–25
example 26–27, 30
module 8
overview 4, 6, 118–119
Spring support for 122, 125
terminology 119–120

aspects 120, 125, 139
@AspectJ 141, 144
advice, creating 127–132
advisors 132–136
AspectJ 149, 152
autoproxies, creating 140–141
compared to inheritance and delegation 119
implementing 27, 30
pointcuts, defining 132, 136

AspectJ 135–136
combining with advisors 134
regular expression 133–134

ProxyFactoryBean 136, 139
abstracting 138–139

pure-POJO 145, 149
asynchronous messaging 385–386, 422

Java Message Service (JMS) 386, 393, 407
architecture 387, 389
benefits 390–391
converting messages 402, 405
gateway support classes 405, 407
runaway code 393, 395
setting up ActiveMQ message broker 392–393

INDEX 709
asynchronous messaging, Java Message Service
(JMS) (continued)
templates 395, 402

message-based RPC 416, 422
exporting services 418–419
Lingo 417–418
proxying Java Message Service (JMS) 420, 422

message-driven POJOs (MDPs) 407, 416
creating message listeners 408, 412
writing 412, 416

atomic, consistent, isolated, durable (ACID)
223–224

attributes property,
MethodDefinitionAttributes 303

attributes, MBean
transactions 233, 237

isolation levels 235–236
propagation behavior 233, 235
read-only 236–237
rollback rules 237
transaction timeout 237

using interfaces to define 472–473
AttributesJmxAttributeSource 474
AuthByAuthenticationProvider 254

See also ProviderManager
authenticating users 252, 271

against databases 256, 264
caching user information 263–264
encrypted passwords 260, 262
InMemoryDaoImpl 257, 259
JdbcDaoImpl 259–260

against LDAP repositories 264, 271
BindAuthenticator 265, 267
comparing passwords 267, 269
DefaultLdapAuthoritiesPopulator 269, 271

ProviderManager 253, 256
authentication 287–291
authentication manager 250
authentication providers 254
AuthenticationDao 257

See also DaoAuthenticationProvider
authenticationFailureUrl property 291
AuthenticationManager 252

authenticate() 253
interface 252

authenticationManager property 291
See also ProviderManager

authentication-processing filters 277
AuthenticationProcessingFilter 290–291
AuthenticationProcessingFilterEntryPoint 289

AuthenticationProvider interface 256
authoritiesByUsernameQuery property 260
authorization exceptions 292–293
<authz:authentication> 300
<authz:authorize> 298
<authz:ifAllGranted> 298
<authz:ifAnyGranted> 298
<authz:ifNotGranted> 299
<authz:operation> 300
autoboxing 182
autodetect autowiring 62
autowire attribute 62
autowire property 58
autowiring 58–64

mixing with explicit wiring 63
shortcomings 63–64
types 59, 62

awareness 103–106
BeanNameAware interface 104–105

AxisBeanMappingServicePostProcessor 337

B

base bean types, abstracting 74, 76
BaseCommandController 508–509
BasicDataSource 167–168
BasicProcessingFilter 288
BasicProcessingFilterEntryPoint bean 286
<bean> 41

abstract attribute 74–75
factory-method attribute 67
parent attribute 74

BeanCounter 96
BeanDeserializer class 337
BeanFactories 33

retrieving beans from 35
BeanFactory class 13
BeanFactory container 7
BeanFactory interface 34–35
BeanFactoryAware interface 104–105
BeanFactoryPostProcessor interface 95–96
BeanNameAutoProxyCreator 301
BeanNameAware interface 104–105
BeanNameUrlHandlerMapping 499, 501, 503
BeanNameViewResolver 538, 540–541
BeanPostProcessor interface 93, 95
<beans> 12
beans

controller 498–499
exposing as HTTP services 324, 326

710 INDEX
beans (continued)
exposing functionality with Burlap

exporting services 321–322
exposing functionality with Burlap and

Hessian 318, 322
exposing functionality with Hessian

controllers 320–321
HessianServiceExporter 319–320

lifecycle 34
steps 37

proxied inner 216–217
proxying for caching 215, 217

flushing 215–216
retrieving from ApplicationContexts 37

<beans> element 12
BeanSerializer class 337
BeanShell, scripting beans in 110–111
BindAuthenticator 265–267
boilerplate code, JDBC 172
brokerURL property 392
buildExcelDocument() 571
building

classpaths 669, 671
controllers 496–497
homepages 495–502
orders 601, 605
wizard controllers 521, 524

buildPdfDocument() 575
Burlap 316, 322

accessing services 317–318
exposing bean functionality 318, 322

exporting services 321–322
BurlapProxyFactoryBean 317
BurlapServiceExporter 321

C

<cache> 213
cache property, JndiObjectFactoryBean 448
caching data 208, 218

annotation-driven 217–218
caching solutions 210, 215

EHCache 213, 215
proxying beans for 215, 217

flushing 215–216
proxied inner beans 216–217

callback classes 162
CasAuthenticationProvider 254

 See also ProviderManager
Cascading Style Sheets (CSS) 573

case normalization 270
CastorMarshaller 366
catch blocks 159–161
Caucho Technology 316
cellFuncs 658
ChannelDecisionManagerImpl 297
ChannelProcessingFilter 295

filterInvocationDefinitionSource 296
channels 294–297
child beans

declaring 73, 78
abstracting base bean type 74, 76
abstracting common properties 76, 78

class attribute 41
class inheritance 75
ClassEditor 89
classload time 121
classpaths, building 669, 671
ClassPathXmlApplicationContext 36–37
collaboration 19–20
collection configuration elements 52–53, 58

arrays 53–54
lists 53–54
maps 55–56
properties 56, 58
sets 54–55

commands, processing 509, 511
Commons Attributes compiler 505
Commons Logging 671
Commons Validator 517, 520

validation rules 519
CommonsHttpMessageSender 376
CommonsPathMapHandlerMapping 503, 505
compile time 121
ComponentControllerSupport 555
conditionally rendering content 298–299
configLocation property 205
configuration attributes, EHCache 214
configuration elements

aspect-oriented programming (AOP) 145
Spring Modules 212

configuring
context loaders 494–495
controller beans 498–499
data sources 96, 165, 169
Direct Web Remoting (DWR) 650–651
DispatcherServlet 492–495
engines

FreeMarker 565–566
Velocity 558–559

flow executors 586–587

INDEX 711
configuring (continued)
JDBC driver-based 168–169
JNDI 165, 167

Spring 2.0 166–167
mail senders 451, 453

Java Naming and Directory Interface
(JNDI) 452

wiring into service beans 453
pooled 167–168
Remote Method Invocation (RMI) services

313, 316
Tiles 552

connection factories, Java Message Service
(JMS) 392

ConnectorServerFactoryBean 478
constructor autowiring 61–62
constructor injection versus setter injection 44
<constructor-arg> 13, 42

autowiring 63
ref attribute 44
value attribute 44

constructors, injecting through 42, 45
object references 43, 45

container 6
container-managed Java Persistence API

(JPA) 200, 202
containers 6, 33

Bean factories 33
containing beans 33–40

ApplicationContext interface 35, 40
lifecycle 37, 40

BeanFactory interface 34–35
context loaders, configuring 494–495
context reload, forcing 695–696
contextConfigLocation parameter 495
ContextLoaderListener 494, 661
ContextLoaderServlet 495
contextual sessions, Hibernate 3 192, 194
contract-first web services 344–347, 373, 382–383

creating sample XML messages 348, 353
messages with service endpoints 353, 360

JDOM-based message endpoints 355, 357
marshaling message payloads 358, 360

web service gateway support 381–382
web service templates 374, 380

marshalers on client side 379–380
sending messages 377, 379

wiring 361, 373
configuration 361, 363
deploying 373
endpoint exceptions 367, 369

mapping messages to endpoints 363–364
message marshalers 364, 367
service endpoints 364
WSDL files 369, 373

contract-last web services 345
Controller 508
controller beans, configuring 498–499
Controller interface 507
ControllerClassNameHandlerMapping 503–505,

586
controllers

building 496–497
classes 508
creating Tile 554, 556
form 512
Hessian 320–321
hierarchy 507
mapping requests to 502–506
Spring MVC 491–492, 685, 692
throwaway 528, 531
wizard 521, 524

conversation-style navigation 583
convertAndSend() 404
converted messages 402–405
convertToUpperCase 270
core container 7–8
coupling 17, 19
creating beans 40, 45

controlling 64, 71
creating from factory methods 66, 68
destroying 68, 71
initializing 68, 71
scoping 66

declaring 40–41
injecting through constructors 42, 45

object references 43, 45
cron expressions 464
cron jobs, scheduling 462–463
CronTriggerBean 104, 462–463
cross-cutting concerns 24, 117–118
custom editors 89–92
CustomDateEditor 89
CustomEditorConfigurer 91
customer information 594, 601

adding new customers 598, 601
creating data flow 615, 617
looking up data 597–598
phone numbers 595–596

712 INDEX
D

DAO. See data access objects (DAOs)
DaoAuthenticationProvider 256–260

authenticationDao 257
diagram of 256
MD5 encoding 261
userDetailsService property 257
wiring 257
See also ProviderManager

data access 156, 219
caching 208, 218

annotation-driven 217–218
caching solutions 210, 215
proxying beans for 215, 217

data sources 165, 169
JDBC driver-based 168–169
JNDI 165, 167
pooled 167–168

Hibernate 183, 194
data access objects (DAOs) 190–191
Hibernate 3 contextual sessions 192, 194
templates 186, 190
versions 185–186

iBATIS 203, 208
data access objects (DAOs) 207–208
templates 204, 207

Java Persistence API (JPA) 194, 203
data access objects (DAOs) 202–203
entity manager factories 197, 202
templates 194, 197

JDBC 170, 183
data access object (DAO) support classes

180, 183
runaway code 170, 173
templates 173, 180

overview 156–157
tiers 157, 165

data access object (DAO) support classes
163, 165

exceptions 158, 161
templating 161, 163

data access exceptions 160
data access objects (DAOs) 157

Hibernate 190–191
iBATIS 207–208
Java Persistence API (JPA) 202–203
JDBC 180, 183

named parameters 181–182
simplified in Java 5 182–183

module 8

service objects access 157
support classes 163, 165

data access templates 163
HibernateTemplate 162
JdbcTemplate 162
JpaTemplate 162

data contracts 349, 353
data sources 165, 169

configuring 96
JDBC driver-based 168–169
JNDI 165, 167

Spring 2.0 166–167
pooled 167–168

Database Connection Pools (DBCP) 167
databases

authenticating users against 256, 264
caching user information 263–264
encrypted passwords 260, 262
InMemoryDaoImpl 257, 259
JdbcDaoImpl 259–260

integration-testing against 699, 701–702
datacentric messaging 390
DataSource 443

JdbcTemplate class 174
retrieving from Java Naming and Directory

Interface (JNDI) 443, 445
dataSource property

AnnotationSessionFactoryBean 188
LocalSessionFactoryBean 187

DataSourceTransactionManager 226
dates, formatting in Velocity 560–561
dateToolAttribute property

VelocityViewResolver bean 560
DBCP. See Database Connection Pools (DBCP)
decide() 272
decision states 612, 614
<decision-state> 612–613, 616
declaritive transaction management 224
decoupling 101–103
default destinations, setting 399–400
DefaultAdvisorAutoProxyCreator 95, 140
DefaultBeanValidator 518
<defaultCache> 213
default-destroy-method 69
DefaultInitialDirContextFactory 266, 269
default-init-method attribute 69
DefaultLdapAuthoritiesPopulator 269, 271

constructor arguments 269
convertToUpperCase property 270
groupRoleAttributes property 269
groupSearchFilter property 271

INDEX 713
DefaultMessageListenerContainer 411
transactionManager property 412

defaultObject property,
JndiObjectFactoryBean 449

DefaultPointcutAdvisor class 134
defaultTargetUrl property 291
DefaultValidatorFactory 518
DelegatingRequestProcessor 629, 631
DelegatingTilesRequestProcessor 630
DelegatingVariableResolver 621, 646, 648, 664
delegation, compared to aspects 119
dependency injected tests

setting up 696
tearing down 696

dependency injection (DI) 14–23
compared to aspect-oriented programming

(AOP) 117
enterprise applications 21, 23
example 15, 21

coordinating collaboration 19–20
coupling 17, 19
unit testing 16–17
wiring 20–21

method injection 79, 85
getter injection 83, 85
method replacement 80, 83

overview 4, 6, 14
destinations

default Java Message Service (JMS) 399–400
defined 388

destinations, ActiveMQ declaring 392–393
destroy() 70
destroy-method attribute 68
DHTML. See Dynamic HTML (DHTML)
DI. See dependency injection (DI)
Diaphragma 641
Direct Web Remoting (DWR) 648, 650, 658, 664

calling remote methods from JavaScript 656–
657

configuration 650–651
defining remote objects 651, 654
displaying results 657–658
exporting remote objects to JavaScript 654, 656
Spring configuration namespace 662–663
Spring creators 659, 661

dirty reads 235
DispatcherServlet 329, 491–492, 495, 501

configuring context loaders 494–495
splitting up application context 493–494

DisposableBean interface 69–71
docs/ directory 669

doInTransaction() 232
domain objects 86
driverClassName property 167
DriverManagerDataSource class 169
DWR. See Direct Web Remoting (DWR)
dwr.xml file 654
DwrServlet 650, 656
DwrSpringServlet 662
DWRUtil object 658
Dynamic HTML (DHTML) 649
dynamic MBeans 467
DynamicWsdl11Definition 369

E

EasyMock 688–689
EHCache 213–217
<ehcache:annotations> 217
<ehcache:caching> 215
<ehcache:flushing> 215
<ehcache:proxy> 215
EhCacheBasedUserCache 263
EhCacheFactoryBean 264
<ehcache:when> 218
EJB. See Enterprise JavaBeans (EJBs)
EJB 2.x

compared to EJB 3 425
complexities 434
message-driven beans (MDBs) 408
session beans, proxying 426, 430
Spring-enabled Enterprise JavaBeans 431, 434

EJB 3 434, 439
compared to EJB 2.x 425
message-driven beans (MDBs) 408
Pitchfork 435–437

declaring interceptors using
annotations 438–439

injecting resources by annotation 437–438
session beans, declaring 429–430
specification 194

EJB specification 194
email

constructing 453, 456
sending 450, 456–458

configuring mail senders 451, 453
embark() 17–18
embarkOnQuest() 29
encrypted passwords 260, 262
end states 593–594
endpoint exceptions 367, 369
endpoints, mapping messages to 363–364

714 INDEX
<end-state> 593–594
engines, configuring

FreeMarker 565–566
Velocity 558–559

enterprise applications 21, 23
Enterprise JavaBeans (EJB) 424, 440

complexities 434
specification 4–5

enterprise services 442, 485
Java Management Extensions (JMX) 466, 484

exporting Spring beans as MBeans 467, 477
handling notifications 482, 484
remoting MBeans 477, 482

Java Naming and Directory Interface (JNDI)
conventional 443, 446
in Spring 2 449–450
injecting objects 446, 449
wiring objects from 442, 450

scheduling tasks 456, 466
invoking methods on schedule 464, 466
Java Timer class 457, 460
Quartz scheduler 460, 464

sending email 450, 456
configuring mail senders 451, 453
constructing email 453, 456

entity beans 194
entity manager factories

Java Persistence API (JPA) 197, 202
application-managed 198–199
container-managed 200, 202

EntityManager interface 194–197
entityManagerFactory property 195
<entry> 56
errors, displaying in JavaServer Pages (JSPs)

547, 549
events 590

listening for 102–103
publishing 101–102

Excel spreadsheets 570, 573
exception translation filters 277
exceptionMappings property 368
exceptions

authorization 292–293
handling 531–532
security 291, 293

ExceptionTranslationFilter 292
execute() 231
explicit wiring, mixing with autowiring 63
exporting

Burlap services 321–322
Lingo services 418–419

methods by name 471–472
remote MBeans 478
Remote Method Invocation (RMI) services

312, 316
Spring beans as MBeans 467–477

exposeRequestAttributes property
FreeMarkerViewResolver 566
VelocityViewResolver bean 561

exposeSessionAttributes property
FreeMarkerViewResolver 566
VelocityViewResolver bean 561

exposeSpringMacroHelpers property
VelocityViewResolver bean 563

exposing bean functionality
Burlap 318, 322

exporting services 321–322
Hessian 318, 322

controllers 320–321
HessianServiceExporter 319–320

HTTP services 324, 326
externalized messages, rendering in JavaServer

Pages (JSPs) 544, 547
externalizing configuration properties 96, 99
extract methods 614

F

factory methods, creating beans from 66, 68
factory-method attribute element 67
fallback objects, Java Naming and Directory

Interface (JNDI) 448–449
FileEditor 89
FileSystemXmlApplicationContext 36
<filter> 278
filter security interceptors 278
FilterChainProxy 281, 283
filterInvocationDefinitionSource property

282, 296
<filter-mapping> 278
filterProcessesUrl property 290
filters, proxying 279–281
FilterSecurityInterceptor 293

objectDefinitionSource property 294
FilterToBeanProxy 279, 629

web.xml files 283
final methods 124
find() 197
flow definitions, registering 588
flow executors, configuring 586–587
flow variables 591, 593

scopes 593

INDEX 715
<flow:executor> 587
<flow:location> 588
<flow:registry> 588
FlowAction 599–601
FlowController 585–586, 596
FlowExecutorFactoryBean 587
FlowNavigationHandler 621
FlowPhaseListener 621
flows, creating 591, 611

building orders 601, 605
completing orders 605, 608
flow variables 591, 593
gathering customer information 594, 601
start states 593–594

flushing caches 215–216
forceHttps property 289
foreign languages 540, 547, 549
form controllers 510
form data binding in JavaServer Pages (JSPs)

542, 544
form fields, binding

in FreeMarker 567, 569
in Velocity 561, 564

<form:errors> 547–548
<form:form> 544
<form:input> 544
<form:textarea> 544
formatting, in Velocity 560–561
form-based authentication 289, 291
form-binding JavaServer Page (JSP) tags 543
formObjectClass property, FlowAction 600
formObjectName property, FlowAction 600
formObjectScope property, FlowAction 600
forms

pages 524–525
processing with wizards 520–521, 524–526, 528
submissions 512, 515, 517, 520
validating input 515, 517, 520

Fowler, Martin 14
free-flow navigation 582
FreeMarker 564, 569

binding form fields 567, 569
configuring engines 565–566
defining views 564–565
exposing attributes 566–567
macros 566
resolving views 566

FreeMarkerConfigurer 565–566
FreeMarkerViewResolver 566–567
front controllers 491

G

gateway support classes for Java Message Service
(JMS) 405, 407

web services 381–382
getAsText() 89
getBean() 13, 35, 37
getConnection() 164
getContents() 81
getHibernateTemplate() 190
getInstance() 67
getJdbcTemplate() 181
getNamedParameterJdbcTemplate() 182
getTargetPage() 524–525
getter injection 83, 85
gienah-testing 702, 704

SpringRunner 704
global object 637, 639
global-session scoping option 65
greeting property 12–13
GreetingService interface 11
GreetingServiceImpl class 11–12
Groovy, scripting beans in 110
groupRoleAttributes property 269
groupSearchFilter property 271

H

handler mappings 505–506
HandlerMapping

implementations 503
order property 506

HeaderTileController 554, 556
hello.xml file 12
Hessian 316, 322

accessing services 317–318
controllers 320–321
exposing bean functionality 318, 322

HessianProxyFactoryBean 317
HessianServiceExporter 319–320
Hibernate 86, 159, 183, 194

catch blocks 159
contextual sessions

advantages/disadvantages 193
data access objects (DAOs) 190–191
exception heirarchy 159
Hibernate 3 contextual sessions 192, 194
package structure 185
Session interface 186
SessionFactory interface 186
templates 186, 190

716 INDEX
Hibernate, templates (continued)
annotated domain objects 187–188
classic mapping files 186–187

transaction managers 227
versions 185–186

Hibernate 3 192–194
HibernateDaoSupport class 190
HibernateException class 186
hibernateProperties property 187–188
HibernateTemplate class 162, 186, 192

load() 190
saveOrUpdate() 189

HibernateTemplate-based DAO 189
HibernateTransactionManager 227
HolyGrailQuest class 16–18
HomePageController 496, 501

name attribute 498
homepages 495, 502

building controllers 496–497
configuring controller beans 498–499
creating JSP 500–501
declaring view resolvers 499–500
ModelAndView 497–498

HTML content 493
HttpInvoker 322, 326

accessing services 323–324
exposing bean functionality 324, 326

HttpInvokerProxyFactoryBean 323
HttpInvokerServiceExporter 324
HttpSessionContextIntegrationFilter 286
HttpUrlConnectionMessageSender 376

I

iBATIS 86, 203, 208
data access objects (DAOs) 207–208
templates 204, 207

SQL maps 205–206
SqlMapClientTemplate 204–205

id attribute 41
ifAllGranted 298
ifAnyGranted 298
ifNotGranted 299
implementing aspects 27, 30
indirection 387
inheritance 75

compared to aspects 119
initialization on demand holder 67
initializing beans 68, 71

default-init-method attribute 69
init-method attribute 68

<inject> 642
InjectObject annotation 642
InMemoryDaoImpl 257–259

 See also AuthenticationDao
inner beans 51–52

proxied 216–217
integration filters 277
integration-testing 684–704

AbstractDependencyInjectionSpringContext-
Tests 705

AbstractTransactionalDataSourceSpring-
ContextTests 705

AbstractTransactionSpringContextTests 705
against database 699, 701–702
in JUnit 4 with gienah-testing 702, 704
transactional objects 696, 698–699
wired objects 694–696

interceptors, in Pitchfork 438–439
InterfaceBasedMBeanInfoAssembler 472–473
interfaces

defining MBean operations/attributes 472–473
mocking with EasyMock 688–689
template methods 161

InternalResourceViewResolver 499–502, 536–537,
540–541, 553

viewClass property 537
internationalization 8, 99, 547–549
introductions 121
invokeInternal()

AbstractJDomPayloadEndpoint 357
AbstractMarshallingPayloadEndpoint 360

IoC. See inversion of control (IoC)
isolation levels 235–236

J

JaasAuthenticationProvider 254
 See also ProviderManager

Jakarta Commons Database Connection Pools
(DBCP) 167

Jakarta Commons Logging 671
Jakarta Commons Validator 517–520
Jakarta Struts, integrating Web Flow with 619–620
Jakarta Tiles 549, 556

creating controllers 554, 556
views 550–554

JAR files 670
Java

aspect-oriented programming (AOP) 123
SimpleJdbcTemplate class 174
Timer class 457–460

INDEX 717
Java (continued)
creating timer tasks 458
starting timers 459

Java 5
autoboxing 182
runtime targeting 187
simplified data access objects (DAOs) 182–183
simplifying JDBC 178, 180
varargs 182

Java Data Objects (JDOs) 228
Java EE Connector API (JCA) 9
Java Management Extensions (JMX) 9

managing Spring beans with 466, 484
exporting as MBeans 467, 477
handling notifications 482, 484
remoting MBeans 477, 482

Java Message Service (JMS) 10–11, 386–393, 407
ActiveMQ message broker 392–393
architecture 387–389
conventional (non-Spring)

sending receiving 393–394
converting messages 402, 405

messageConverter property 405
sending/receiving 404–405

gateway support classes 405, 407
proxying 420–422
receiving messages 400, 402
runaway code 393, 395
sending messages 397, 399
setting default destinations 399–400
templates 395, 402

JmsTemplate 397
receiving messages 400, 402
sending messages 397, 399
setting default destinations 399–400

Java Naming and Directory Interface (JNDI)
caching objects 447–448
conventional 443, 446
fallback objects 448–449
injecting objects 446, 449
lazily loading objects 448
mail sessions 452
retrieving DataSource from 443, 445
wiring objects from 442, 450

in Spring 2 449–450
Java Persistence API (JPA) 194, 203

data access objects (DAOs) 202–203
entity manager factories 197–202
templates 194, 197
transaction managers 227–228

Java Transaction API (JTA)
transaction managers 229

java.beans.PropertyEditor interface 89
java.util.Map collection 53
java.util.Properties collection 53
JavaBeans 1.00-A specification 4
JavaDocs 669
JavaMailSenderImpl 451–452
JavaScript 652–655
JavaServer Faces (JSF) 643, 648

exposing application context in 648
integrating Web Flow with 620, 622
resolving JSF-managed properties 644–645
resolving Spring beans 646
using Spring beans in pages 646, 648

JavaServer Page (JSP) 500–501
templates 540, 542, 547, 549

JaxRpcPortProxyFactoryBean 334, 337
JaxRpcServicePostProcessor 338
JBoss 165
JBoss AOP 122
JDBC 170–183

boilerplate code 172
compared to object-relational mapping

(ORM) 203
data access object (DAO) support classes

180–183
exception heirarchy 159
inserting rows into databases 170
querying rows from databases 172
runaway code 170, 173
templates 173–180

JdbcTemplate 174, 176
transaction managers 226–227
updating rows in databases 171

JDBC abstraction 8
JDBC driver-based data source 168–169
JdbcDaoImpl 259–260

authoritiesByUsernameQuery property 260
usersByUserNameQuery property 260
wiring 259
See also AuthenticationDao

JdbcDaoSupport base class 181
JdbcDaoSupport class

getConnection() 164
JdbcTemplate 174, 176
JdbcTemplate class 162, 173

DataSource 174
named parameters 177
query() 176
querying data using 175
SQLException 175
update() 175

718 INDEX
jdbcTemplate instance variable 700
jdbcTemplate property 174
JDO. See Java Data Objects (JDOs)
JDOM-based message endpoints 355, 357
JdoTransactionManager 228
JEE namespace 166, 428–429
JEE specification 442
<jee:jndi-lookup> 166, 449–450, 452
<jee:local-slsb> 428
<jee:remote-slsb> 428
JeeBeanFactoryPostProcessor 436
JeeEjbBeanFactoryPostProcessor 436
JMS. See Java Message Service (JMS)
JMSException subclasses 395
JmsGatewaySupport class 405, 407
JmsProxyFactoryBean 420–421
JmsServiceExporter 418–419
JmsTemplate 395, 397, 402

convertAndSend() 404
receive() 401, 408
receiveAndConvert() 404
receiving messages 400, 402
send() 398
sending messages 397, 399
wiring 397
wiring default destinations 399–400

JmsTemplate102 396
JMX. See Java Management Extensions (JMX)
JMXConnectorServer 478
JNDI data sources 165, 167
JNDI. See Java Naming and Directory Interface

(JNDI)
jndiName property 166–167

LocalStatelessSessionProxyFactoryBean 427
JndiObjectFactoryBean 166–167, 429–430, 445,

448–452
cache property 448
defaultObject property 449

JndiProxyFactoryBean 429
Johnson, Rod 5
joinpoints 120

method 124
JPA. See Java Persistence API (JPA)
JpaDaoSupport class

getJpaTemplate() 203
JpaDialect 228
JpaTemplate class 162, 194

entityManagerFactory property 195
find() 197

JpaTransactionManager 228
jpaVendorAdapter property 201
JPS. See Java Persistence API (JPA)

JSF. See JavaServer Faces (JSF)
JSP tags 86, 298–300
JSP. See JavaServer Page (JSP)
JSR-181 annotations 330–333
Jsr181HandlerMapping 332
Jsr181WebAnnotations 333
JTA. See Java Transaction API (JTA)
JtaTransactionManager 229
JUnit 680–684

setting up tests in 682–683
tearing down tests in 683–684

JUnit 4
gienah-testing 702, 704

junit.framework.TestCase class 681

K

key attribute
 element 57

Knight interface 18
Knight object 21
KnightOfTheRoundTable class 19–20, 26, 29

L

<lang:bsh> 111
<lang:groovy> 110
<lang:inline-script> 113
<lang:jruby> 109
<lang:property> 112
lazy loading 201

objects 448
lazy-init attribute 427
LDAP repositories 264–271
LdapAuthenticationProvider 264–269
LdapShaPasswordEncoder 268
lib/ directory 671
Lingo 417–418

exporting services 418–419
<list> 52

values 54
load() 190
LocalContainerEntityManagerFactoryBean

198, 200
loadTimeWeaver property 201

LocaleEditor 89
LocalEntityManagerFactoryBean 198–199
LocalSessionFactoryBean 186

dataSource property 187
hibernateProperties property 187
mappingResources property 187

INDEX 719
LocalStatelessSessionProxyFactoryBean 426, 429
jndiName property 427

location property 97
Log4j 676–677
loginFormUrl property 289
<lookup-method> 84–85

M

macros
FreeMarker 566
Velocity 562

mail senders
configuring 451, 453

Java Naming and Directory Interface (JNDI)
mail sessions 452

wiring into service beans 453
mail sessions, Java Naming and Directory Interface

(JNDI) 452
MailSender interface 450, 452
main() 13
<map> 53, 56
mapping

complex types 337–338
Hibernate files 186–187
messages to endpoints 363–364
requests to controllers 502–506
SQL queries 205

mapping arrays 338, 340
mapping requests

to JSR-181 annotated beans 332–333
to XFireExporter 329–330

mapRow() 176, 179
MarketingMdb class 409
MarketingMdp class 409–410, 413–414, 416

onMessage() 412
marshalers

message 364, 367
web service templates 379–380

Marshaller interface 364
marshalSendAndReceive() 379
Maven 1 675
Maven 2

adding Spring as dependency 672, 674
adding Spring Web Flow 584
Spring modules available in repository 672

MBean servers (MBean agents) 467
MBeanExporter 467, 470

registrationBehaviorName property 476–477
MBeanProxyFactoryBean 480–481
MBeans 472–473, 477

dynamic 467

exporting Spring beans as 467, 477
defining operations/attributes 472–473
exposing methods by name 471–472
metadata-driven 474, 476

object name collisions 476–477
open 467
proxying 480, 482
remoting 477–482

accessing 479–480
exposing 478

standard 467
MBeanServerConnectionFactoryBean 479–480
MD5 encoding 261
MDBs. See message-driven beans (MDBs)
MDPs. See message-driven POJOs (MDPs)
message brokers 387

ActiveMQ 392–393
message endpoints 353

options 354
message listeners

containing 410–411
creating 408, 412

transactional message-driven POJOs
(MDPs) 411–412

message payloads, marshaling 358, 360
MessageConverter interface 402, 404
messageConverter property 405
MessageDispatcherServlet 361, 363
message-driven beans (MDBs) 408
message-driven POJOs (MDPs) 407, 416

converting messages 415–416
creating message listeners 408, 412

containing message listeners 410–411
transactional (MDPs) 411–412

writing 412, 416
MessageListenerAdapter 412–414
messages

internationalization (I18N) of 99
mapping to endpoints 363–364
rendering externalized

in JSPs 544, 547
sample XML 348, 353

forging data contracts 349, 353
sending with web service templates 377, 379
with service endpoints 353, 360

JDOM-based message endpoints 355, 357
marshaling message payloads 358, 360

MessageSource interface 99
messaging 385–386, 422

asynchronous 385–386
datacentric 390

720 INDEX
messaging (continued)
destinations defined 388
indirection 387
Java Message Service (JMS) 386, 393, 407

architecture 387, 389
benefits 390–391
conventional (non-Spring) 393–394
converting messages 402, 405
gateway support classes 405, 407
runaway code 393, 395
setting up ActiveMQ message broker 392–393
templates 395, 402

message brokers 387
message-based RPC 416, 422

exporting services 418–419
Lingo 417–418
proxying JMS 420, 422

message-driven POJOs (MDPs) 407, 416
creating message listeners 408, 412
writing 412, 416

models 388–389
point-to-point model

location independence 391
publish-subscribe model

location independence 391
queues 388–389
synchronous 386, 390
topics 389

metadata 303–304
using to map controllers 505

MetadataMBeanInfoAssembler 474
method injection 79, 85

getter injection 80–85
method replacement 80–83

method invocations 300, 304
metadata 303–304
security aspects 301–302

method joinpoints 124
method replacement 80, 83
MethodBeforeAdvice interface 129
MethodDefinitionAttributes 303
MethodInterceptor interface 131–132
MethodInvokingJobDetailFactoryBean 465
MethodInvokingTimerTaskFactoryBean 464–465
MethodNameBasedMBeanInfoAssembler

471–472
MethodReplacer interface 83
methods

exposing by name 471–472
invoking on schedule 464, 466

MethodSecurityInterceptor 302

Minstrel class 26–29
mock/ directory 668
MockHttpServletRequest 687
MockHttpServletResponse 687
model MBeans 467
Model/View/Controller (MVC) framework 9
ModelAndView 497–498

asserting contents of 690, 692
ModelAndView object 492, 501, 534
modules 6–11
MultiActionController 508
MVC. See Model/View/Controller (MVC) frame-

work

N

name attribute, HomePageController 498
named parameters

DAO support for 181–182
JDBC templates 176–178

NamedParameterJdbcDaoSupport 182
NamedParameterJdbcTemplate class 173,

177, 181
namingStrategy property 476
navigation 582–583
new creator 655
noncolonized names 351
nonrepeatable reads 235
non-Spring beans, injecting 85, 88
NotificationListener interface 484
NotificationPublisherAware interface 482–483
notifications

handling 482, 484
listening for 484

<null/> 58, 63
NullUserCache 263
numberToolAttribute property

VelocityViewResolver bean 560

O

object name collisions
MBean 476–477

Object parameter 176
object references, injecting with constructors

43, 45
objectDefinitionSource property 294
object-relational mapping (ORM)

compared to JDBC 203
frameworks 184
integration module 9

INDEX 721
objects
caching 447–448
fallback 448–449
injecting 446, 449
lazily loading 448
mocking 687, 689
wiring 442, 450
wiring in Spring 2 449–450

onApplicationEvent() 102
open MBeans 467
operation attribute 300
operational contracts 349
operations, MBean, using interfaces to

define 472–473
orders

adding to 604–605
building 601, 605
completing 605, 608

taking payments 605, 607
displaying 602–603
submitting 607–608

OrderService interface 23
OrderServiceImpl class 22
org.springframework.beans.factory.BeanFactory

33–34
org.springframework.beans.propertyed-

itors.URLEditor 89
org.springframework.context.ApplicationContext

interface 33
org.springframework.context.ApplicationEvent

abstract class 102
org.springframework.context.ApplicationListener

interface 103
ORM. See object-relational mapping (ORM)
<output-mapper> 617

P

PagingNotificationListener 484
ParameterizableViewController 508
ParameterizedRowMapper class 179
parent attribute 74
parent beans 73–78
password encoders 261
password property 168
PasswordComparisonAuthenticator 267
PasswordDaoAuthenticationProvider 254

 See also ProviderManager
passwords

comparing 267, 269
encrypted 260, 262

PaymentProcessor class 606

payments 605, 607
persistence frameworks, Hibernate 159
persistence platform agnostic exceptions 159–160
persistence.xml file 198
persistence-layer code 494
PersistenceProvider interface

createContainerEntityManagerFactory() 197
createEntityManagerFactory() 197

persistenceUnitName property 199
persisting data 156, 219

caching 208, 218
annotation-driven 217–218
caching solutions 210, 215
proxying beans for 215, 217

data sources 165, 169
JDBC driver-based 168–169
JNDI 165, 167
pooled 167–168

Hibernate 183, 194
data access objects (DAOs) 190–191
Hibernate 3 contextual sessions 192, 194
templates 186, 190
versions 185–186

iBATIS 203, 208
data access objects (DAOs) 207–208
templates 204, 207

Java Persistence API (JPA) 194, 203
data access objects (DAOs) 202–203
entity manager factories 197, 202
templates 194, 197

JDBC 170, 183
data access object (DAO) support classes

180, 183
runaway code 170, 173
templates 173, 180

overview 156–157
tiers 157, 165

data access object (DAO) support classes
163, 165

exceptions 158, 161
templating 161, 163

phantom reads 235
phone numbers 595–596
Pitchfork 435–437

annotations supported by 435
declaring interceptors using annotations

438–439
injecting resources by annotation 437–438

plain-old Java objects (POJOs) 4, 34
creating message listeners 408, 412
message-driven (MDPs) 407, 416
writing 412, 416

722 INDEX
PlatformTransactionManager 232
pointcuts 120, 132, 136

combining with advisors 134
declaring regular expression 133–134
defining AspectJ 135–136

point-to-point messaging model 388–389
location independence 391

POJOs. See plain-old Java objects (POJOs)
pool-configuration properties 168
pooled data sources 167–168
Portlet Model/View/Controller (MVC) 10
postProcessAfterInitialization() 93
postProcessBeanFactory() 95
postProcessBeforeInitialization() 93
postprocessing beans 93, 95

writing 93–94
processCancel() 526
processFinish() 525–526
processing

form submissions 517, 520
forms with wizards 524–526, 528

programmatic transaction management 224
programming transactions 229, 232
prompting users to log in 286, 291
<prop> 57
propagation behavior 233, 235
properties

abstracting common 76, 78
externalizing configuration 96, 99
injecting 46, 58

referencing other beans 48, 52
values 47–48
wiring nothing (null) 58

overriding inherited 76
Properties class 56
<property> 12, 47

autowiring 63
value attribute 48

property editors, registering custom 88, 92
property inheritance 75
PropertyEditorSupport class 89
PropertyPlaceholderConfigurer 96–97
<props> 53
prototype scoping option 65
ProviderManager 253–256
proxied classes 124
proxied inner beans 216–217
proxies 121
ProxyFactoryBean 136–139
proxying

beans for caching 215, 217
filters 278–284

Java Message Service (JMS) 420–422
MBeans 480, 482
session beans (EJB 2.x) 426–430
transactions 238–241

publish-subscribe messaging model 389
location independence 391

pure-POJO aspects 145, 149

Q

QA. See Quality Assurance (QA)
Quality Assurance (QA) 679
Quartz scheduler 460, 464

creating jobs 460–461
scheduling cron jobs 462–463
scheduling jobs 461–462
starting jobs 464

QuartzJobBean 460–461
query() 176

varargs 180
querying data

JdbcTemplate class 175, 179
SimpleJdbcTemplate class 179

querying rows from databases
JDBC 172

Quest interface 17–19
queues 388–389

R

read-only transactions 236–237
reads 235
receiveAndConvert() 404
receiving messages 404–405

conventional (non-Spring) Java Message
Service (JMS) 394

JmsTemplate 400, 402
ref attribute element 44
reference document 669
referencing other beans 48, 52

injecting inner beans 51–52
refresh-check-delay attribute 113
refreshing scripted beans 112–113
RegexpMethodPointcutAdvisor class 134
registerCustomEditor() method 91
registering

BeanPostProcessor interface 94–95
custom editors 92
custom property editors 88, 92
flow definitions 588
Spring plug-in with Struts 626–627

INDEX 723
registrationBehaviorName property 476–477
regular expression pointcuts 133–134

Perl5RegexpMethodPointcut class 133
reimplement() 83
remote exceptions 308
Remote Method Invocation (RMI) 309, 316

configuring 313, 316
exporting 312, 316
wiring 310, 312

remote methods, JavaScript and 654–657
remote objects, defining 651, 654
remote procedure calls (RPCs) 307–308

Lingo 418
message-based 416, 422

Lingo 417, 419
proxying Java Message Service (JMS) 420, 422

remote services 306–309, 342
Burlap 316–322
Hessian 316–322
HttpInvoker 322–326
Remote Method Invocation (RMI) 309–316
web services 326, 333, 340–341

JaxRpcPortProxyFactoryBean 334, 337
JSR-181 annotations 330, 333
mapping arrays 338, 340
mapping complex types 337–338
proxying with XFire client 340–341
XFire 326, 330

RemoteAuthenticationProvider 254
 See also ProviderManager

remoting 10
MBeans 477, 482

accessing 479–480
exposing 478
proxying 480, 482

<replaced-method> 82
request attributes, exposing

FreeMarker 566–567
Velocity 561

requests
handling with controllers 506, 509, 511–512,

520, 528, 531
lifecycles 491–492
mapping to controllers 502–506

resource bundles, resolving views from 539–540
Resource objects 34
ResourceBundleMessageSource 100, 546
ResourceBundleViewResolver 539–540
resource-ref attribute 167
resourceRef property 166–167
Rich Site Summary (RSS) 576, 578

RMI. See Remote Method Invocation (RMI)
RmiProxyFactoryBean 311
RmiServiceExporter 314
RoleVoter 274
rollback rules 237
RowMapper object 176

mapRow() 176, 179
RPC. See remote procedure calls (RPCs)
RSS. See Rich Site Summary (RSS)
Ruby

adding new methods 79
scripting beans in 109

run-as managers 251
RunAsImplAuthenticationProvider 254

 See also ProviderManager
runaway code 170, 173, 393–395
runtime 121

S

salt sources 261
saveOrUpdate() 189
sayGreeting() 12, 14
ScheduledTimerTask 458–459
SchedulerFactoryBean 464
scheduling tasks 456, 466

invoking methods on schedule 464, 466
Java Timer class 457, 460

creating timer tasks 458
delaying start of timers 459–460
scheduling timer tasks 458–459
starting timers 459

Quartz scheduler 460–464
scheduling cron jobs 462–463
scheduling jobs 461–462
starting jobs 464

timer tasks 458–459
schema declarations, Spring Modules 212
scope attribute 65
scopes 593
scoping beans 66
scoping options 65
scripting beans 106–114

BeanShell 110–111
Groovy 110
injecting properties 111–112
refreshing 112–113
Ruby 109
writing inline 113–114

secure channels 297
security context 285–286

724 INDEX
security exceptions 250, 291, 293
authorization exceptions 292–293

security-layer code 494
send() 398
sendAndReceive() 377
service beans, wiring mail senders into 453
service endpoints 364

messages with 353, 360
JDOM-based message endpoints 355, 357
marshaling message payloads 358, 360

service objects, accessing of DAOs 157
service-layer code 494
service-oriented architecture (SOA) 326
servlet filters 276

authentication-processing 277
exception translation 277
filter security interceptors 278
integration 277
proxying 279, 281
with Acegi 275

servlet listeners 494
<servlet-name> 493
session attributes 561–567
session beans

EJB 2.x 426, 430
EJB 3 429–430

session scoping option 65
SessionFactory interface 192
sessionFactory property 186
<set> 52, 54
setApplicationContext() 40, 105
setAsText(String value) 89
setBeanFactory() 105
setBeanName() 104
setComplete() 698
setGreeting() 12–13
setOrderService() 23
setQuest() 20
setRollbackOnly() 231
setter injection

compared to constructor injection 45, 253
versus constructor injection 44

setUp() 683
SimpleFormController 508–509, 514, 520
SimpleJdbcDaoSupport 182
SimpleJdbcTemplate 174, 178
SimpleJdbcTemplate class

Java 174
querying data using 179
RowMapper object

mapRow() 179
SimpleMappingExceptionResolver 531–532

SimpleMessageListenerContainer 411
SimpleRemoteStatelessSessionProxyFactoryBean

426–427, 429
SimpleTriggerBean 461–462
SimpleUrlHandlerMapping 329, 503–504, 585
SimpleWsdl11Definition 371
Since 448
singAfter() 29
singBefore() 29
SingleConnectionDataSource 169
singleton beans, loading 37
singleton scoping option 65
SOA. See service-oriented architecture (SOA)
SoapFaultMappingExceptionResolver 367

exceptionMappings property 368
SoapServiceExporter 326
software testing, Quality Assurance (QA) 679
special beans 92, 106

awareness 103, 106
BeanNameAware interface 104–106

BeanFactoryPostProcessor interface 95–96
decoupling with application events 101–103
externalizing configuration properties 96, 99
postprocessing beans 93–95
resolving text messages 99, 101

Spring 4–6, 30
basic example 11, 14
data access exceptions 158, 161

catch blocks 160–161
persistence platform agnostic 159–160

data access object (DAO) support classes
163, 165

data access tiers 157, 165
DAO support classes 163, 165
exceptions 158, 161
templating 161, 163

directory structure 669
downloading 668–669, 671
integrating with 624, 632–633, 636, 642–643,

648, 663, 665
JavaDocs 669
mixing with Enterprise JavaBeans (EJBs) 424
modules available in Maven 2 repository 672
participation in testing 684–685
reference document 669
templating 161, 163
transaction management support 224–225
website 668

Spring 2 449–450
Spring 2.0

declaring transactions 241, 243
JNDI data sources 166–167

INDEX 725
Spring AOP 122, 125
advice 127

Spring aspects 140–141
Spring BeanDoc, autowiring 64
Spring beans

exporting as MBeans 467, 477
defining operations/attributes 472–473
exposing methods by name 471–472
metadata-driven 474, 476
object name collisions 476–477

loading into Tapestry pages 639, 641
managing with Java Management Extensions

(JMX) 466, 484
exporting as MBeans 467, 477
handling notifications 482, 484
remoting MBeans 477, 482

resolving 646
using in JavaServer Faces (JSF) pages 646, 648
wiring Enterprise JavaBeans (EJBs) into

430–431
Spring IDE, autowiring 64
Spring Model-View-Controller (MVC) 490, 502

building homepages 495–502
configuring DispatcherServlet 492–495
request lifecycles 491–492

Spring Modules 210–212
Spring MVC controllers 491–492

unit-testing 685, 687, 689–690, 692
Spring MVC conversational applications 583
spring object factory 635
Spring Security 248, 304

access decisions managers 271–272, 275
voter abstinence 275
voting 272–274

authenticating users 252, 271
against databases 256, 264
against LDAP repositories 264, 271
ProviderManager 253, 256

authentication entry points 287
authentication providers 254
authentication-processing filters 287
credentials 250
elements 249
JSP tags 298
method invocations 300, 304

metadata 303–304
security aspects 301–302

password encoders 261
principals 250
servlet filters 276–278

order of configuration 284
view-layer security 297–300

web security 275, 297
enforcing 293–294
prompting users to log in 286, 291
proxying filters 278, 284
secure channels 294, 297
security context 285–286
security exceptions 291, 293

Spring Web Flow. See Web Flow
spring.jar file 671
<spring:message> 545, 547
SpringBindingActionForm 620
Spring-enabled Enterprise JavaBeans (EJB

2.x) 431, 434
Spring-managed beans

accessing 659, 661–663
Spring-OXM

marshaling options 365
SpringRunner 704
SpringTapestryEngine 637, 639
Spring-WS 344–348, 353, 373, 382–383

message factory implementations 375
message senders 375
messages with service endpoints 353, 360

JDOM-based message endpoints 355, 357
marshaling message payloads 358, 360

service configuration 362
web service gateway support 381–382
web service templates 374, 380

marshalers on client side 379–380
sending messages 377, 379

wiring 361, 373
configuration 361, 363
deploying 373
endpoint exceptions 367, 369
mapping messages to endpoints 363–364
message marshalers 364, 367
service endpoints 364
WSDL files 369, 373

SQL queries, mapping 205
SQLException 175
SqlMapClient interface 204
SqlMapClientDaoSupport 207
SqlMapClientFactoryBean 205
SqlMapClientTemplate 204–205
src/ directory 668
standard MBeans 467
start states 593–594
starting

Quartz jobs 464
timers 459

<start-state> 593–594

726 INDEX
states 589–590
String parameter 176
StringArrayPropertyEditor 89
StringTrimmerEditor 89
Struts 624, 633

actions 627, 629–632
integrating Web Flow with 619–620
registering Spring plug-in with 626–627

Struts 2 632–633, 636
subbeaning 74, 78
subflows 614–618
<subflow-state> 617
substates 614, 618
supports() 272
synchronous messaging 386, 390

T

tags, form-binding JavaServer Page (JSP) 543
Tapestry 636, 642

loading Spring beans into Tapestry pages
639, 641

Tapestry 3 637, 641
Tapestry 4 641–642
targets 121
tasks

scheduling 456, 466
invoking methods on schedule 464, 466
Java Timer class 457, 460
Quartz scheduler 460, 464

timer
creating 458
scheduling 458–459

tearDown() 684
tearing down tests in JUnit 684
template classes 162

HibernateTemplate 162
JdbcTemplate 162, 173
JpaTemplate class 162
NamedParameterJdbcTemplate 173
relationship to DAO support classes 164
SimpleJdbcTemplate 174

template methods 161
template views, resolving 534–535, 537
templates

Hibernate 186, 190
annotated domain objects 187–188
classic XML mapping files 186–187

iBATIS 204, 207
SQL maps 205–206
SqlMapClientTemplate 204–205

Java Message Service (JMS) 395, 402
JmsTemplate 397
receiving messages 400, 402
sending messages 397, 399
setting default destinations 399–400

Java Persistence API (JPA) 194, 197
JavaServer Page (JSP) 542, 549

binding form data 542, 544
displaying errors 547, 549
rendering externalized messages 544, 547

JDBC 173, 180
JdbcTemplate 174, 176
named parameters 176, 178
simplifying in Java 5 178, 180

transaction proxy 240–241
Velocity 557, 564

binding form fields 561, 564
configuring engines 558–559
defining views 557–558
exposing request/session attributes 561
formatting dates/numbers 560–561
resolving views 559–560

web services 374, 380
marshalers on client side 379–380
sending messages 377, 379

templating data access 161, 163
test methods 681

setUp() 683
tearDown() 684

testing 679, 705
integration-testing 692–694, 696, 699, 702, 704
JUnit 680, 682–684
Spring participation in 684–685
types of 680
unit-testing Spring MVC controllers 685, 687,

689–690, 692
TestingAuthenticationProvider 254

 See also ProviderManager
text messages, resolving 99, 101
ThrowawayController 508, 528, 531
ThrowawayControllerHandlerAdapter 530
ThrowsAdvice interface 130–131

afterThrowing() 130
tiger/ directory 668
<tile:insert> 550
Tiles 549, 556

creating controllers 554, 556
views 550, 554

configuring 552
resolving 553–554

TilesConfigurer 552
TilesJstlView 553

INDEX 727
timeouts 237
Timer class 457, 460

creating timer tasks 458
delaying start of timers 459–460
scheduling timer tasks 458–459
starting timers 459

timer tasks, creating 458
TimerFactoryBean 457, 459
timers, starting 459
Tomcat 165
TopLinkJpaVendorAdapter property 201
Trang 350
transaction managers 225, 229

Hibernate 227
Java Data Objects (JDOs) 228–229
Java Persistence API (JPA) 227–228
Java Transaction API (JTA) 229
JDBC 226–227

transactional message-driven POJOs (MDPs)
411–412

transactional objects, integration-testing 696,
698–699

transactional testing 684
transactionAttributes property 239
TransactionCallback interface 231

doInTransaction() 232
execute() 231
setRollbackOnly() 231

TransactionDefinition 233
transactionManager property 412
TransactionProxyFactoryBean 238
transactions 221–225, 246

atomicity 223
consistency 223
declaring 232, 245

annotation-driven transactions 243, 245
attributes 233, 237
proxying 238, 241
Spring 2.0 241, 243

declaritive 224
described 221
durability 223
isolation 223
managers 225
programmatically adding 231
programming 229, 232
propagation behaviors 234
read-only, propagation behaviors 237
timeouts, propagation behaviors 237
transaction managers 225, 229

Hibernate 227
Java Data Objects (JDOs) 228–229

Java Persistence API (JPA) 227–228
Java Transaction API (JTA) 229
JDBC 226–227

<transition> 608
transitions 590
Trigger class 461
tx namespace 241
<tx:advice> 242
<tx:annotation-driven> 244
<tx:attribute> 242
<tx:method> 242
txProxyTemplate 240

U

UnanimousBased wiring 272
unit testing 16–17, 445
Unmarshaller interface 364
update() 175
updateTable 657
updating rows in databases, JDBC 171
url property 167
URLEditor 89
UrlFilenameViewController 508
UserCache interface 263
UserDetailsService interface 257
userDetailsService property 257
userDnPatterns property 266
username property 168
usersByUserNameQuery property 260

V

validate() 528
validatePage() 527
validating form input 517
validation 8
Validator interface 515, 517–518
Validator object

validate() 528
validatePage() 527

validatorFactory bean 518
value attribute element 44
values, injecting 47–48
varargs 178, 182

query() 180
Velocity macros 562
Velocity templates 557, 564

binding form fields 561, 564
configuring engines 558–559
defining views 557–558

728 INDEX
Velocity templates (continued)
exposing

request attributes 561
session attributes 561

formatting
dates 560–561
numbers 560–561

resolving views 559–560
VelocityConfigurer bean 558–559
VelocityViewResolver bean 559, 561

dateToolAttribute 560
exposeRequestAttributes 561
exposeSessionAttributes 561
exposeSpringMacroHelpers 563
numberToolAttribute 560

view beans
resolving 537, 540

declaring in separate XML files 538
from resource bundles 539–540

view resolvers
choosing 540–541
declaring 499–500
using multiple 540–541

viewClass property 537
view-layer security 297, 300

conditionally rendering content 298–299
displaying user authentication

information 299–300
ViewResolver implementations 535
views 534, 556, 579

developing custom 576, 578
FreeMarker 564–569

binding form fields 567, 569
configuring engines 565–566
defining views 564–565
exposing request/session attributes 566–567
resolving views 566

JavaServer Page (JSP) templates 542, 549
binding form data 542, 544
displaying errors 547, 549
rendering externalized messages 544, 547

non-HTML output 569, 578
developing custom views 576, 578
Excel spreadsheets 570, 573
PDF documents 573, 575

resolving 534, 541
choosing view resolvers 540–541
FreeMarker 566
resolving view beans 537, 540
template views 535, 537
Velocity 559–560

Tiles 549–550, 554, 556
creating controllers 554, 556

Velocity templates 557, 564
binding form fields 561, 564
configuring engines 558–559
defining views 557–558
exposing request/session attributes 561
formatting dates/numbers 560–561
resolving views 559–560

<view-state> 595, 598, 602, 604–605
voting access decisions 272–274

W

weaving 121–122
web containers, initializing servlet listeners before

servlets 494
Web Flow 581–622

advanced techniques 611, 618
decision states 612, 614
extracting subflows 614, 618
substates 614, 618

creating flows 591, 611
building orders 601, 605
completing orders 605, 608
end states 593–594
flow variables 591, 593
gathering customer information 594, 601
start states 593–594

installing 584, 588
configuring flow executors 586–587
FlowController 585–586
registering flow definitions 588

integrating with other frameworks 619, 622
Jakarta Struts 619–620
JavaServer Faces 620, 622

main elements 589–590
web module 10
web requests 490, 532

handling exceptions 531–532
handling requests with controllers 506, 509,

511–512, 520, 528, 531
mapping requests to controllers 502–506
Spring Model-View-Controller (MVC) 490–492,

495, 502
web security 275, 297

enforcing 293–294
prompting users to log in 286, 291

basic authentication 287, 289
form-based authentication 289, 291

INDEX 729
web security (continued)
proxying filters 278, 284

configuring proxies 283–284
multiple filters 281–282
servlet filters 279, 281

secure channels 294, 297
channel decisions 297

security context 285–286
security exceptions 291–293

web service templates 374, 380
marshalers on client side 379–380
sending messages 377, 379

web services 326, 333, 340–341
contract-first 344, 373, 382–383

defined 347, 353
messages with service endpoints 353, 360
overview 344–345, 347
web service gateway support 381–382
web service templates 374, 380
wiring 361, 373

JaxRpcPortProxyFactoryBean 334, 337
JSR-181 annotations 330, 333

mapping requests to JSR-181 annotated
beans 332–333

mapping arrays 338, 340
mapping complex types 337–338
proxying with XFire client 340–341
XFire 326, 330

DispatcherServlet 329
mapping requests to XFireExporter 329–330
XFireExporter 328–329

Web Services Metadata for the Java Platform
(JSR-181), annotations 330

web views 534, 556, 579
FreeMarker 564, 569

binding form fields 567, 569
configuring engines 565–566
defining views 564–565
exposing request/session attributes 566–567
resolving views 566

JavaServer Page (JSP) templates 542, 549
binding form data 542, 544
displaying errors 547, 549
rendering externalized messages 544, 547

non-HTML output 569, 578
developing custom views 576, 578
Excel spreadsheets 570, 573
PDF documents 573, 575

resolving 534, 541
choosing view resolvers 540–541
resolving view beans 537, 540
template views 535, 537

Tiles 549–550, 554, 556
creating controllers 554, 556

Velocity templates 557, 564
binding form fields 561, 564
configuring engines 558–559
defining views 557–558
exposing request/session attributes 561
formatting dates/numbers 560–561
resolving views 559–560

web.xml files, FilterToBeanProxy 283
webApplicationContext 648
WebApplicationContextUtils 627
WebApplicationContextVariableResolver 621,

648, 664
web-layer code 494
WebServiceTemplate 373

marshalSendAndReceive() 379
sendAndReceive() 377

WebSphere 165
WebWork 2 633, 636
wired objects

integration-testing 694–696
wiring 20–21

default destinations into JmsTemplate 399–400
defined 32
Enterprise JavaBeans 425, 431

into Spring beans 430–431
proxying session beans (EJB 2.x) 426, 430

Java Naming and Directory Interface (JNDI)
objects 442, 450
in Spring 2 449–450

JmsTemplate 397
mail senders into service beans 453
nothing (null) 58
Remote Method Invocation (RMI) services

310, 312
Spring-WS services 361, 373

configuration 361, 363
deploying 373
endpoint exceptions 367, 369
mapping messages to endpoints 363–364
message marshalers 364, 367
service endpoints 364
WSDL files 369, 373

Struts actions in Spring 630–631
wiring beans 32, 71, 73, 115

auto-wiring 58, 64
mixing with explicit wiring 63
shortcomings 63–64
types 59, 62

730 INDEX
wiring beans (continued)
containing 33, 40

ApplicationContext interface 35, 40
BeanFactory interface 34–35

controlling creation 64, 71
creating from factory methods 66, 68
destroying 68, 71
initializing 68, 71
scoping 66

creating 40, 45
declaring 40–41
injecting through constructors 42, 45

declaring child beans 73, 78
abstracting base bean type 74, 76
abstracting common properties 76, 78

declaring parent beans 73, 78
abstracting base bean type 74, 76
abstracting common properties 76, 78

injecting non-Spring beans 85, 88
injecting properties 46, 58

injecting simple values 47–48
referencing other beans 48, 52
wiring nothing (null) 58

method injection 79, 85
getter injection 83, 85
method replacement 80, 83

registering custom property editors 88, 92
scripting beans 106, 114

example 107–108
injecting properties 111–112
refreshing 112–113
scripting bean 108, 111
writing inline 113–114

special beans 92, 106
awareness 103, 106

BeanFactoryPostProcessor interface 95–96
BeanPostProcessor interface 93, 95
decoupling with application events 101, 103
externalizing configuration properties 96, 99
resolving text messages 99, 101

wizard controllers, building 521, 524
wizards

canceling 526
finishing 525–526
processing forms with 520–521, 524–526, 528
validating forms 526, 528

WSDL files 369, 373
predefined WSDL 371, 373

X

XFire 326, 330
DispatcherServlet 329

XFireClientFactoryBean 334, 340
XFireExporter 327–329

mapping requests to 329–330
XML files

declaring view beans in separate 538
splitting application context across multiple 493

XML mapping files, Hibernate 186–187
XML messages 348, 353

forging data contracts 349, 353
XML Schema (XSD) 349
XmlBeanFactory 21

creating 34
XmlFileViewResolver 538, 540–541
XmlFlowRegistryFactoryBean 588
XMLHttpRequest 649
XmlWebApplicationContext 36

	Spring in Action
	preface
	preface to the first edition
	acknowledgments
	about this book
	about the title
	about the cover illustration
	Part 1 Core Spring
	Chapter 1 Springing into action
	1.1 What is Spring?
	1.1.1 Spring modules

	1.2 A Spring jump start
	1.3 Understanding dependency injection
	1.3.1 Injecting dependencies
	1.3.2 Dependency injection in action
	1.3.3 Dependency injection in enterprise applications

	1.4 Applying aspect-oriented programming
	1.4.1 Introducing AOP
	1.4.2 AOP in action

	1.5 Summary

	Chapter 2 Basic bean wiring
	2.1 Containing your beans
	2.1.1 Introducing the BeanFactory
	2.1.2 Working with an application context
	2.1.3 A bean’s life

	2.2 Creating beans
	2.2.1 Declaring a simple bean
	2.2.2 Injecting through constructors

	2.3 Injecting into bean properties
	2.3.1 Injecting simple values
	2.3.2 Referencing other beans
	2.3.3 Wiring collections
	2.3.4 Wiring nothing (null)

	2.4 Autowiring
	2.4.1 The four types of autowiring
	2.4.2 Mixing auto with explicit wiring
	2.4.3 To autowire or not to autowire

	2.5 Controlling bean creation
	2.5.1 Bean scoping
	2.5.2 Creating beans from factory methods
	2.5.3 Initializing and destroying beans

	2.6 Summary

	Chapter 3 Advanced bean wiring
	3.1 Declaring parent and child beans
	3.1.1 Abstracting a base bean type
	3.1.2 Abstracting common properties

	3.2 Applying method injection
	3.2.1 Basic method replacement
	3.2.2 Using getter injection

	3.3 Injecting non-Spring beans
	3.4 Registering custom property editors
	3.5 Working with Spring’s special beans
	3.5.1 Postprocessing beans
	3.5.2 Postprocessing the bean factory
	3.5.3 Externalizing configuration properties
	3.5.4 Resolving text messages
	3.5.5 Decoupling with application events
	3.5.6 Making beans aware

	3.6 Scripting beans
	3.6.1 Putting the lime in the coconut
	3.6.2 Scripting a bean
	3.6.3 Injecting properties of scripted beans
	3.6.4 Refreshing scripted beans
	3.6.5 Writing scripted beans inline

	3.7 Summary

	Chapter 4 Advising beans
	4.1 Introducing AOP
	4.1.1 Defining AOP terminology
	4.1.2 Spring’s AOP support

	4.2 Creating classic Spring aspects
	4.2.1 Creating advice
	4.2.2 Defining pointcuts and advisors
	4.2.3 Using ProxyFactoryBean

	4.3 Autoproxying
	4.3.1 Creating autoproxies for Spring aspects
	4.3.2 Autoproxying @AspectJ aspects

	4.4 Declaring pure-POJO aspects
	4.5 Injecting AspectJ aspects
	4.6 Summary

	Part 2 Enterprise Spring
	Chapter 5 Hitting the database
	5.1 Learning Spring’s data access philosophy
	5.1.1 Getting to know Spring’s data access exception hierarchy
	5.1.2 Templating data access
	5.1.3 Using DAO support classes

	5.2 Configuring a data source
	5.2.1 Using JNDI data sources
	5.2.2 Using a pooled data source
	5.2.3 JDBC driver-based data source

	5.3 Using JDBC with Spring
	5.3.1 Tackling runaway JDBC code
	5.3.2 Working with JDBC templates
	5.3.3 Using Spring’s DAO support classes for JDBC

	5.4 Integrating Hibernate with Spring
	5.4.1 Choosing a version of Hibernate
	5.4.2 Using Hibernate templates
	5.4.3 Building Hibernate-backed DAOs
	5.4.4 Using Hibernate 3 contextual sessions

	5.5 Spring and the Java Persistence API
	5.5.1 Using JPA templates
	5.5.2 Configuring an entity manager factory
	5.5.3 Building a JPA-backed DAO

	5.6 Spring and iBATIS
	5.6.1 Configuring an iBATIS client template
	5.6.2 Building an iBATIS-backed DAO

	5.7 Caching
	5.7.1 Configuring a caching solution
	5.7.2 Proxying beans for caching
	5.7.3 Annotation-driven caching

	5.8 Summary

	Chapter 6 Managing transactions
	6.1 Understanding transactions
	6.1.1 Explaining transactions in only four words
	6.1.2 Understanding Spring’s transaction management support

	6.2 Choosing a transaction manager
	6.2.1 JDBC transactions
	6.2.2 Hibernate transactions
	6.2.3 Java Persistence API transactions
	6.2.4 Java Data Objects transactions
	6.2.5 Java Transaction API transactions

	6.3 Programming transactions in Spring
	6.4 Declaring transactions
	6.4.1 Defining transaction attributes
	6.4.2 Proxying transactions
	6.4.3 Declaring transactions in Spring 2.0
	6.4.4 Defining annotation-driven transactions

	6.5 Summary

	Chapter 7 Securing Spring
	7.1 Introducing Spring Security
	7.2 Authenticating users
	7.2.1 Configuring a provider manager
	7.2.2 Authenticating against a database
	7.2.3 Authenticating against an LDAP repository

	7.3 Controlling access
	7.3.1 Voting access decisions
	7.3.2 Casting an access decision vote
	7.3.3 Handling voter abstinence

	7.4 Securing web applications
	7.4.1 Proxying Spring Security’s filters
	7.4.2 Handling the security context
	7.4.3 Prompting the user to log in
	7.4.4 Handling security exceptions
	7.4.5 Enforcing web security
	7.4.6 Ensuring a secure channel

	7.5 View-layer security
	7.5.1 Conditionally rendering content
	7.5.2 Displaying user authentication information

	7.6 Securing method invocations
	7.6.1 Creating a security aspect
	7.6.2 Securing methods using metadata

	7.7 Summary

	Chapter 8 Spring and POJO-based remote services
	8.1 An overview of Spring remoting
	8.2 Working with RMI
	8.2.1 Wiring RMI services
	8.2.2 Exporting RMI services

	8.3 Remoting with Hessian and Burlap
	8.3.1 Accessing Hessian/Burlap services
	8.3.2 Exposing bean functionality with Hessian/Burlap

	8.4 Using Spring’s HttpInvoker
	8.4.1 Accessing services via HTTP
	8.4.2 Exposing beans as HTTP Services

	8.5 Spring and web services
	8.5.1 Exporting beans as web services using XFire
	8.5.2 Declaring web services with JSR-181 annotations
	8.5.3 Consuming web services
	8.5.4 Proxying web services with an XFire client

	8.6 Summary

	Chapter 9 Building contract-first web services in Spring
	9.1 Introducing Spring-WS
	9.2 Defining the contract (first!)
	9.2.1 Creating sample XML messages

	9.3 Handling messages with service endpoints
	9.3.1 Building a JDOM-based message endpoint
	9.3.2 Marshaling message payloads

	9.4 Wiring it all together
	9.4.1 Spring-WS: The big picture
	9.4.2 Mapping messages to endpoints
	9.4.3 Wiring the service endpoint
	9.4.4 Configuring a message marshaler
	9.4.5 Handling endpoint exceptions
	9.4.6 Serving WSDL files
	9.4.7 Deploying the service

	9.5 Consuming Spring-WS web services
	9.5.1 Working with web service templates
	9.5.2 Using web service gateway support

	9.6 Summary

	Chapter 10 Spring messaging
	10.1 A brief introduction to JMS
	10.1.1 Architecting JMS
	10.1.2 Assessing the benefits of JMS
	10.1.3 Setting up ActiveMQ in Spring

	10.2 Using JMS with Spring
	10.2.1 Tackling runaway JMS code
	10.2.2 Working with JMS templates
	10.2.3 Converting messages
	10.2.4 Using Spring’s gateway support classes for JMS

	10.3 Creating message-driven POJOs
	10.3.1 Creating a message listener
	10.3.2 Writing pure-POJO MDPs

	10.4 Using message-based RPC
	10.4.1 Introducing Lingo
	10.4.2 Exporting the service
	10.4.3 Proxying JMS

	10.5 Summary

	Chapter 11 Spring and Enterprise JavaBeans
	11.1 Wiring EJBs in Spring
	11.1.1 Proxying session beans (EJB 2.x)
	11.1.2 Wiring EJBs into Spring beans

	11.2 Developing Spring-enabled EJBs (EJB 2.x)
	11.3 Spring and EJB3
	11.3.1 Introducing Pitchfork
	11.3.2 Getting started with Pitchfork
	11.3.3 Injecting resources by annotation
	11.3.4 Declaring interceptors using annotations

	11.4 Summary

	Chapter 12 Accessing enterprise services
	12.1 Wiring objects from JNDI
	12.1.1 Working with conventional JNDI
	12.1.2 Injecting JNDI objects
	12.1.3 Wiring JNDI objects in Spring 2

	12.2 Sending email
	12.2.1 Configuring a mail sender
	12.2.2 Constructing the email

	12.3 Scheduling tasks
	12.3.1 Scheduling with Java’s Timer
	12.3.2 Using the Quartz scheduler
	12.3.3 Invoking methods on a schedule

	12.4 Managing Spring beans with JMX
	12.4.1 Exporting Spring beans as MBeans
	12.4.2 Remoting MBeans
	12.4.3 Handling notifications

	12.5 Summary

	Part 3 Client-side Spring
	Chapter 13 Handling web requests
	13.1 Getting started with Spring MVC
	13.1.1 A day in the life of a request
	13.1.2 Configuring DispatcherServlet
	13.1.3 Spring MVC in a nutshell

	13.2 Mapping requests to controllers
	13.2.1 Using SimpleUrlHandlerMapping
	13.2.2 Using ControllerClassNameHandlerMapping
	13.2.3 Using metadata to map controllers
	13.2.4 Working with multiple handler mappings

	13.3 Handling requests with controllers
	13.3.1 Processing commands
	13.3.2 Processing form submissions
	13.3.3 Processing complex forms with wizards
	13.3.4 Working with throwaway controllers

	13.4 Handling exceptions
	13.5 Summary

	Chapter 14 Rendering web views
	14.1 Resolving views
	14.1.1 Using template views
	14.1.2 Resolving view beans
	14.1.3 Choosing a view resolver

	14.2 Using JSP templates
	14.2.1 Binding form data
	14.2.2 Rendering externalized messages
	14.2.3 Displaying errors

	14.3 Laying out pages with Tiles
	14.3.1 Tile views
	14.3.2 Creating Tile controllers

	14.4 Working with JSP alternatives
	14.4.1 Using Velocity templates
	14.4.2 Working with FreeMarker

	14.5 Generating non-HTML output
	14.5.1 Producing Excel spreadsheets
	14.5.2 Generating PDF documents
	14.5.3 Developing custom views

	14.6 Summary

	Chapter 15 Using Spring Web Flow
	15.1 Getting started with Spring Web Flow
	15.1.1 Installing Spring Web Flow
	15.1.2 Spring Web Flow essentials
	15.1.3 Creating a flow

	15.2 Laying the flow groundwork
	15.2.1 Flow variables
	15.2.2 Start and end states
	15.2.3 Gathering customer information
	15.2.4 Building a pizza order
	15.2.5 Completing the order
	15.2.6 A few finishing touches

	15.3 Advanced web flow techniques
	15.3.1 Using decision states
	15.3.2 Extracting subflows and using substates

	15.4 Integrating Spring Web Flow with other frameworks
	15.4.1 Jakarta Struts
	15.4.2 JavaServer Faces

	15.5 Summary

	Chapter 16 Integrating with other web frameworks
	16.1 Using Spring with Struts
	16.1.1 Registering the Spring plug-in with Struts
	16.1.2 Writing Spring-aware Struts actions
	16.1.3 Delegating to Spring-configured actions
	16.1.4 What about Struts 2?

	16.2 Working Spring into WebWork 2/Struts 2
	16.3 Integrating Spring with Tapestry
	16.3.1 Integrating Spring with Tapestry 3
	16.3.2 Integrating Spring with Tapestry 4

	16.4 Putting a face on Spring with JSF
	16.4.1 Resolving JSF-managed properties
	16.4.2 Resolving Spring beans
	16.4.3 Using Spring beans in JSF pages
	16.4.4 Exposing the application context in JSF

	16.5 Ajax-enabling applications in Spring with DWR
	16.5.1 Direct web remoting
	16.5.2 Accessing Spring-managed beans DWR

	16.6 Summary

	Appendix A: Setting up Spring
	A.1 Downloading Spring
	A.2 Adding Spring as a Maven 2 dependency
	A.3 Spring and Ant
	A.4 Spring and Log4j

	Appendix B: Testing with (and without) Spring
	B.1 Introduction to testing
	B.2 Unit-testing Spring MVC controllers
	B.3 Integration testing with Spring
	B.4 Summary

	index

